Abstract

We present a study of the capability of CLIC to measure the top quark mass and the strong coupling constant in a scan of the top threshold. The analysis is based on full detector simulations of the CLIC_ILD detector concept using Geant4, including realistic beam-induced background contributions from two photon processes. Event reconstruction is performed using a particle flow algorithm with stringent cuts to control the influence of background. With these simulations the signal and background selection efficiencies are determined. Signal event yields as a function of energy are obtained using these efficiencies together with NNLO top pair cross-sections corrected for ISR and the CLIC beam energy spectrum. For comparison, the analysis is also performed with the ILC beam energy spectrum. In addition to the statistical errors for m_t and α_s, systematic uncertainties from theory and from the precision of the strong coupling constants as well as the influence of the precision of the background description and of the understanding of the luminosity spectrum have been studied.
Contents

1 Introduction .. 3

2 Experimental Conditions at CLIC at the Top Threshold .. 3

3 Simulation Strategy ... 4
 3.1 Top Pair Production Cross Section 4
 3.1.1 Initial State Radiation 5
 3.1.2 Luminosity Spectrum 5
 3.1.3 Combined Cross-Section 6
 3.2 Signal Selection Efficiency and Background Contamination.. 6
 3.3 Generation of Data Points 8

4 Results ... 9

5 Results for ILC beam conditions 11

6 Additional Systematic Studies 12

7 Conclusions .. 13
1 Introduction

As the heaviest Standard Model particle, the top quark is of particular interest since it most strongly couples to the Higgs field and may provide sensitivity to Beyond the Standard Model physics. Experiments at e^+e^- colliders offer the possibility for a wide variety of studies involving top quarks, ranging from the precise measurement of top quark properties to the investigation of asymmetries providing large sensitivity to various New Physics models. Among those is the precise determination of the top quark mass, which is possible with two different techniques: through the direct reconstruction of top quarks from their decay products at energies above the production threshold, and through a scan of the top-pair production threshold. The latter technique has the advantage of providing the mass measurement in a theoretically well-defined scheme, while the former measurement can be performed essentially at arbitrary energies above threshold, however with potentially significant uncertainties due to non-perturbative contributions when transferring the measured invariant mass to a theoretically meaningful value. Progress has been made recently in establishing connections between the top mass parameters used in theory and the experimentally observable invariant mass of the decay products [1, 2], but theoretical uncertainties remain substantial.

In this note, we investigate the potential for the determination of the top quark mass from a measurement of the top-pair production cross-section at several energies around the threshold near 350 GeV at the Compact Linear Collider CLIC, with a total integrated luminosity of up to 100 fb^{-1}. This study complements a previous CLIC study of top mass measurements at 500 GeV by means of a direct reconstruction of the invariant mass of the decay products. This study has shown that the invariant mass of the top quark can be determined with a precision of better than 100 MeV with 100 fb$^{-1}$ in fully hadronic and semi-leptonic decays of the top pairs [3].

2 Experimental Conditions at CLIC at the Top Threshold

CLIC is a collider concept based on normal conducting accelerating cavities and two-beam acceleration, which is designed to provide up to 3 TeV collision energy. In a staged approach, a shorter, lower energy version would be operated initially, while construction is under way for the full energy phase.

In the present note, we study the case of a 500 GeV CLIC machine operated at energies close to the top pair production threshold by a reduction of the acceleration gradient through reduced drive-beam currents. At 350 GeV, the rate of $\gamma\gamma \to \text{hadrons}$ events [4] is relatively small, with only 0.05 events per bunch crossing, down by almost an order of magnitude compared to 500 GeV collisions. The effect from pile-up of this background, in particular after the application of the particle flow object selection cuts [5, 3], is thus very minor. The impact of backgrounds is further marginalized by the fact that the measurement at the top threshold is a measurement of the cross section. It requires the separation of signal and background events, but not the precise reconstruction of the invariant mass which might be affected by the presence of background.

The detector model used in the present study is a variant of CLIC JLD [6], a detector concept based on Particle Flow event reconstruction. It consists of a low-mass, high-precision vertex detector and an inner silicon tracker, surrounded by a large-volume time projection chamber,
followed by highly granular electromagnetic and hadronic calorimeters contained inside a 4 T solenoidal magnet with instrumented flux return for muon identification. The detector design is based on the ILD detector concept for the ILC, adapted to account for the higher energy (3 TeV) and more severe background conditions at CLIC. This leads to an increased radius of the innermost layer of the vertex detector, which sits at 31 mm compared to 16 mm in ILD at the ILC. Here, the case of a 500 GeV CLIC machine operated at 350 GeV is studied. The detector model is thus one optimized for 500 GeV with slight modifications with respect to the 3 TeV design. While the large systems of the detector such as the calorimeters and the main tracker are expected to stay unchanged for different energy stages, the interaction region and the innermost vertex detector are adapted to the significantly reduced background levels at 500 GeV compared to 3 TeV. In particular the innermost vertex detector layer for CLIC_ILD can move in by 6 mm to a radius of 25 mm, improving flavor tagging at low momentum. To distinguish the modified detector design from the 3 TeV design, the detector model is referred to as CLIC_ILD_CDR500.

