Appendix A
Special Functions

A.1 Bessel Functions and J-Functions

The properties of Bessel function are summarized in standard references [1, 3, 8].

A.1.1 Ordinary Bessel Functions

Ordinary Bessel functions, $J_\nu(z)$, have the following properties.

Differential equation:

$$z^2 J''_\nu(z) + z J'_\nu(z) + (z^2 - \nu^2) J_\nu(z) = 0, \quad (A.1.1)$$

where a prime denotes differentiation with respect to z.

Power series:

$$J_\nu(z) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(k + \nu + 1)} \left(\frac{z}{2}\right)^{2k+\nu}. \quad (A.1.2)$$

Recursion relations:

$$J_{\nu-1}(z) + J_{\nu+1}(z) = 2 \frac{\nu}{z} J_\nu(z), \quad (A.1.3)$$

$$J_{\nu-1}(z) - J_{\nu+1}(z) = 2 J'_\nu(z). \quad (A.1.4)$$

Generating function:

$$e^{iz \sin \phi} = \sum_{n=-\infty}^{\infty} e^{i n \phi} J_n(z). \quad (A.1.5)$$
Sum rules:

\[
\sum_{n=-\infty}^{\infty} J_n^2(z) = 1, \quad \sum_{n=-\infty}^{\infty} n J_n^2(z) = 0, \quad \sum_{n=-\infty}^{\infty} J_n(z) J_n'(z) = 0,
\]

\[
\sum_{n=-\infty}^{\infty} n^2 J_n^2(z) = \frac{1}{2} z^2, \quad \sum_{n=-\infty}^{\infty} J_n^2(z) = \frac{1}{2}.
\] (A.1.6)

A.1.2 Modified Bessel Functions \(I_\nu(z) \)

Differential equation:

\[
I_\nu''(z) + \frac{1}{z} I_\nu'(z) - \left(1 + \frac{\nu^2}{z^2}\right) I_\nu(z) = 0.
\] (A.1.7)

Power series:

\[
I_\nu(z) = \sum_{k=0}^{\infty} \frac{1}{k! \Gamma(k + \nu + 1)} \left(\frac{z}{2}\right)^{2k+\nu}.
\] (A.1.8)

Recursion relations:

\[
I_{\nu-1}(z) - I_{\nu+1}(z) = 2(v/z)I_\nu(z),
\]

\[
I_{\nu-1}(z) + I_{\nu+1}(z) = 2I_\nu'(z).
\] (A.1.9)

Generating function:

\[
e^{z \cos \phi} = \sum_{s=-\infty}^{\infty} I_s(z) e^{\pm is\phi}.
\] (A.1.10)

A.1.3 Macdonald Functions \(K_\nu(z) \)

Differential equation:

\[
\frac{d^2}{dz^2} K_\nu(z) + \frac{1}{z} \frac{d}{dz} K_\nu(z) - \left(1 + \frac{\nu^2}{z^2}\right) K_\nu(z) = 0.
\] (A.1.11)
Recursion relations:

\[K_{v-1}(z) - K_{v+1}(z) = -2(v/z)K_v(z), \]
\[K_{v-1}(z) + K_{v+1}(z) = -2K'_v(z). \] \hfill (A.1.12)

The recursion relations imply \(K_{-v}(z) = K_v(z) \) and

\[\frac{1}{z} \frac{d}{dz} \left[z^{\pm v} K_v(z) \right] = -z^{\pm v-1} K_{v\mp 1}(z). \] \hfill (A.1.13)

Expansion of \(K_v(z) \) for small \(z \) is

\[K_v(z) \approx 2^{v-1} \Gamma(v) z^{-v}. \] \hfill (A.1.14)

The asymptotic expansion for large \(z \) is

\[K_v(z) = \left(\frac{\pi}{2z} \right)^{1/2} e^{-z} \left(1 + \frac{4v^2 - 1}{8z} + \frac{(4v^2 - 1)(4v^2 - 9)}{128z^2} + \cdots \right). \] \hfill (A.1.15)

Integral representation:

\[K_v(x) = \frac{(x/2)^v \Gamma(\frac{1}{2})}{\Gamma(v + \frac{1}{2})} \int_0^\infty d\chi \sinh^{2v} \chi e^{-x \cosh \chi}. \] \hfill (A.1.16)

The Gamma function satisfies

\[\Gamma(x + 1) = x \Gamma(x), \quad \Gamma(1) = 1, \quad \Gamma \left(\frac{1}{2} \right) = \pi^{1/2}. \] \hfill (A.1.17)

The integral (A.1.16) also applies when \(v \) is negative, and then \(K_{-v}(x) = K_v(x) \) implies

\[K_v(x) = \frac{(x/2)^{-v} \Gamma(v + \frac{1}{2}) \cos \pi v}{\Gamma(\frac{1}{2})} \int_0^\infty d\chi \frac{e^{-x \cosh \chi}}{\sinh^{2v} \chi}, \] \hfill (A.1.18)

\[\Gamma \left(\frac{1}{2} + v \right) \Gamma \left(\frac{1}{2} - v \right) = \frac{\pi}{\cos \pi v}. \] \hfill (A.1.19)

An integral identity due to Schwinger is

\[\int_0^\infty d\xi \xi^2 K^2_\mu(\xi) = \frac{\pi^2(1 - 4\mu^2)}{32 \cos \pi \mu}. \] \hfill (A.1.20)
A.1.4 Airy Functions

The two Airy functions that appear are defined by

\[\text{Ai}(z) = \frac{1}{\pi} \int_0^\infty dt \cos \left(zt + \frac{1}{3}t^3 \right), \quad \text{Gi}(z) = \frac{1}{\pi} \int_0^\infty dt \sin \left(zt + \frac{1}{3}t^3 \right). \]

(A.1.21)

For \(z > 0 \) one has

\[\text{Ai}(z) = \frac{1}{\pi} \left(\frac{z}{3} \right)^{1/2} K_{1/3}(\zeta), \quad \text{Ai}'(z) = -\frac{z}{\pi \sqrt{3}} K_{2/3}(\zeta), \]

(A.1.22)

with \(\zeta = 2z^{3/2}/3 \).

The approximations available for \(\text{Gi}(z) \) are for large and small \(z \). The leading terms in the asymptotic expansion for \(z \gg 1 \) are [5]

\[\text{Gi}(z) \sim \frac{1}{\pi} \left(\frac{1}{z} + \frac{2}{z^4} + \cdots \right), \quad \text{Gi}'(z) \sim \frac{1}{\pi} \left(-\frac{1}{z^2} + \cdots \right), \]

\[\int_0^\zeta d\zeta' \text{Gi}(\zeta') \sim \frac{1}{\pi} \left(\ln z + \frac{2C + \ln 3}{3} - \frac{2}{3z^3} + \cdots \right), \]

(A.1.23)

where \(C = 0.577 \cdots \) is Euler’s constant. The expansion for \(z \ll 1 \) gives

\[\text{Gi}(z) = \frac{1}{\pi} \left[\frac{3^{1/3}}{2} \Gamma(4/3) + \frac{3^{2/3}}{4} \Gamma(5/3) z - \frac{z^2}{2} + \cdots \right], \]

\[\text{Gi}(0) = 0.205, \quad \text{Gi}'(0) = 0.149. \]

(A.1.24)

Rothman [5] found that the asymptotic expansion is accurate for \(z \gtrsim 8 \) and tabulated the functions for lower \(z \).

