An Upgraded ATLAS Central Trigger for 2014 LHC Luminosities

Michiru Kaneda (CERN)

On behalf of the ATLAS Level-1 Central Trigger Group

The 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference

October 29 – November 3, 2012, Anaheim, California, the United States

The LHC and the ATLAS Detector

- Multi-Purpose detector placed at one of the beam crossing points of the LHC
- The detector consists of:
 - Inner Detectors within 2 T Solenoid Magnet
 - Calorimeters: Tile Scintillator and Liquid Argon
 - Muon System with Toroid Magnet
- Status during 2012:
 - The LHC runs at the center-of-mass energy of 8 TeV
 - Peak instantaneous luminosity: $7.7 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
 - Integrated luminosity: 16 fb$^{-1}$
- Plan for 2014 (Phase-2 upgrade):
 - The LHC will run at the center-of-mass energy of 13–14 TeV
 - Peak instantaneous luminosity: $1 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$

The Central Trigger Processor

- **Components of the CTP**
 - CTPIN receives triggers inputs from sub-detectors, synchronizes and aligns them with respect to Bunch Crossing (BC), and routes them to the Pattern In Time (PIT) bus
 - CTPCORE receives PIT, generates L1A and sends event information to LVL2 DAQ
 - CTPOUT fans out L1A and timing to Local Trigger Processors (LTP) in sub-detectors, receives, masks and monitors the BUSY signals from LTP
 - CTPMON receives PIT, and monitors total and bunch-wise rates
 - CTPML is the interface for the timing signals
 - CTPCAL is for calibration requests from the detectors

Implementation of the CTP

The CTP Upgrade Plan for 2014

Resource Upgrade

<table>
<thead>
<tr>
<th>Resource</th>
<th>Used</th>
<th>Available</th>
<th>Upgrade</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTPIN input cables (partially used)</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>CTPIN input signals</td>
<td>212</td>
<td>372</td>
<td></td>
</tr>
<tr>
<td>CTPIN integrating monitoring counters</td>
<td>138</td>
<td>768</td>
<td>1856</td>
</tr>
<tr>
<td>PIT bus lines</td>
<td>160</td>
<td>160</td>
<td>320</td>
</tr>
<tr>
<td>CTPCORE trigger items</td>
<td>241</td>
<td>256</td>
<td>512</td>
</tr>
<tr>
<td>CTPCORE bunch group masks</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>CTPCORE maximum number of AND terms</td>
<td>6</td>
<td>256</td>
<td>512</td>
</tr>
<tr>
<td>CTPCORE maximum number of bits OR in terms</td>
<td>6</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>CTPR per-bunch trigger item counters</td>
<td>12</td>
<td>12</td>
<td>256</td>
</tr>
<tr>
<td>CTPOUT cables to TTC partitions</td>
<td>20</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>CTPMON per-bunch monitoring counters</td>
<td>98</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>

- **New modules: CTPCORE++ and CTPOUT++ are being developed**
 - while same PIT bus backplane will be used with double rate
- **Double the number of trigger inputs: 160->320**
 - Multiplexing two inputs signals to one signal will be done on CTPIN
 - require extra ~32B latency
- **Double trigger items: 256->1256**
- **Double bunch groups: 8->16**
 - Mask will be applied after items are formed (it is a part of the trigger item)

CTPCORE++ Module

- **CTPCORE++ Module**
 - in other FPGA
 - CTPCAL
 - PIT bus
 - Trigger & Timing signals
 - LVL2 inputs
 - CTPOUT signals (PIT, CAM, LVL2)
 - L1Ap

CTPCORE++ Trigger Path

- PIT (Pattern In Time)
- CTPR (Trigger item before Precal)
- L1Ap (L1A for physics partition)
- L1A (L1A for secondary partition)