3 Simulation Strategy

For the correct description of the cross-section near threshold, the inclusion of high-order QCD contributions is necessary. Since no appropriate event generator is publicly available at present, the study follows the strategy of earlier studies performed for the TESLA collider [7] by factorising the simulation study into the determination of event selection efficiency and background contamination and the calculation of the top-pair production threshold. In this approach, the signal selection and background rejection is determined using fully simulated top-pair signal events as well as relevant background channels at a nominal center of mass energy of 352 GeV, slightly above the production threshold for the selected top mass of 174 GeV. This energy is chosen to be able to generate the events with PYTHIA, which requires a center-of-mass energy in excess of twice the generator top mass. Data points along the threshold curve are then generated by taking the signal cross section determined using NNLO calculations combined with the selection efficiency, adding background events assuming a constant level over the considered energy range of 10 GeV as determined from the full simulations. In the following, more details are given on the individual steps.

In the present analysis, we assume a threshold scan with 10 data points with an integrated luminosity of 10 fb\(^{-1}\) each. The measurement points are spaced by 1 GeV, spanning the threshold region. In some of the analyses below, only the first six out of these ten point are used to illustrate the sensitivity of different regions of the threshold to systematic effects.

3.1 Top Pair Production Cross Section

The top-pair signal cross-section is determined using full NNLO calculations provided by the code TOPPIK [8, 9]. The top mass input is set to 174 GeV in the 1S mass scheme [8]. The strong coupling constant \(\alpha_s\) is taken to be 0.118. Since TOPPIK provides the cross section in units of \(R\), the ratio of \(\sigma(e^+e^-\rightarrow X)\) to \(\sigma(e^+e^-\rightarrow \mu^+\mu^-)\), the appropriate conversion factor of the energy-dependent cross section \(e^+e^-\rightarrow \mu^+\mu^-\) is applied in addition.

Since this cross section is calculated for the energy at the \(e^+e^-\) vertex, additional corrections
for initial state radiation (ISR) and for the beam energy spectrum of the accelerator have to be applied, as discussed in the following.

3.1.1 Initial State Radiation

ISR reduces the available collision energy E' due to the radiation of photons off the incoming electron and positron prior to the collision. This effect in general lowers the signal cross-section, since events are shifted to lower energies with typically a lower top-pair cross-section. The electron and positron “structure functions” are taken from the approximate YFS (Yennie-Frautschi-Suura) solution as given in [10], which provides the normalized probability density for a given fraction of the lepton momentum x (ranging from 0 to 1) in the final collision.

The folding of the ISR distribution with the theoretically calculated cross section is performed numerically. For this, a histogram of the structure function with 0.175 MeV wide bins is built, with the value in each bin taken by evaluating the approximate YFS solution at the bin center. The highest-energy bin is topped off to ensure correct normalization, accounting for the extreme increase in the structure function near 1. The folding is performed by evaluating 100,000 randomly generated energy points with the individual beam energies distributed according to this histogram. The mean value of the cross-section of these 100,000 trials is taken as the ISR-corrected cross section at a given center-of-mass energy.

3.1.2 Luminosity Spectrum

The centre-of-mass energy distribution also influences the cross section as a function of nominal collider energy. The luminosity spectrum is roughly characterized by the width of the main peak and by a longer tail to lower energies from beamstrahlung. To be able to compare the impact of the different luminosity spectra of CLIC and ILC, spectra from both colliders, operated at 350 GeV, are used to calculate the final signal cross-section.

![Luminosity spectrum for CLIC and ILC at 350 GeV.](image)

Figure 1: Luminosity spectrum for CLIC and ILC at 350 GeV.

Figure 1 shows the high-energy part of the luminosity spectrum of CLIC and ILC operated at 350 GeV. As for the case of ISR, the folding of the signal cross-section with the luminosity spectrum is performed numerically using 100,000 beam events at each energy point.
3.1.3 Combined Cross-Section

The final signal cross-section is obtained by combining the effects of ISR and of the luminosity spectrum. Here, 100,000 trials per energy point are performed, where the collision energy is determined from the luminosity spectrum with a subsequent addition of ISR. Based on this sample of collision energies, the top pair cross section at both CLIC and ILC is determined using the TOPPIK calculations.