A.1.5 J-Functions

Definition

The \(J \)-functions used here are defined by, for \(v \geq 0 \),

\[J_v^n(x) = \left(\frac{n!}{(n + v)!} \right)^{1/2} e^{-x/2} x^{v/2} L_n^v(x). \]

(A.1.25)
By requiring $J_{\nu}^n(x) = (-)^\nu J_{\nu}^{n+\nu}(x)$, for $\nu < 0$ one has

$$J_{\nu}^n(x) = (-)^\nu \left(\frac{n - |\nu|!}{n!} \right)^{1/2} e^{-x/2} x^{\nu/2} L_n^{|\nu|}(x), \quad (A.1.26)$$

with $L_n^{|\nu|}(x)$ the generalized Laguerre polynomial, defined by

$$L_n^{|\nu|}(x) = \frac{e^x x^{-\nu}}{n!} \frac{d^n}{dx^n} (e^{-x} x^{n+\nu}) = \sum_{k=0}^n \frac{(n + \nu)! (-x)^k}{(n - k)! (k + \nu)! k!}. \quad (A.1.27)$$

Sokolov and Ternov Function

The function defined by Sokolov and Ternov [6, 7] is related to (A.1.25) by

$$I_{n,n'}(x) = J_{n-n'}^n(x). \quad (A.1.28)$$

Recursion Relations

The J-functions satisfy recursion relations

$$x^{1/2} J_{\nu+1}^{n-1}(x) = (n + \nu)^{1/2} J_{\nu}^{n-1}(x) - n^{1/2} J_{\nu}^n(x), \quad (A.1.29)$$

$$x^{1/2} J_{\nu-1}^n(x) = -n^{1/2} J_{\nu}^{n-1}(x) + (n + \nu)^{1/2} J_{\nu}^n(x), \quad (A.1.30)$$

and also

$$\nu J_{\nu}^{n-1}(x) = x^{1/2} \left[(n + \nu)^{1/2} J_{\nu+1}^{n-1}(x) + n^{1/2} J_{\nu-1}^{n-1}(x) \right], \quad (A.1.31)$$

$$\nu J_{\nu}^n(x) = x^{1/2} \left[n^{1/2} J_{\nu+1}^n(x) + (n + \nu)^{1/2} J_{\nu-1}^n(x) \right]. \quad (A.1.32)$$

A further pair of relations that is similar to the recursion relations for Bessel functions is

$$(x + \nu) J_{\nu}^n(x) = \left[x(n + \nu) \right]^{1/2} J_{\nu-1}^n(x) + \left[x(n + \nu + 1) \right]^{1/2} J_{\nu+1}^n(x). \quad (A.1.33)$$

$$2x \frac{d}{dx} J_{\nu}^n(x) = \left[x(n + \nu) \right]^{1/2} J_{\nu-1}^n(x) - \left[x(n + \nu + 1) \right]^{1/2} J_{\nu+1}^n(x). \quad (A.1.34)$$

Relations Involving J-Functions

With $\nu = n - n' \quad p_n = (2neB)^{1/2}, \ x = k_\perp^2/2eB$, relations (A.1.33) and (A.1.34) become
\[p_{n'} J_{n'-n}^n(x) = p_n J_{n'-n}^{n-1}(x) + k_{\perp} J_{n'-n}^n(x), \]
\[p_{n'} J_{n'-n}^{n-1}(x) = p_n J_{n'-n}^n(x) + k_{\perp} J_{n'-n-1}^{n-1}(x). \] (A.1.35)

The following identities result from squares of the relations (A.1.35):

\[(p_{n'}^2 + p_n^2)(J_{n'-n}^{n-1})^2 + (J_{n'-n}^n)^2) - 4 p_{n'} p_n J_{n'-n}^{n-1} J_{n'-n}^n = k_{\perp}^2 [(J_{n'-n+1}^{n-1})^2 + (J_{n'-n-1}^n)^2], \] (A.1.36)
\[(p_{n'}^2 - p_n^2)(J_{n'-n}^{n-1})^2 - (J_{n'-n}^n)^2) = k_{\perp}^2 [(J_{n'-n+1}^{n-1})^2 - (J_{n'-n-1}^n)^2], \] (A.1.37)
\[(p_{n'}^2 + p_n^2)(J_{n'-n}^{n-1})^2 - (J_{n'-n}^n)^2) = 2 p_{n'} k_{\perp} [J_{n'-n}^{n-1} J_{n'-n}^n - J_{n'-n}^n J_{n'-n+1}^{n-1}] + k_{\perp}^2 [(J_{n'-n+1}^{n-1})^2 - (J_{n'-n-1}^n)^2], \] (A.1.38)
\[(p_{n'}^2 - p_n^2)(J_{n'-n}^{n-1})^2 + (J_{n'-n}^n)^2) = 2 p_{n'} k_{\perp} [J_{n'-n}^{n-1} J_{n'-n}^n + J_{n'-n}^n J_{n'-n+1}^{n-1}] + k_{\perp}^2 [(J_{n'-n+1}^{n-1})^2 + (J_{n'-n-1}^n)^2]. \] (A.1.39)

In evaluating the response tensor in the summed form (9.1.20) some tensorial components are multiplied by \((p k)_{n'n'} = \frac{1}{2} (k^2)_{n'n'} + p_{n'}^2 - p_n^2\), and (A.1.37), (A.1.39) allow one to rewrite some of the terms that are multiplied by \(p_{n'}^2 - p_n^2\). Other terms that are multiplied by \(p_{n'}^2 - p_n^2\) can be rewritten using

\[(p_{n'}^2 - p_n^2) J_{n'-n}^{n-1} = k_{\perp} [p_n J_{n'-n-1}^{n-1} + p_{n'} J_{n'-n}^{n-1}], \] (A.1.40)
\[(p_{n'}^2 - p_n^2) J_{n'-n}^n = k_{\perp} [p_n J_{n'-n+1}^{n-1} + p_{n'} J_{n'-n}^{n-1}]. \] (A.1.41)

The remaining terms that are multiplied by \(p_{n'}^2 - p_n^2\) involve the square and products of \(J_{n'-n+1}^{n-1}, J_{n'-n-1}^{n-1}\), and these can be rewritten by first expressing these in terms of \(J_{n'-n}^{n-1}, J_{n'-n}^n\) using (A.1.36)–(A.1.39), but no major simplifications occur.

Sum Rules

The sum rules

\[\sum_{n'=0}^{\infty} J_{n'-n}^{n'}(x) J_{n'-n'}^n(x) = \delta_{n'n''}, \] (A.1.42)
\[\sum_{n'=0}^{\infty} (n' - n)[J_{n'-n'}^n(x)]^2 = x, \] (A.1.43)

were derived by Quinn and Rodriguez [4] and Sokolov and Ternov [6].
Orthogonality Relation

\[\int_{0}^{\infty} dx \, J_n^0(x) J_{n'}^0(x) = \delta_{nn'} . \]

(A.1.44)

Integral Identities

\[\int_{0}^{\infty} dx \, x^{1/2} [J_n^n(x)]^2 = (n + v + 1)^{1/2} \left(1 + \frac{n + \frac{1}{2}}{4(n + v + 1)} \right) , \]

(A.1.45)

\[\int_{0}^{\infty} dx \, x [J_n^n(x)]^2 = 2n + v + \frac{3}{2} , \]

(A.1.46)

Particular Values

For \(v \geq 0 \), one has

\[J_v^0(x) = (-)^v J_{-v}^{v+1}(x) = \frac{x^{v/2}e^{-x/2}}{(v!)^{1/2}} , \]

(A.1.47)

\[J_v^1(x) = (-)^v J_{-v}^{v+1}(x) = \frac{x^{v/2}e^{-x/2}}{(v + 1)!^{1/2}}(v + 1 - x) , \]

(A.1.48)

\[J_v^2(x) = (-)^v J_{-v}^{v+2}(x) = \frac{x^{v/2}e^{-x/2}}{(2!(v + 2))^{1/2}} \times [(v + 1)(v + 2) - 2(v + 2)x + x^2] . \]

(A.1.49)

\[J_v^3(x) = (-)^v J_{-v}^{v+3}(x) = \frac{x^{v/2}e^{-x/2}}{(3!(v + 3))^{1/2}}[(v + 1)(v + 2)(v + 3) - 3(v + 2)(v + 3)x + 3(v + 3)x^2 - x^3] . \]

(A.1.50)

Expansion in \(x \)

For \(x \ll 1 \), the \(J \)-functions may be approximated by the leading term in their expansion in powers of \(x \):

\[J_{n'-n}^n(x) = \left(\frac{n'}{n!} \right)^{1/2} \frac{x^{(n'-n)/2}}{(n'-n)!} \left[1 - \frac{n' + n + 1}{2(n' - n + 1)} x + \cdots \right] . \]

(A.1.51)
which applies for \(n' \geq n \). The limit \(x \to 0 \) gives

\[
J^n_0(0) = 1, \quad J^n_\nu(0) = 0 \quad \text{for } \nu \neq 0.
\] (A.1.52)

Approximation by Bessel Functions

The expansion of the \(J \)-functions in terms of Bessel functions,

\[
J^\nu_n\left(\frac{z^2}{4n}\right) = \left[\frac{(n + \nu)!}{n!n^\nu}\right]^{1/2} \sum_{a=0}^{\infty} b_a \left(\frac{z}{2n}\right)^a J_{\nu+a}(z),
\]

\[
b_0 = 1, \quad b_1 = -\frac{1}{2}(\nu + 1), \quad b_2 = \frac{1}{8}(\nu + 1)(\nu + 2),
\]

\[
(a + 1)b_{a+1} = -\frac{1}{2}(\nu + 1)b_a + \frac{1}{4}(\nu + a)b_{a-1} - \frac{1}{4}n b_{a-2},
\] (A.1.53)

converges rapidly for sufficiently large \(n \).

