RF upgrade program in LHC injectors and LHC machine

Erk Jensen, on behalf of BE-RF

Many thanks to M. E. Angoletta, O. Brunner, R. Calaga, E. Ciapala, H. Damerau, W. Höfle, E. Montesinos, M. Paoluzzi, C. Rossi, E. Shaposhnikova, J. Tückmantel and all those I forgot to mention
2010 - 2016

|------|------|------|------|------|------|------|------|

LHC

- **2012**: LS1

- **2015**: X-Mas maintenance

- **2016**: X-Mas maintenance

Inverters

- **2010**: SPS upgrade

- **2011**: LS3

- **2012**: ? SPS - LINAC4 connection & ? PSB energy upgrade

Machine: Splice Consolidation & Collimation in IR3
- ALICE: detector completion
- ATLAS: consolidation and new forward beam pipes
- CMS: FWD muons upgrade + Consolidation & infrastructures
- LHCb: consolidations
- Cryo-collimation point

2016 - 2021

<table>
<thead>
<tr>
<th>Year</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
</tr>
</thead>
</table>

LHC

- **2018**: LS2

- **2019**: X-Mas maintenance

- **2020**: X-Mas maintenance

Inverters

- **2018**: X-Mas maintenance
- **2019**: X-Mas maintenance

Machine: Collimation & prepare for crab cavities & RF cryo system
- ATLAS: new pixel detector - detect for ultimate luminosity.
- ALICE: Inner vertex system
- LHCb: full trigger upgrade, new vertex detector etc.

2022

LS3

- Installation of HL-LHC hardware
- Installation of LHeC Preparation for HE-LHC
General

Some maintenance work could not be done during the relatively short winter shutdowns and was postponed to LS1. I quote E. Montesinos:

“...very important maintenance program of the injector systems during LS1 due to lack of maintenance these last years. ... e.g. we fixed some issues while repairing the Siemens system, it shows we are close to the limits (5-6 near important accidents*) last year, avoided by careful survey of the team). ... we will have to do lot in order to have all our systems ready for a new 3 to 4 years run with only few technical stops”.

In the following, I’ll mention the major RF upgrade and consolidation activities – but the list is not exhaustive.

*) example: cf. spare slides
Linac 4

RFQ: brazing problems

CCDTL Novosibirsk (5-11 Nov 2011)

M. Vretenar, F. Gerigk, C. Rossi, …
Linac 4 timeline

Linac4 installation & commissioning

- **2010**
 - Nov-10: Start of General Services Installation (20 months)

- **2011**
 - Jun-11: Start of Cabling campaign (12 months)

- **2012**
 - Jul-12: Start of Machine installation (9 months)
 - Jan-13: Test Stand move to Linac4 (4 months)
 - Apr-13: Start of intermediate Beam Commissioning (10 months)

- **2013**
 - Critical Path

- **2014**
 - Feb-14: Start of Linac4 Beam Commissioning – 160MeV

M. Vretenar
PSB LLRF upgrade: planning

- **2011**: Beam tests with prototype hardware.
- **2012**: Beam tests: prototype + new hardware (PSB ring 4), support Finemet® prototype.
- **2013**: H/w series production for PSB
- **2014**: Full deployment of new PSB LLRF (4 rings + ring 0), support Finemet® system (full 13 cells, 8 kV)
- **2015-16**: Commissioning, prepare for injection from Linac 4

M. E. Angloletta, A. Blas, A. Findlay, J. Molendijk, …
PSB RF power upgrade: systems today

Three systems are presently installed in the machine:

<table>
<thead>
<tr>
<th></th>
<th>C02</th>
<th>C16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency range</td>
<td>Frequency range</td>
</tr>
<tr>
<td></td>
<td>0.6 ((1.0)) – 1.8 MHz</td>
<td>6.0 – 16 MHz</td>
</tr>
<tr>
<td></td>
<td>Gap Voltage</td>
<td>Gap Voltage</td>
</tr>
<tr>
<td></td>
<td>8 kV</td>
<td>6 kV</td>
</tr>
<tr>
<td></td>
<td>Installed in sections</td>
<td>Installed in section</td>
</tr>
<tr>
<td></td>
<td>7L1 and 10L1</td>
<td>5L1</td>
</tr>
</tbody>
</table>