Figure 2: E' distribution taking ISR and the luminosity spectrum (CLIC (left) and ILC (right)) into account. The lower row of figures shows a blow-up of the peak region of the distributions.

Figure 2 shows the distribution of the real collision energy E' for CLIC and ILC for beam energy spectrum and ISR separately as well as the resulting combined spectrum. The effect on the top pair production cross-section is shown in Figure 3. The cross-section with all effects included is used to determine the signal yield as a function of nominal collision energy in the subsequent analysis steps.

3.2 Signal Selection Efficiency and Background Contamination

The event selection efficiency and the background contributions, mainly from di- and tri-boson production, are determined using events generated with PYTHIA at a collision energy of 352 GeV
with a top mass of 174 GeV. These events are fully simulated in GEANT4, including the addition of pile-up from $\gamma\gamma \rightarrow$ hadrons background. For signal identification and background rejection the same technique as for the 500 GeV top mass study is used. The top pair events are identified in the fully hadronic decay mode $t\bar{t} \rightarrow W^+ b W^- \bar{b} \rightarrow q\bar{q}q\bar{q}b\bar{b}$ and in the semi-leptonic mode $t\bar{t} \rightarrow W^+ b W^- \bar{b} \rightarrow q\bar{q}\ell\nu, \ell = e, \mu$. The events are clustered into six or four jets depending on the number of identified isolated leptons. A kinematic fit with constraints on overall energy, on the difference of the two top masses and on the mass of the intermediate W bosons is used to form the top candidates. The fit also provides powerful background rejection, since most background events fail the kinematic fit. Additional background reduction is obtained with a binned likelihood using flavor tagging, the reconstructed W masses and the differences of the two reconstructed top masses without kinematic fit, the number of particles in the event, the sphericity and jet number information to discriminate signal from background.

In addition to these background rejection steps, no further selection based on the reconstructed top quark mass is performed, since this does not provide a substantial additional benefit, while it would add potential systematic uncertainties from the additional cut. Figure 3 shows the reconstructed invariant mass distribution for top quark candidates after all selections for accepted signal and background events, as well as the signal significance as a function of a possible invariant mass cut assuming a top pair production cross-section of 450 fb$^{-1}$, which corresponds to the cross section reached a few GeV above the production threshold. Overall, a signal selection efficiency of 70.2% is achieved, with an efficiency in excess of 90% for the selected fully-hadronic and semi-leptonic decay modes. For the major background channels, the cross-section is reduced by two to three orders of magnitude. Table 1 summarizes the signal and background cross-sections before and after selection.

Even though the study is performed using the CLIC_ILD detector model and CLIC background conditions, the conclusions drawn about the signal selection efficiency and background contamination also apply to ILC and the ILD detector. In terms of detector model, the most relevant difference is the radius of the innermost vertex detector layer, which is larger at CLIC.
Figure 4: Reconstructed top quark mass for accepted events. Signal as well as each of the backgrounds are shown separately (left). Signal significance as a function of the value of the minimum invariant mass required for the reconstructed top candidates assuming a top pair production cross-section of 450 fb$^{-1}$ (right).

Table 1: Signal and considered physics background processes, with their cross section calculated for CLIC at 352 GeV before and after event selection. The combined background cross-section after selection is 78 fb.

<table>
<thead>
<tr>
<th>type</th>
<th>$e^+e^- \rightarrow \sigma$ at 352 GeV</th>
<th>selected σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal ($m_{\text{top}} = 174$ GeV)</td>
<td>$t\bar{t}$</td>
<td>450 fb</td>
</tr>
<tr>
<td>Background</td>
<td>$q\bar{q}$</td>
<td>25.2 pb</td>
</tr>
<tr>
<td>Background</td>
<td>WW</td>
<td>11.5 pb</td>
</tr>
<tr>
<td>Background</td>
<td>ZZ</td>
<td>865 fb</td>
</tr>
<tr>
<td>Background</td>
<td>WWZ</td>
<td>10 fb</td>
</tr>
</tbody>
</table>

due to the higher background level of incoherent e^+e^- pairs. For the identification of $t\bar{t}$ events, b-tagging is crucial, but not the separation of charm and bottom. Thus, the differences in performance of the two detector models are expected to be negligible for this analysis. The same also applies for the background rejection. Thus, the selection efficiencies and background levels determined for CLIC are also used for a study of a threshold scan at ILC.

3.3 Generation of Data Points

Simulated data points are generated by taking the ISR and beam spectrum corrected top pair cross-section at the desired energy to calculate the nominal number of events expected. The simulated number of signal events is determined on a random basis following a gaussian distri-
bution with the mean set to the nominal number of events and the standard deviation given by
the square root of that number. With the same method, background events are added, using a
constant cross-section of 78 fb as discussed above. It is assumed that the nominal background
contribution is well known both from theory and from measurements below threshold, so the
nominal number of background events is subtracted from the signal, leaving just the statistical
variations on top of the signal data with its own statistical uncertainty.