In taking the nonquantum limit, one takes the limit \(\hbar \to 0 \), with \(n \to \infty \) so that \(p_n = (2\pi eBh)^{1/2} \to p_\perp \) remains finite; the ratio \(a/n = (n - n')/n \) is regarded as of order \(\hbar \). To first order in \(\hbar \) one has

\[
J^n_{n-n'}(x) = J_a(z) - \frac{1}{2}(a + 1) \frac{\hbar k_\perp}{p_\perp} J_a(z).
\] (A.1.54)

The \(J \)-functions with upper index \(n - 1 \) and \(n \) differ at first order in \(\hbar \):

\[
J^{n-1}_{n-n'}(x) - J^n_{n-n'}(x) = -\frac{\hbar k_\perp}{p_\perp} J'_a(z).
\] (A.1.55)

Related identities (with arguments \(x \) and \(z \) omitted) are

\[
(J^{n-1}_{n-n})^2 + (J^n_{n-n})^2 = J^2_a - \frac{2\hbar k_\perp}{p_\perp} J'_a J_a,
\]

\[
J^{n-1}_{n-n} J^n_{n-n} = J^2_a - \frac{\hbar k_\perp}{p_\perp} J'_a J_a,
\]

\[
(J^{n-1}_{n-n+1})^2 + (J^n_{n-n+1})^2 = \sum_{\eta = \pm 1} J^2_{a-\eta} \left(1 + \eta \frac{a(a - \eta) eB}{p_\perp^2}\right) + \frac{2\hbar k_\perp}{p_\perp} J'_a J_a,
\]

\[
J^{n-1}_{n-n+1} J^n_{n-n+1} = J_{a+1} J_{a-1} \left(1 + \frac{eB}{p_\perp^2}\right) - \frac{\hbar k_\perp}{p_\perp} J'_a J_a,
\]

\[
(J^{n-1}_{n-n})^2 - (J^n_{n-n})^2 = -\frac{2\hbar k_\perp}{p_\perp} J'_a J_a.
\]
\[(J_{n'-n+1}^n)^2 - (J_{n'-n-1}^n)^2 = \sum_{\eta = \pm 1} \eta J_{a-\eta}^2 \left(1 + \eta \frac{a(a - \eta)eB}{p_\perp^2} \right) + \frac{a}{n} J_a^2.\]

(A.1.56)

A.2 Relativistic Plasma Dispersion Functions

A.2.1 Relativistic Thermal Function \(T(z, \rho)\)

The function \(T(z, \rho)\), defined by (2.4.29), has alternative integral representations:

\[
T(z, \rho) = -\rho \int_0^\infty d\chi \sinh \chi e^{-\rho \cosh \chi} \ln \left(\frac{z + \tanh \chi}{z - \tanh \chi} \right)
= 2z \int_0^\infty d\chi \frac{e^{-\rho \cosh \chi}}{(1 - z^2) \cosh^2 \chi - 1}
= -\frac{2\rho}{1 - z^2} \int^z d\xi \frac{K_1(\rho R)}{R},
\]

(A.2.1)

with \(R = [(1 - \xi^2)(1 - z^2)]^{1/2}\).

The function \(T(z, \rho)\) satisfies the partial differential equations [2]:

\[
(1 - z^2) \frac{\partial^2}{\partial \rho^2} T(z, \rho) = 2z K_0(\rho) + T(z, \rho),
\]

(A.2.2)

\[
z(1 - z^2)^3 T''(z, \rho) - (1 - z^2)^2 (1 + 2z^2) T'(z, \rho) - \rho^2 z^3 T(z, \rho)
= 2z^2 \rho^2 K_0(\rho) + 2(1 - z^2) \rho K_1(\rho),
\]

(A.2.3)

\[
z \frac{\partial}{\partial \rho} T(z, \rho) = 2K_1(\rho) + \frac{(1 - z^2)}{\rho} T'(z, \rho),
\]

(A.2.4)

with \(T'(z, \rho) = \partial T(z, \rho)/\partial z, T''(z, \rho) = \partial^2 T(z, \rho)/\partial z^2\).

A.2.2 Trubnikov Functions

Trubnikov functions are defined by

\[
t_v^n(z, \rho) = (k\tilde{u})^{n+1} \int_0^\infty d\xi \xi^n \frac{K_v(r(\xi))}{r^v(\xi)},
\]

(A.2.5)

with \(r(\xi)\) given by (2.4.10), and where the power of \(k\tilde{u}\) is included so that the integral is dimensionless. They satisfy the recursion relations
\[t_{n+1}^n(z, \rho) = \frac{i \rho z^2}{1 - z^2} t_n^n(z, \rho) + \frac{z^2}{1 - z^2} \left\{ \begin{array}{ll} K_v(\rho) & \text{for } n = 0, \\ \frac{\rho^v}{n t_v^{n-1}(z, \rho)} & \text{for } n > 0, \end{array} \right. \]

(A.2.6)

Two further identities are

\[\frac{\partial t_n^n(z, \rho)}{\partial \rho} = -i \rho t_v^n(z, \rho) - i t_{v+1}^{n+1}(z, \rho). \]

(A.2.7)

The relation to \(T(z, \rho) \) follows from

\[t_0^0(z, \rho) = i z \frac{\partial T(z, \rho)}{\partial \rho} = \frac{i}{2} \left[2 K_1(\rho) + \frac{(1 - z^2)}{\rho} T'(z, \rho) \right], \]

(A.2.10)

\[t_1^0(z, \rho) = -\frac{iz}{2\rho} T(z, \rho). \]

(A.2.11)

The functions for higher \(n \) are generated from these using (A.2.6).

A.2.3 Shkarofsky and Dnestrovskii Functions

The generalized Shkarofsky functions are defined by (2.5.28) for real \(q \), integer \(r \geq 0 \) and complex \(z, a \) with \(\text{Im}(z - a) > 0 \) by

\[F_{q,r}(z, a) = -i \int_0^\infty dt \frac{(it)^r}{(1 - it)^q} \exp \left[izt - \frac{at^2}{1 - it} \right] \]

\[= -i e^{-a} \int_0^\infty dt \frac{(it)^r}{(1 - it)^q} \exp \left[i(z - a)t + \frac{a}{1 - it} \right]. \]

(A.2.12)

The definition is extended to \(\text{Im}(z - a) < 0 \) by analytic continuation. Generalized Dnestrovskii functions are defined by (2.5.34), viz. \(F_{q,r}(z) = F_{q,0}(z, 0) \). The usual Shkarofsky functions, \(F_q(z, a) = F_{q,0}(z, a) \), and Dnestrovskii functions, \(F_q(z) = F_{q,0}(z) \), are the special cases \(r = 0 \).