(Built 1996 for LHC)

C04

<table>
<thead>
<tr>
<th></th>
<th>Frequency range</th>
<th>Gap Voltage</th>
<th>Installed in section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.2 ((2.0)) – 3.8 MHz</td>
<td>8 kV</td>
<td>13L1</td>
</tr>
</tbody>
</table>

(ex \(h=5\) system, today the system limiting intensity)

* Frequency with injection from LINAC4

M. Paoluzzi
PSB RF power consolidation: the plan

In the tunnel:
• Keep all cavities and C02 and C16 final amplifiers,
• Redesign C04 finals to increase available power,
• Replace all irradiated cables.

On the surface:
• Modernize interlock (PLC),
• Modernize G64 (!) controls interface,
• Move AVC & tuning loops into new digital LLRF,
• Implement new protections,
• Replace power supplies (anode and grid bias),
• Install new filament power stabilizers,
• Replace tuning supplies.

M. Paoluzzi
PSB RF power upgrade:
New wideband system

Advantages

- Single system to cover C02 and C04 frequency range.
- Modular system.
- Solid-state amplifier.
- Multi harmonic operation.
- No tuning.
- Substantial increase of installed RF voltage (up to 300%).
- Increased system reliability (hot back-up by on line spare cells).

Risks:

- New technology.
- New configuration
- Completely new design.
- Different beam compensation scheme.
- …?
PS consolidation/upgrade

<table>
<thead>
<tr>
<th>Activity</th>
<th>Schedule</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLRF studies</td>
<td>05/2011 – 06/2012</td>
<td>active</td>
</tr>
<tr>
<td>Digital beam control</td>
<td>06/2014 – 06/2018</td>
<td>planned</td>
</tr>
<tr>
<td>1-Turn delay feedback</td>
<td>01/2012 – 12/2014</td>
<td>active</td>
</tr>
<tr>
<td>HLRF studies</td>
<td>05/2011 – 12/2012</td>
<td>active</td>
</tr>
<tr>
<td>10 MHz system renovation</td>
<td>01/2013 – 06/2018</td>
<td>planned</td>
</tr>
<tr>
<td>Longitudinal damper in the PS</td>
<td>01/2012 – 12/2015</td>
<td>planned</td>
</tr>
<tr>
<td>Coupled bunch feedback</td>
<td>01/2012 – 12/2015</td>
<td>planned</td>
</tr>
<tr>
<td>40/80 MHz feedback renovation</td>
<td>06/2012 – 06/2017</td>
<td>planned</td>
</tr>
<tr>
<td>Fast tuner for the 80 MHz system</td>
<td>01/2012 – 12/2015</td>
<td>active</td>
</tr>
<tr>
<td>C201 C206 consolidation</td>
<td>01/2013 – 03/2014</td>
<td>planned</td>
</tr>
</tbody>
</table>

C. Rossi, H. Damerau, M. Morvillo, C. Völlinger, …
SPS 200 MHz power upgrade

E. Montesinos

- **2011**: 4 cavities
 - 2 x 4 sections
 - 2 x 5 sections
 - + 3 spare sections

- **2018**: 6 cavities
 - 4 x 3 sections
 - 2 x 4 sections
 - + 1 spare section
SPS 200 MHz power upgrade: Draft schedule

E. Montesinos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tendering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLRF Design and proto</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLRF Tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLRF Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New RF Power Amplifiers and LLRF

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>coaxial lines, Pickups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spare sections</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New power couplers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cavities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>vacuum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV, EL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LSS3 Tunnel Integration

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services (CV, EL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

New RF Building

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authorizations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
During LS1: not a lot possible
New building between BA3 and BB3

08 - Feb - 2012, Chamonix

E. Jensen: RF upgrade program

BA3

BB3

Extension

Transformer platform
• Re-shuffling of equipment (PUs) in SPS LSS3 to make space for new high bandwidth transverse feedback system (US-LARP collaboration) and in preparation of the increase of the number of cavities.