The Shkarofsky functions and the Dnestrovskii functions are related by an expansion in modified Bessel functions:
Recursion Relations and Differential Equations

Recursion relations satisfied by the Shkarofsky functions are

\[a \mathcal{F}_q(z, a) = 1 + (a - z) \mathcal{F}_q(z, a) - q \mathcal{F}_{q+1}(z, a), \quad (A.2.14) \]

\[\mathcal{F}'_q(z, a) = \mathcal{F}_q(z, a) - \mathcal{F}_{q-1}(z, a), \quad (A.2.15) \]

\[\mathcal{F}''_q(z, a) = \mathcal{F}_q(z, a) - 2 \mathcal{F}_{q-1}(z, a) + \mathcal{F}_{q-2}(z, a), \quad (A.2.16) \]

where a prime denotes a derivative with respect to \(z \). Eliminating \(\mathcal{F}_{q-1}(z, a) \) and \(\mathcal{F}_{q-2}(z, a) \) between these gives a second order differential equation satisfied by the Shkarofsky functions:

\[(a - z) \mathcal{F}''_q(z, a) - [2(a - z) - q - 2] \mathcal{F}'_q(z, a) - (z + q - 2) \mathcal{F}_q(z, a) + 1 = 0. \quad (A.2.17) \]

Recursion relations for the Dnestrovskii functions follow from (A.2.14) and (A.2.15) for \(a = 0 \):

\[(q - 1) F_q(z) = 1 - z F_{q-1}(z), \quad (A.2.18) \]

\[F'_q(z) = F_q(z) - F_{q-1}(z). \quad (A.2.19) \]

Eliminating \(F_{q-1}(z) \) between these gives a first order differential equation satisfied by the Dnestrovskii functions:

\[z F'_q(z) = (z + q - 1) F_q(z) - 1. \quad (A.2.20) \]

The function \(F_q(z) \) also satisfies (A.2.17) with \(a = 0 \). Equation (A.2.19) integrates to give

\[F_q(z) = z^{q-1} e^z \Gamma(1 - q, z), \quad \Gamma(q, z) = \int_z^\infty d\zeta \zeta^{q-1} e^{-\zeta}, \quad (A.2.21) \]

where \(\Gamma(q, z) \) is the incomplete gamma function.

Limiting Cases

The expansion of the Dnestrovskii functions for small arguments \(z \) follows from (A.2.21) and the relevant expansion of the incomplete gamma function:
\[F_q(z) = z^{q-1} e^z \Gamma(1 - q) - \sum_{j}^{\infty} \frac{z^j \Gamma(1 - q)}{\Gamma(j + q - 1) j!} \]

\[= z^{q-1} e^z \Gamma(1 - q) - e^z \sum_{j}^{\infty} \frac{(-z)^j \Gamma(1 - q)}{\Gamma(j + 2 - q)} . \tag{A.2.22} \]

For real, positive \(z \) there is an expansion in generalized Laguerre polynomials:

\[F_q(z) = \sum_{j=0}^{\infty} \frac{L_j^{(1-q)}(z)}{j + 1} . \tag{A.2.23} \]

For large argument, \(|z| \gg 1 \), the limit

\[F_q(z) \sim \sum_{j=0}^{\infty} (-1)^j z^{-1-j} \Gamma(q + j) \tag{A.2.24} \]

applies for \(\arg(z) < 3\pi/2 \).

Half-Integer \(q \)

In evaluating (2.5.27) in terms of Shkarofsky functions, the function and its derivative with \(q = 5/2 \) appear. The expansion (2.5.38) then leads to Dnestrovskii functions with half-integer \(q \). For \(q \) a positive half-integer, the Dnestrovskii functions are expressible in terms of the plasma dispersion function

\[Z(y) = \pi^{-1/2} \int_{-\infty}^{\infty} dt \frac{e^{-t^2}}{t - y} = -\frac{\phi(y)}{y} + i\pi^{1/2} e^{-z^2}, \tag{A.2.25} \]

The relevant form is

\[\Gamma(q) F_q(z) = \sum_{j=0}^{q-3/2} (-z)^j \Gamma(q - 1 - j) + \pi^{1/2} (-z)^{q-3/2} [i z^{1/2} e^z Z(i z^{1/2})] . \tag{A.2.26} \]

Expansions for small and large arguments are

\[\Gamma(q) F_q(z) = \begin{cases}
\sum_{j=0}^{\infty} (-z)^j \Gamma(q - 1 - j) - i \pi (-z)^{q-1} e^z & \text{for } |z|^2 \ll 1, \\
- \sum_{j=0}^{\infty} \Gamma(q + j)(-z)^{-1-j} - i \sigma \pi (-z)^{q-1} e^z & \text{for } |z| \gg 1,
\end{cases} \tag{A.2.27} \]
with $\sigma = 0$ for $\arg z < \pi$, $\sigma = 1$ for $\arg z = \pi$ and $\sigma = 2$ for $\pi < \arg z < 2\pi$.

A.3 Dirac Algebra

In this section some results associated with the properties of Dirac matrices are summarized.

A.3.1 Definitions and the Standard Representation

The Dirac matrices are defined to satisfy

$$\gamma^\mu \gamma^\nu + \gamma^\nu \gamma^\mu = 2g^\mu\nu,$$ \hspace{1cm} (A.3.1)

where the unit Dirac matrix is implicit on the right hand side. The Dirac Hamiltonian is

$$\hat{H} = \alpha \cdot \hat{p} + \beta m, \; \alpha = \gamma^0 \gamma, \; \beta = \gamma^0.$$ \hspace{1cm} (A.3.2)

The requirement that the Dirac Hamiltonian be self-adjoint implies

$$(\gamma^\mu)^\dagger = \gamma^0 \gamma^\mu \gamma^0.$$ \hspace{1cm} (A.3.3)

Standard Representation

The specific choice for the Dirac matrices used here is referred to as the standard representation. It corresponds to

$$\begin{align*}
\gamma^0 &= \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1 \\
\end{pmatrix}, &
\gamma^1 &= \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & -1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
\end{pmatrix}, \\
\gamma^2 &= \begin{pmatrix}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & i & 0 & 0 \\
-i & 0 & 0 & 0 \\
\end{pmatrix}, &
\gamma^3 &= \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\end{pmatrix}.
\end{align*}$$ \hspace{1cm} (A.3.4)

A convenient way of writing these and other 4×4 matrices is in terms of block matrices. Let 0 and 1 be the null and unit 2×2 matrices. One writes

$$\Sigma = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix}, \quad \rho_\chi = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$
\[
\rho_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \rho_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\]
(A.3.5)

where the \(2 \times 2\) matrices

\[
\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},
\]
(A.3.6)

are the usual Pauli matrices. In this representation one has

\[
\gamma^\mu = [\rho_z, i \rho_y \Sigma], \quad \alpha = \rho_x \sigma, \quad \beta = \rho_z.
\]
(A.3.7)

Dirac Matrices \(\sigma^{\mu \nu}\) and \(\gamma^5\)

Two additional Dirac matrices that play an important role in the theory are

\[
\sigma^{\mu \nu} = \frac{1}{2} [\gamma^\mu, \gamma^\nu],
\]
(A.3.8)

which plays the role of a spin angular momentum, and

\[
\gamma^5 = -i \gamma^0 \gamma^1 \gamma^2 \gamma^3,
\]
(A.3.9)

which satisfies the relations

\[
\gamma^\mu \gamma^5 + \gamma^5 \gamma^\mu = 0, \quad (\gamma^5)^2 = 1, \quad (\gamma^5)^\dagger = \gamma^5.
\]
(A.3.10)

One also has

\[
\gamma^\mu \gamma^5 \gamma^\rho \gamma^\sigma \gamma^5 = -i \varepsilon^{\mu \nu \rho \sigma}.
\]
(A.3.11)

In the standard representation one has \(\gamma^5 = -\rho_x\). The spin 4-tensor \(\sigma^{\mu \nu}\), defined by (A.3.8), has components

\[
\sigma^{\mu \nu} = \begin{pmatrix}
0 & \alpha_x & \alpha_y & \alpha_z \\
-\alpha_x & 0 & -i\sigma_z & i\sigma_y \\
-\alpha_y & i\sigma_z & 0 & -i\sigma_x \\
-\alpha_z & -i\sigma_y & i\sigma_x & 0
\end{pmatrix}.
\]
(A.3.12)

A.3.2 Basic Set of Dirac Matrices

There are 16 independent \(4 \times 4\) matrices and for the Dirac matrices it is sometimes convenient to choose a set of 16 basis vectors. A specific choice of 16 independent
matrices is the set
\[\gamma^A = [1, \gamma^\mu, i\sigma^{\mu\nu}, i\gamma^\mu\gamma^5, \gamma^5]. \]
(A.3.13)

This choice involves a scalar and a pseudo scalar \((1, \gamma^5)\), a 4-vector and a pseudo 4-vector \((\gamma^\mu, i\gamma^\mu\gamma^5)\) and an antisymmetric second rank 4-tensor \((\sigma^{\mu\nu})\). These have 1, 1, 4, 4, and 6 components, respectively. This set is chosen such that the analogous set, \(\gamma_A\) with indices down, satisfies
\[\gamma^A\gamma_A = 1 \quad \text{(no sum)}, \quad \gamma^A\gamma_B = \delta^A_B. \]
(A.3.14)

The expansion of an arbitrary Dirac matrix, \(O\) say, in this basis gives
\[O = \sum_A c_A \gamma^A, \quad c_A = \frac{1}{4} \text{Tr} [\gamma_A O]. \]
(A.3.15)

Traces of Products of \(\gamma\)-Matrices

The traces of products of \(\gamma\)-matrices are important in detailed calculations in QED. Consider
\[T^{\alpha_1\alpha_2...\alpha_n} = \text{Tr} \left(\gamma^{\alpha_1}\gamma^{\alpha_2}...\gamma^{\alpha_n} \right). \]
(A.3.16)

The trace of \(\gamma^\mu\) is zero, as are the traces of \(\sigma^{\mu\nu}, \gamma^\mu\gamma^5\) and \(\gamma^5\). The trace of a product of an odd number of \(\gamma\)-matrices is also zero: \(T^{\alpha_1\alpha_2...\alpha_n} = 0\) for \(n\) odd. The trace of a product of two \(\gamma\)-matrices is nonzero. This trace is evaluated as follows. First the invariance of the trace of a product of matrices under cyclic permutations of the matrices implies \(T^{\mu\nu} = T^{\nu\mu}\). The trace of (5.1.1) implies \(T^{\mu\nu} = 4g^{\mu\nu}\), where the factor of 4 arising from the trace of the unit 4 \(\times\) 4 matrix. Using the invariance of the trace under cyclic permutations and (5.1.1) allows one to evaluate the traces (A.3.16) for all even \(n\). One finds
\[T^{\mu\nu} = 4g^{\mu\nu}, \quad T^{\mu\nu\rho\sigma} = 4\left[g^{\mu\nu}g^{\rho\sigma} - g^{\mu\rho}g^{\nu\sigma} + g^{\mu\sigma}g^{\nu\rho} \right], \]
(A.3.17)
\[T^{\mu\nu\rho\sigma\alpha\beta} = 4\left[g^{\mu\nu}T^{\rho\sigma\alpha\beta} - g^{\mu\rho}T^{\nu\sigma\alpha\beta} + g^{\mu\sigma}T^{\nu\rho\alpha\beta} - g^{\mu\alpha}T^{\nu\rho\sigma\beta} + g^{\mu\beta}T^{\nu\rho\sigma\alpha} \right], \]
(A.3.18)

and so on.

References

Index

Symbols

J-function $J_n(x)$, 227, 462
 Airy-integral approximation, 272, 275–277, 290, 291
 Bessel-function approximation, 402, 403
 definition, 468
 expansion in Bessel functions, 472
 parabolic cylinder approximation, 284
 recursion relations, 469
 sum rule, 411, 470
S-matrix, 243
I-function, 184, 361
$\delta(p_\perp)$-model, 436–438
$Li_\alpha(\xi)$
 polylogarithm function, 427
4-current
 first-order single-particle, 49
 perturbation expansion, 48, 49
 single-particle, 45, 46
4-tensor
 $\phi^{\mu\nu}$, 3, 5, 6
 $\tau^\mu(\omega)$, 14
 $f^{\mu\nu}$, 3, 5, 6
 $g_\parallel^{\mu\nu}$, 4, 5
 $g_\perp^{\mu\nu}$, 4, 5
 4-magnetization $M^{\mu\nu}$, 36
 energy momentum, 24
4-vector
 B^μ, b^μ, 4
 k^μ, a^μ, t^μ, 7
 k^μ_G, k^μ_L, k^μ_G, k^μ_L, 6
 \tilde{u}^μ, 4, 8

A

absorption
 absorption coefficient, 111

D. Melrose, Quantum Plasmadynamics: Magnetized Plasmas, Lecture Notes in Physics 854, DOI 10.1007/978-1-4614-4045-1,
© Springer Science+Business Media New York 2013
Bessel function (Cont.)
 power series expansion, 72
 recursion relations, 74
 modified $K_i(z)$, 60
 ordinary $J_n(z)$
 differential equation, 465
 generating function, 465
 recursion relations, 465
 sum rules, 466
 ordinary $J_n(z)$
 generating function, 45
 recursion relations, 45
Bethe-Salpeter equation, 302
birefringent vacuum, 339, 340, 372, 373
BMT equation, 35, 38
Bohm term, 1, 33, 34
quantum recoil, 34
Bohr magneton, 35, 207, 450
Bohr radius, 303
boson plasma, v
bubble diagram, 394

C
Cauchy principal value, 44, 71, 244
causal condition, 408, 413, 460
Cerenkov condition, 164
charge-conjugation, 341, 386
charge-continuity condition, 46, 63, 106, 347, 409
chemical potential, 418–420
closed loop diagrams, 457
cold plasma, 11
collisional damping, 17
completely degenerate limit, 419, 421, 423, 428, 437–439, 441, 443
dissipation, 423
completeness relation, 209, 232
Compton scattering
 $n = 0 \rightarrow n' = 0$, 320
 $n = 0 \rightarrow n' \geq 1$, 321
 birefringent vacuum, 324
cross section, 313
differential, 313
crossed processes, 312
cyclotron limit, 324
ground state $n = 0$, 317
probability, 318
inverse, 325
kinetic equations, 309, 312
Klein-Nishina limit, 327
nonlinear scattering, 311
probability, 309, 310
relativistic limit, 325
resonance condition, 311
allowed regions, 312
resonant, 321, 325, 326
Ritus method, 314
sum, intermediate states, 313
Compton wavelength, 420
convolution integral, 9
covariant fluid equations, 11
critical field
electric E_i, 372
magnetic B_i, 207, 372
cross section
 Compton, 313
differential, 196
 Thomson, 325
cutoff frequency, 115, 124, 129, 136, 146, 147, 150, 441, 444
 magnetoionic theory, 124
cyclotron emission, 161
double, 330
frequency downshift, 179
maser, 181
relativistic line broadening, 180

d
de Broglie wavelength, 420
Debye length, 439
density of final states, 242, 246–248, 274, 279
detailed balance, 247
diamagnetism, 439
dielectric tensor K_{ijk}, 16
 1D pair plasma, 86
cold electron gas, 18
cold plasma, 13, 16, 72
counterstreaming, 22
equivalent, 355
longitudinal part, 17
longitudinal thermal, 73
magnetoionic theory, 18
MHD-like limit, 73, 120
relation to $\Pi_{ij}(k)$, 59
Shkarofsky approximation, 134
spin-dependent response, 38
streaming, 21
Dirac equation, 201
$B = 0$, 202
$B \neq 0$, 202, 203, 205, 208, 214, 240
adjoint, 202
factorization, 231
inhomogeneous, 220
reduced, 231, 233
Dirac Hamiltonian, 202, 203
Dirac matrices
 trace of projects, 238
Dirac matrix
 $\sigma^{\mu\nu}$, 478
 γ^5, 478
 γ^ν, 202
 basis set, 479
 definition, 477
 projection operator P_\pm, 222, 232, 238, 239
 standard representation, 202, 233, 477
 vertex matrix, 236
dispersion equation, 17
 cold plasma, 112, 379
 invariant form, 106
 cold unmagnetized plasma, 107
 magnetoionic, 123
 MHD waves, 31
 parallel propagation, 440
dispersion relation
 invariant form, 131
 weak-anisotropy approximation, 152
dispersion-integral method, 351, 406
dissipation-free region, 256, 415–417, 422, 423
distribution function
 δ-function, 436
 1D Jüttner, 87, 420, 424
 1D Maxwellian, 428
 bell, 89
 bi-Maxwellian, 272
 completely degenerate, 419
 Fermi-Dirac, 418
 nonrelativistic, 427, 428
 Jüttner, 60, 189
 strictly-perpendicular, 67
 loss-cone, 181
 nondegenerate, 419
 one-dimensional (1D), 434
 power-law, 97, 184
 shell, 181
 water-bag, 89
Dnestrovskii function, 69, 76, 77, 79, 474
 generalized, 78
 differential equation, 475
 recursion relations, 475
Doppler condition, 47
Doppler effect
 anomalous, 163, 257
 broadening, 177
 normal, 163, 257
 transverse, 179
double cyclotron emission, 330
double emission, 312, 328
 kinetic equation, 329
E
 eigenfunction
 helicity, 210, 211, 223
eikonal, 30
 electromagnetic field
 electrostatic, 3
 magnetostatic, 3
 wrench, 3, 363
electron cyclotron maser emission, 181
electron propagator
 Géhéniau form, 341, 350, 364, 383, 457
emissivity, 176
 magnetoionic mode, 176
 synchrotron, 183
energy eigenvalue
 $\varepsilon_n(p_z)$, 206
energy-momentum tensor
 electromagnetic, 25
enthalpy, 25
Faraday rotation
 generalized, 153
Fermi energy, 418, 419
Fermi momentum, 419
Feynman diagram
 box, 370, 383
 bubble, 395
 Compton scattering, 309, 310
 electron-electron scattering, 335
 hexagon, 370, 383
 Mott scattering, 334
 rules for
 m-photon vertex, 241
 $B = 0$, 239
 $B \neq 0$, 243
 coordinate space, 240
 Ritus method, 245
 transition probability, 243
 vertex formalism, 244
 triangle, 457, 461
fluid equations, 11
 continuity, 24, 27
 covariant, 11
 energy-momentum tensor, 24, 27, 29
 fluid displacement, 30
 fluid motion, 24
 Fourier transform, 12
 motion, 29
 pair plasma, 28
 rest frame, 13
Index