• Installation of new pick-ups, kickers and power amplifiers for high bandwidth transverse feedback system as they become available.

• Limited upgrade/consolidation of transverse damper in BA2 of SPS; perhaps link this to clean-up of cabling in LSS2 (When exactly?)

• Installation of dedicated pick-ups for SPS transverse damper (now being discussed with BE-BI).
SPS 800 MHz upgrade

- Important system to keep the beams stable, required at 1/5 nominal intensity!
- A new system, based on IOT amplifiers, will replace the old “Valvo” klystrons.
- Industry has supplied the 0-series – now under test
- Initial problems with the HVPS could be fixed.
- Now the system is under severe scrutiny for long term stability (endurance test)
- Observed: MTBF (trips) < 168 h (not good enough!);
- Probable culprit: EMC of controls – there is hope, but plan B (SS) is in preparation.
- LLRF upgrade – complete overhaul

08-Feb-2012, Chamonix
SPS: COLDEX for Crab Cavity tests

- Crab Cavities are an important element of the LHC luminosity upgrade, HL-LHC.
- Before installing new, Compact Crab Cavities into the LHC, they have to be tested with beam in SPS.
- A suited area (with a by-pass) is Coldex (BA4); E. Metral is studying details.
- During LS1, it is planned to prepare this area for first CC beam tests in 2015 (cryogenics, general services)
- The existing cryoplant (TCF20) should be upgraded to 2 K liquefaction mode. Agreed in LHC-CC’11.
- A 1st test in LHC (P4) could be envisaged for 2017.
• Upgrade of cabling for LHC transverse damper and measures to decrease noise level of system in preparation of 7 TeV run.
• Potentially use a number of additional pick-ups for transverse damper for noise reduction (under discussion with BE-BI, cabling required and additional bottom pick-ups if go-ahead).
• Add HV switch in the power supplies to allow automatic Off line of faulty amplifier.
• Modify water flow monitors, Eletta (ex LEP, not reliable) to rotameter, to avoid false reading.
• Modify transport system of the amplifier, induces new positioning system under the kickers, this will ease interventions.
• Need some studies to fix 40 MHz resonance (not a problem for normal intensity, but survey in view of HL-LHC)…
LHC – on-going work now and during 2012

O. Brunner

• 4 more **klystrons** were upgraded with new collector; now 8/16 can run flat out (4 for each beam), the others remain limited to 50 kV, 8 A.

• All remaining **old LEP equipment** (driver amplifiers, focus power supplies, …) were replaced by dedicated new units.

• All 4 **thyatrons** in the HV bunkers were checked and replaced or adjusted where necessary. A more modern and less delicate solution (solid state) was investigated and will be ready for test very soon.

• Approximately 100 **HV connectors** (connecting the modulators with the klystrons), some of which were problematic will be replaced when necessary during short TS's.

• The **arc detectors** were further developed and the new versions are now ready for testing – some can be scheduled during short TS’s.

• The cavities were re-inspected (concern: delicate could have been affected by cabling work!)

Account for > 50% of RF caused beam dumps 2011
LHC – planned work LS1

- Finish the **klystron collector upgrade** (8 remaining) – takes about 4 weeks/klystron.
- **Thyratron** upgrade or replacement SS (in shadow).
- Replacement of **cavity module M1B2**, which contains the “sick” cavity #3:
 - First: spare module test in SM18: July/August – expected to be OK.
 - If OK, continue preparation to change module.
 - If not OK, limitation of cavity #3 (1.2 MV instead of nominal 2 MV) would remain.
 - Major intervention (2 months – RUX45 roof, vacuum, ...)
- **Oil to be reconditioned** for all 4 HV bunkers – takes a few weeks/bunker (in shadow)
LHC Modulators: tetrode replacement

• Each power converter feeds 4 klystrons; to individually control the power of each klystron, modulation anodes are used.
• The modulation anode voltage is controlled by a tetrode voltage divider (Thales TH 5186 SC).
• Old technology – Thales has announced the end of production of these tetrodes.
• A more modern solid state replacement solution is under study.