forward-scattering method, 41, 42, 51, 101
Fourier series, 162
Fourier transform, 9
Fourier-Bessel components, 46
frequency mismatch, 322

G
gauge condition, 107
G-gauge, 109, 245
Coulomb, 203, 205, 245, 334
cylindrical, 204, 209, 210, 214–216, 218, 224, 225, 232, 233
gauge transformation, 132
Lorenz, 245, 354
radiation gauge, 152
temporal, 245
temporal gauge, 107–110, 132
gauge-dependent factor, 225, 241, 359
gauge-invariance condition, 63, 106, 347, 409
generalized Faraday rotation, 155, 157, 158, 187
generalized Ohm’s law, 24, 27, 29
Green function, 220
electron propagator, 220
group velocity, 112
gyrocenter
x position, 216
average over, 215
gyromagnetic absorption, 261
emission, 261
 nonquantum limit, 253
 positron, 252
 probability, 251
processes, 251
unpolarized particles, 253
gyromagnetic emission, 161
absorption coefficient, 177
differential change, 167
in vacuo, 169
 angular distribution, 172
 axial ratio, 169
 power emitted, 170
 quasilinear coefficients, 172
 radiation reaction, 173
Lorentz transformation, 170
probability of, 163
quasilinear equations, 168
supercritical field, 283
synchrotron emission, 182
thermal, 177
transfer equation, 167, 176
volume emissivity, 176
gyromagnetic ratio, 35, 207, 208, 450
gyrophase, 42, 52, 58
gyroradius, 43, 45, 56
gyroresonance condition, 46, 47, 163, 275
differential change, 167
resonance ellipse, 165
semirelativistic approximation, 179
gyrotropy, 20, 22
current induced, 22, 23

H
generalization, 363
hermite polynomial
 \(H_n(x) \), 206
Hilbert transform, 408
hybrid frequency, 116
 lower, 118
 upper, 116
hypergeometric function, 76, 80
hydrogen atom
 one-dimensional, 302

I
incomplete gamma function \(\Gamma(q, z) \), 475
instability
 beam-driven maser, 148
 counter-streaming, 150
 reactive
 beam driven, 149
 internal energy density, 24
 inverse Compton scattering, 325
 ion sound speed \(v_s \), 120

J
Jüttner distribution, 60, 64, 65, 81
 1D, 87
 highly relativistic, 98
Jones calculus, 153
Jupiter’s decametric radio emission, 182

K
Kapteyn series, 171
kinetic equations
 double emission, 329
gyromagnetic transitions, 258
one-photon pair creation, 260
quasilinear equations
 gyromagnetic emission, 161, 169
 Thomson scattering, 194
two-photon pair creation, 330
Kirchhoff’s law, 177, 188
Klein-Gordon equation, 221, 404
Klein-Nishina cross-section, 281
Kramers-Kronig relations, 378, 406, 408

\[\text{L} \]
Laguerre polynomial
generalized \(L_n^\alpha(x) \), 469
 generalized \(L_n^\alpha(x) \), 215
Laguerre polynomial \(L_n(x) \), 217
generating function, 219
Landau
diamagnetism, 439
gauge, 460
 prescription, 371, 416, 460
Landau damping, 74
Landau prescription, 44
Landau quantum number, 164, 206
Landau state, 84, 317, 321, 330, 372, 417, 419,
 420, 434, 436, 447, 450, 456, 462
large-\(n \)
 limit, 402, 403, 405
Larmor formula
generalized, 174
Lorentz force
 gauge, 460
Lorentz transformation, 18
 magnetoionic waves, 130
 polarization vector, 132
 response tensor, 19
 transformation matrices, 19
Lorentzian line profile, 323

\[\text{M} \]
Møller scattering, 242
Macdonald function \(K_\nu(z) \), 60, 62, 69, 89, 96,
 291
 asymptotic limit, 74
 differential equation, 466
 half-integer order, 68
 integral identities, 279
 integral representation, 420, 467
 recursion relations, 467
Madelung equations, 32
magnetic properties
 ferromagnetism, 404
 paramagnetism, 404
magneto-electric response, 368
magnetioonic parameters, 18
magnetioonic theory, 11
matrix of cofactors, 106, 107, 109, 113, 114,
 121
Maxwell equations, 2
Maxwell tensor, 2
 dual, 2
 electromagnetic wrench, 364
MHD speed, 32
minimal coupling, 203, 210, 212
mode coupling, 142, 158
Mott scattering
 probability, 334
Mueller calculus, 153
Mueller matrix, 159

\[\text{N} \]
neutrino plasma, \(\nu \)
Newberger sum rule, 81
nonlinear response tensor, 456
 cubic, 9, 369, 370, 462
 quadratic, 9, 100, 311, 369, 382–385, 388,
 390, 461
 arbitrary distribution, 102
 cold plasma, 100
 vacuum, 457
 vertex formalism, 459
nonlinear scattering, 192
normalization scattering, 192
normalization time, 162
number density
 proper, 19, 24, 26, 29, 37, 411, 412, 419,
 420, 423

\[\text{O} \]
one-photon pair creation
dispersion, 393, 404, 407
Onsager relations, 10, 110, 399
operator
 spin projection, 222, 237
orbit of a spiraling charge, 42
orthogonality relation, 209, 232

\[\text{P} \]
pair creation
dispersion, 404
 spontaneous, 370, 371
two photon, 328, 332
 probability, 332
two-photon, 312
pair plasma
 pure, 103, 123, 128, 381, 418
two-fluid equations, 28
Index

paramagnetism, 439
parity, 386
Pauli
 exclusion principle, 247, 372, 407
 matrices, 153, 154, 187, 203, 478
 spin paramagnetism, 439
photon splitting, 339, 382–385, 387, 457
 S-matrix method, 388
CP invariance, 386
 electromagnetic wrench, 390
 kinematics, 383
 probability, 384
 resonant, 321
 selection rule, 386
picture
 Heisenberg, 394
 interaction, 394
 Schrödinger, 356, 394
plasma dispersion function, 75
 \(Z(y), 69, 70, 199, 476\)
 \(Z(y, \xi), 428\)
Plemelj formula, 44, 406, 416
Poincaré sphere, 154
Poisson equation, 34
polarization vector, 10, 17
 axial ratio, 110, 113, 114, 123, 126
 handedness, 114, 142, 144
 Lorentz transformation, 132
polylogarithm \(\text{Li}_n(\xi), 427\)
positronium
 Bohr radius, 303
 bound states, 303
 principal quantum number, 303
 two-photon decay, 306
positrons
 admixture of, 18, 128
 power-law distribution, 97, 184
probability
 cyclotron emission, 267
 non-spin-flip, 267
 spin-flip, 267
 emission, 162
 periodic motion, 161
 gyroemagnetic emission, 253, 258
 polarization tensor, 169
 gyroemagnetic transition, 251–253
 of Compton scattering, 310
 pair creation, 260, 285
 spontaneous pair creation, 371
 transition, 245, 246
projection tensors
 \(\mathbf{s}^{\mu \nu}, \mathbf{s}^{\nu \mu}, 4, 5\)

propagator
electron, 201, 217
 Gégéniau form, 219
 Green function, 220
 reduced, 234, 235, 244
 statistical average, 217
 statistically averaged, 235
 vertex formalism, 235, 236
photon, 245
 \(G\)-gauge, 245
 magnetized vacuum, 354
 retarded, advance, Feynman, 221
proper number density, 11, 52, 61
proper-time method, 339, 355, 356, 382
 Hamiltonian, 356
 propagator, 355, 364
pulsar plasma, 82
pulsars, 82
 corotating-magnetosphere model, 82, 83
 Goldreich-Julian density, 84
 photon splitting, 382
 resonant Compton scattering, 325
 vacuum-dipole model, 82, 83
 X-ray, 336, 379, 381

Q
quadratic fluid theory, 32
 Bohm term, 33
 Wigner-Moyal equations, 32, 33
quantum number
 radial, 232
quantum oscillations, 261, 262
quantum recoil, 34, 164, 393, 403–405, 432, 455
 nonrelativistic, 165
 relativistic, 165
quantum synchrotron parameter, 273
quasilinear equations
 diffusion coefficients, 168
 gyromagnetic emission, 168
 Thomson scattering, 194

R
radiation reaction, 172
 force, 175
 gyromagnetic emission, 172
ratio of electric to total energy, 110
Razin effect, 190
 Razin-Tsytovich frequency, 190
relativistic plasma dispersion function
Index

$J(t_0, \rho_L)$, 66
$K_1^\pm(\eta p_{\parallel \pm})$, 410
$T(v, \rho)$, 66, 425
$W(z)$, $R(z)$, $S(z)$, 157
$Z_n^\alpha(t_0)$, 412, 413
- completely degenerate limit, 421
- nondegenerate, 426
- nondegenerate limit, 424
$Z_n(t_0)$
- nonrelativistic FD distribution, 428
$Z_n^{(1)}(\omega, k_z) - Z_n^{(2)}(\omega, k_z)$, 415
$\text{Im}Z_n^\alpha(t_0)$, 416
1D Jüttner, 87
1D distribution, 85
hypergeometric function, 80
logarithmic singularity, 437–439, 441, 443, 444, 446–449
resonance
- condition, 224
- threshold, 258, 261–263, 272, 286, 288, 289, 295, 296, 298
resonance ellipse, 165, 257
final, 258
initial, 258
resonant energies, 47
resonant momenta, 47
resonant scattering
- absorption plus emission, 322
- Compton, 321
- PC-induced, 326
- effective probability, 323
- Thomson, 198
response 3-tensor
- antihermitian part, 71, 74
- Maxwellian distribution, 71
- parallel propagation, 432
- Shkarofsky tensor, 75
response tensor $\Pi^\mu\nu(k)$
1D electron gas, 434
1D pair plasma, 85, 157
antihermitian part, 10, 53, 58, 59, 63, 111, 406–408, 416, 441, 444, 449
cold plasma, 13, 14
cold unmagnetized plasma, 107
definition, 9
forward-scattering form, 51, 404
forward-scattering method, 64
gauge-invariance, 10
general forms, 51
general properties, 9
gyrotropic part, 399
hermitian part, 10, 408
high frequencies, 97
Lorentz transformation, 19
magnetized vacuum, 340
nondispersive part, 408–412
nongyrotropic part, 399
nonquantum limit, 404
Onsager relations, 10, 399
parallel propagation, 430
reality condition, 9
Ritus method, 401
RPDF form, 414, 415
1D electron gas, 435
parallel propagation, 432
strictly-perpendicular distribution, 67, 68
summed form, 397, 400
1D electron gas, 435
parallel propagation, 431
summed over gyroharmonics, 53, 59
synchrotron-emitting gas, 90
transverse components, 94
Trubnikov form, 60, 64, 67, 68
1D, 88
mildly relativistic, 74
ultrarelativistic, 99
ultrarelativistic, 95
thermal, 98
vertex form, 394
parallel propagation, 430
Vlasov form, 405
Vlasov method, 55, 57
Ritus method, 230, 234, 238, 239, 317, 401
vertex matrix, 236

S
scattering
electron-electron, 335
Møller, 334, 335
Mott, 333
Schrödinger equation, 33
screw sense, 42
semi-classical theory, 164, 167
Shkarofsky function, 69, 76, 79, 137, 138, 474
generalized, 76, 474
recursion relations, 475
simultaneous eigenfunctions, 211
single particle current
higher order, 101
slash notation, 202
small-x approximation, 430, 433–435, 454, 455
small-gyroradius approximation, 50, 51, 74, 434
sound speed
adiabatic, 31, 120
ion sound, 120

spin
BMT equation, 35
equation of motion, 35
magnetic moment, 36
quasi-classical approach, 35
scalar particle, 404

spin operator
\sigma^{\mu\nu}, 478
helicity, 210, 212, 215, 224, 233, 271
magnetic-moment, 210, 212, 252, 254, 271,
316, 396, 450, 456
eigenfunctions, 215, 224, 233
eigenstates, 212, 213, 227

spin-dependence
occupation number, 397, 450
spin-dependent response
\Pi_{\mu\nu}^{\mu}(k), 38
\Pi_{\mu}^{\nu}(k), 450
RPDF form, 452
small-x approximation, 454
summed form, 451
cold plasma, 36
dielectric tensor, 38
spin-polarized electron gas, 450
square of \delta-function, 162
static response, 439
electric, 439
magnetic, 439
stationary phase, method of, 90, 91
steepest descent
method of, 180
Stokes
vector, 153
Stokes parameters, 153
Poincaré sphere, 154
wave mode, 154
streaming, 18
counterstreaming, 18, 21, 22
multi-fluid, 18, 20
sum over spin states, 228
sum rule, 378
susceptibility
cold electron gas, 379
combined, 379
electric, 354, 367, 368, 439
equivalent, 355
fourth rank 4-tensor, 367, 373
magnetic, 354, 367, 368, 439
magneto-electric, 355, 367, 368
symmetry
crossing, 245, 285, 309, 329
synchrotron absorption, 185
absorption coefficient, 185
power-law distribution, 186
thermal, 188, 189
Trubnikov's method, 189
synchrotron approximation, 90, 91
synchrotron emission, 161, 182
emissivity, 183
maser, 191
power emitted, 279, 280
quantum broadening, 284
Razin effect, 183, 190
spin dependence, 282
transition rate, 274, 279, 280

T
thermal distribution
Jüttner distribution, 60
Maxwellian, 69
weakly relativistic, 69
Thomas-Fermi length, 439
Thomson scattering, 161, 191
cross section, 195
high frequency, 197
magnetioonic waves, 196
probability, 193
probablity, 192
quasilinear equations, 194
resonant, 198
unmagnetized particles, 194
Toll
method of, 408
transfer equation
gyromagnetic emission, 167
magnetioionic mode, 176
Stokes parameters, 153, 186

transition
spin flip, 264, 267, 268, 270, 271, 282, 435
spin flip, reverse, 267, 270
tunneling
quantum mechanical, 305