O. Brunner

D. Valuch
Planned RF consolidation & upgrade

LHC
- 2011: LS1: Splice Consolid., Collimation IR3
- 2012: LHC klystron collector u.g.
- 2013: Thyratron u.g/replacement
- 2014: Replace module M1B2
- 2015: verify spare
- 2016: ADT
- 2017: Linac 4
- 2018: PSB RF Power upgrade
- 2019: Finemet 5-cell, 6L1R4

Injectors
- 2011: PS C201-C206
- 2012: PS C10
- 2013: SPS TW800
- 2014: Transverse Damper

LHC work
- LHC klystron collector u.g.
- Thyratron u.g/replacement
- Replace module M1B2

Linac 4
- Linac4 connection

PSB RF Power upgrade
- Finemet 5-cell, 6L1R4
- Full system 6L1R4
- Full system all rings

PSB LLRF upgrade
- Prototype hardware
- New hardware

SPS 200 MHz upgrade
- RF hardware
- Tunnel LSS3
- Building BA3/BB3
- Linac4 connection

LHC Crab Cavity
- Technology validation
- Beam Tests
- LHC P4 cryo upgrade
- Preparation (Coldex)

Injectors Consolidation
- Renovation
- PS C201-C206
- PS C10
- SPS TW800
- SPS Transverse Damper

Table:

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LHC</td>
<td>LS1</td>
<td>LS2</td>
<td>LS1</td>
<td>LS2</td>
<td>LS1</td>
<td>LS2</td>
<td>LS1</td>
<td>LS2</td>
<td>LS1</td>
</tr>
<tr>
<td>Injectors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linac 4</td>
<td>IS/Services Installation</td>
<td>IS/Services Installation</td>
<td>Linac Installation</td>
<td>Commissioning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSB RF Power upgrade</td>
<td>Design-install</td>
<td>Beam tests</td>
<td>Build, install</td>
<td>Beam tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSB LLRF upgrade</td>
<td>Beam tests</td>
<td>Beam tests</td>
<td>Series production</td>
<td>All rings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS 200 MHz upgrade</td>
<td>Studies/tendering</td>
<td>Hardware construction/test</td>
<td>Equipment installation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LHC Crab Cavity</td>
<td>Technology validation</td>
<td>Technical Design</td>
<td>Construction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injectors Consolidation</td>
<td>Renovation</td>
<td>PS</td>
<td>LHC IR4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-turn delay FB, fast FB, driver, gap relays, long. damper, coupled bunch FB, ...</td>
<td>1-turn delay FB, fast FB, driver, gap relays, long. damper, coupled bunch FB, ...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

08-Feb-2012, Chamonix
E. Jensen: RF upgrade program
RF Upgrade/Consolidation: Summary

- Whatever could be done in short TS’s was done, but some maintenance work had to be delayed to LS1!
- Upgrade plans include:
 - PSB RF Power upgrade (Finemet® wide-band system)
 - PSB LLRF upgrade
 - SPS 200 MHz (cavity re-distribution, HB damper) and 800 MHz (IOT)
 - Prepare Coldex area (SPS) for Crab Cavity test
- Consolidation plans include:
 - PS 10 MHz Gap relays renovation
 - PS C201-C206 (200 MHz system)
 - PS C80 automatic tuning system implementation
 - LHC klystron boiler/collector upgrade (8 remaining)
 - Replace cavity module M1B2

THANK YOU VERY MUCH!
Spare Slides
Example of near important accident
SPS TX4 HV transformer

- During a daily visit, U. Wehrle identified a problem.
- Reparation at the factory (in collaboration with TE-EPC)
- No incident (fire) thanks to a good anticipation method

Reminder: in 1997 the same HVPS exploded!
→ No SPS during six months!

E. Montesinos