U
uniaxial crystal, 128

V
vacuum polarization tensor, 339, 340, 395, 441
antihermitian part, 350
electromagnetic wrench, 363
long wavelength, 352
regularization, 340, 342, 345, 348, 351, 361
strong B, 346, 353
susceptibility, 373
unregularized
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gehéniau form</td>
<td>342</td>
</tr>
<tr>
<td>vertex formalism</td>
<td>347</td>
</tr>
<tr>
<td>unregularized</td>
<td>347</td>
</tr>
<tr>
<td>weak-field limit</td>
<td>346</td>
</tr>
<tr>
<td>vacuum resonance</td>
<td>379–381</td>
</tr>
<tr>
<td>vertex formalism</td>
<td>230, 317</td>
</tr>
<tr>
<td>vertex function</td>
<td></td>
</tr>
<tr>
<td>arbitrary spin states</td>
<td>226</td>
</tr>
<tr>
<td>definition</td>
<td>223</td>
</tr>
<tr>
<td>gauge-dependent factor</td>
<td>223</td>
</tr>
<tr>
<td>gauge-independent part</td>
<td>223</td>
</tr>
<tr>
<td>gauge-invariance condition</td>
<td>227</td>
</tr>
<tr>
<td>magnetic-moment states</td>
<td>227</td>
</tr>
<tr>
<td>momentum-space representation</td>
<td>223</td>
</tr>
<tr>
<td>symmetry properties</td>
<td>224</td>
</tr>
<tr>
<td>Vlasov equation</td>
<td></td>
</tr>
<tr>
<td>covariant</td>
<td>56</td>
</tr>
<tr>
<td>linearized</td>
<td>56</td>
</tr>
<tr>
<td>Vlasov method</td>
<td>41, 42, 51, 55</td>
</tr>
<tr>
<td>volume emissivity</td>
<td></td>
</tr>
<tr>
<td>magnetoionic mode</td>
<td>176</td>
</tr>
<tr>
<td>thermal</td>
<td>177, 188</td>
</tr>
<tr>
<td>wave equation</td>
<td></td>
</tr>
<tr>
<td>2-dimensional</td>
<td>152</td>
</tr>
<tr>
<td>3-tensor form</td>
<td>108</td>
</tr>
<tr>
<td>homogeneous</td>
<td>106, 108</td>
</tr>
<tr>
<td>matrix form</td>
<td>106</td>
</tr>
<tr>
<td>wave mode</td>
<td>105, 108</td>
</tr>
<tr>
<td>$B \geq B_i$, 375</td>
<td></td>
</tr>
<tr>
<td>absorption coefficient</td>
<td>105, 111</td>
</tr>
<tr>
<td>Alfvén, 31, 105, 118, 121</td>
<td></td>
</tr>
<tr>
<td>Bernstein</td>
<td>105</td>
</tr>
<tr>
<td>birefringent vacuum</td>
<td>199, 325</td>
</tr>
<tr>
<td>cold plasma</td>
<td>113</td>
</tr>
<tr>
<td>polarization vector</td>
<td>113</td>
</tr>
<tr>
<td>cold-plasma</td>
<td>105</td>
</tr>
<tr>
<td>cutoff, 115</td>
<td></td>
</tr>
<tr>
<td>effect of positrons</td>
<td>128</td>
</tr>
<tr>
<td>cyclotron-harmonic</td>
<td>134</td>
</tr>
<tr>
<td>Dnestrovskii-Kostomarov</td>
<td>133, 136, 139</td>
</tr>
<tr>
<td>extraordinary, 136</td>
<td></td>
</tr>
<tr>
<td>Gross-Bernstein</td>
<td>133, 136, 139</td>
</tr>
<tr>
<td>ordinary, 134</td>
<td></td>
</tr>
<tr>
<td>weakly relativistic, 137</td>
<td></td>
</tr>
<tr>
<td>dispersion relation</td>
<td>105</td>
</tr>
<tr>
<td>doublet, 441–444, 446–449</td>
<td></td>
</tr>
<tr>
<td>electromagnetic wrench</td>
<td>375</td>
</tr>
<tr>
<td>electron-cyclotron, 105</td>
<td></td>
</tr>
<tr>
<td>evanescent</td>
<td>113</td>
</tr>
<tr>
<td>fast magnetoacoustic</td>
<td>31</td>
</tr>
<tr>
<td>GA mode, 440</td>
<td></td>
</tr>
<tr>
<td>longitudinal, 442</td>
<td></td>
</tr>
<tr>
<td>transverse, 447</td>
<td></td>
</tr>
<tr>
<td>group velocity</td>
<td>112</td>
</tr>
<tr>
<td>gyromagnetic absorption</td>
<td>438</td>
</tr>
<tr>
<td>helicon, 124</td>
<td></td>
</tr>
<tr>
<td>hybrid, 116</td>
<td></td>
</tr>
<tr>
<td>inertial Alfvén</td>
<td>119</td>
</tr>
<tr>
<td>ion acoustic</td>
<td>120</td>
</tr>
<tr>
<td>ion sound</td>
<td>120</td>
</tr>
<tr>
<td>kinetic Alfvén</td>
<td>120</td>
</tr>
<tr>
<td>Langmuir, 105</td>
<td></td>
</tr>
<tr>
<td>Langmuir-type, 441</td>
<td></td>
</tr>
<tr>
<td>longitudinal, 105, 441</td>
<td></td>
</tr>
<tr>
<td>GA mode, 442</td>
<td></td>
</tr>
<tr>
<td>Lorentz transformation</td>
<td>142</td>
</tr>
<tr>
<td>lower hybrid</td>
<td>117</td>
</tr>
<tr>
<td>lower-hybrid</td>
<td>105, 117</td>
</tr>
<tr>
<td>magnetized vacuum</td>
<td>340</td>
</tr>
<tr>
<td>$|$-mode, 354</td>
<td></td>
</tr>
<tr>
<td>\perp-mode, 354</td>
<td></td>
</tr>
<tr>
<td>magnetooacoustic</td>
<td>118</td>
</tr>
<tr>
<td>magnetoonionic, 105, 122</td>
<td></td>
</tr>
<tr>
<td>admixture of positrons</td>
<td>128</td>
</tr>
<tr>
<td>cutoff frequency</td>
<td>124</td>
</tr>
<tr>
<td>high frequency</td>
<td>127</td>
</tr>
<tr>
<td>Lorentz transformation</td>
<td>130</td>
</tr>
<tr>
<td>o mode, 124</td>
<td></td>
</tr>
<tr>
<td>QL, QT limits</td>
<td>125</td>
</tr>
<tr>
<td>whistler mode</td>
<td>124</td>
</tr>
<tr>
<td>x mode, 124</td>
<td></td>
</tr>
<tr>
<td>z mode, 124</td>
<td></td>
</tr>
<tr>
<td>MHD, 29, 105, 119</td>
<td></td>
</tr>
<tr>
<td>MHD-like, 120</td>
<td></td>
</tr>
<tr>
<td>absorption coefficient</td>
<td>122</td>
</tr>
<tr>
<td>fast, 121</td>
<td></td>
</tr>
<tr>
<td>slow, 121</td>
<td></td>
</tr>
<tr>
<td>pair mode</td>
<td>438</td>
</tr>
<tr>
<td>perpendicular propagation</td>
<td>133</td>
</tr>
<tr>
<td>polarization vector</td>
<td>105, 109</td>
</tr>
<tr>
<td>pulsar plasma</td>
<td>140</td>
</tr>
<tr>
<td>Alfvén, 144</td>
<td></td>
</tr>
<tr>
<td>counter-streaming</td>
<td>146</td>
</tr>
<tr>
<td>cyclotron resonance</td>
<td>141, 142</td>
</tr>
<tr>
<td>high frequency</td>
<td>156</td>
</tr>
<tr>
<td>instabilities</td>
<td>148, 150, 151</td>
</tr>
<tr>
<td>longitudinal, 144</td>
<td></td>
</tr>
<tr>
<td>low-frequency</td>
<td>140</td>
</tr>
<tr>
<td>mode coupling</td>
<td>158</td>
</tr>
<tr>
<td>non-gyrotropic</td>
<td>143</td>
</tr>
<tr>
<td>O mode, 140</td>
<td></td>
</tr>
<tr>
<td>oblique, 145</td>
<td></td>
</tr>
<tr>
<td>oblique Alfvén</td>
<td>146</td>
</tr>
</tbody>
</table>
wave mode
 spread in Lorentz factors, 143
 X mode, 140, 143
ratio of electric to total energy, 105, 110
resonance, 116
resonant, 117
slow magnetoacoustic, 31
Stokes eigenvector, 154
transverse, 444
 GA edge mode, 445
 GA mode, 444, 447
 PC mode, 444, 448
vacuum, 372
 $n(\omega) < 1$, 378
 labeling $\perp,||$, 373
whistler, 119

wavefunction
 factorization, 236
 gauge-dependent part, 232
 Johnson-Lippmann, 208, 211–215, 223, 224, 233, 336
 reduced, 233–236
 simple harmonic oscillator, 205, 206, 221
weak-anisotropy approximation, 151, 374
 axial ratio, 152
 dispersion relation, 152
 mode coupling, 158
 rest frame, 153
 wave equation, 152
weak-turbulence expansion, 9, 48, 365
Wigner
 function, 33, 394
 matrix, 33, 394
 Wigner-Moyal equations, 33