Figure 5: Background-subtracted simulated cross-section measurements for 10 fb$^{-1}$ per data
point, together with the cross-section for the generator mass of 174 GeV as well as
for a shift in mass of ±200 MeV for both CLIC (left) and ILC (right)).

Figure 5 shows the ten simulated data points for CLIC and for ILC with an integrated luminosity of 10 fb$^{-1}$ at each point.

4 Results

Two extractions of the top mass are being considered here:

- A one-dimensional template fit performed by comparing the simulated data with theory
curves calculated in 50 MeV steps in top mass assuming α_s is known, subsequently la-
belled “1D”

- A two-dimensional template fit in top mass and α_s for a simultaneous determination of
the top mass and the strong coupling constant, labelled “2D”

The measured top mass, and α_s in the case of the 2D fit, is given by the minimum of a parabolic
fit to the χ^2 distribution of the different templates. The statistical uncertainty is taken from the
standard deviation of the measured mass in 5000 trials with different simulated data points.

In the 1D fit, two main sources of systematic uncertainties are considered: A theory un-
certainty taken as an overall normalization uncertainty of the calculated cross section, and an
uncertainty from the knowledge of α_s. For the theory uncertainty, two levels are considered:
A normalization uncertainty of 3%, assumed as a reasonably conservative estimate of current theory uncertainties \[11\], and an uncertainty of 1% optimistically assumed to be achievable with additional theoretical work in time for experiments at linear colliders. To determine the systematic error due to α_s, the current uncertainty of the world average of 0.0007 is assumed. The interpretation of the data points above threshold is particularly sensitive to the overall theory normalization uncertainty and to the strong coupling constant. In the 1D fit, uncertainties can thus be somewhat reduced by just considering the first six data points from 344 GeV to 349 GeV, without a reduction of the statistical sensitivity to the top mass. Table 2 summarizes the results.

Table 2: Summary of the results for the 1D top mass determination with a threshold scan at CLIC. For the systematic uncertainty originating from α_s, the current error on the world average of 0.0007 is assumed.

<table>
<thead>
<tr>
<th>measurement</th>
<th>stat. error</th>
<th>theory syst. (1%/3%)</th>
<th>α_s syst.</th>
</tr>
</thead>
<tbody>
<tr>
<td>six point scan</td>
<td>21 MeV</td>
<td>15 MeV / 47 MeV</td>
<td>20 MeV</td>
</tr>
<tr>
<td>ten point scan</td>
<td>21 MeV</td>
<td>18 MeV / 56 MeV</td>
<td>21 MeV</td>
</tr>
</tbody>
</table>

Figure 6: Simultaneous fit of the top mass and the strong coupling constant, showing the correlation of the two variables and the achieved precision (left). Difference in precision of top mass and α_s fit using just the first 6 points in the threshold scan or all 10 points (right).

Figure 6 shows the resulting precision of the top mass and the strong coupling constants obtained with the 2D fit, demonstrating the clear correlation of the two variables. Since the high-energy points in the scan provide the highest sensitivity to α_s, a reduced scan with six points along the strongly rising region of the cross-section leads to significantly increased uncertainties. In the case of the 2D fit, only the theory uncertainty is considered as a source for systematic uncertainties in the fit. The results are summarized in Table 3.
Table 3: Results summary for the 2D simultaneous top mass and α_s determination with a threshold scan at CLIC.

<table>
<thead>
<tr>
<th>measurement</th>
<th>m_t stat. error</th>
<th>m_t th. syst. (1%/3%)</th>
<th>α_s stat. error</th>
<th>α_s th. syst. (1%/3%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>six point scan</td>
<td>40 MeV</td>
<td>1 MeV / 3 MeV</td>
<td>0.0013</td>
<td>0.0007 / 0.0020</td>
</tr>
<tr>
<td>ten point scan</td>
<td>34 MeV</td>
<td>5 MeV / 8 MeV</td>
<td>0.0009</td>
<td>0.0008 / 0.0022</td>
</tr>
</tbody>
</table>

5 Results for ILC beam conditions

The influence of the beam energy spectrum of the accelerator is studied by repeating the analysis using the ILC beam energy spectrum, as discussed in Section 3.1.2. The faster rise of the cross section due to the sharper main luminosity peak is expected to lead to somewhat reduced statistical uncertainties on the top mass for a given integrated luminosity due to increased differences between different mass hypotheses in the threshold region. As for the CLIC analysis, an integrated luminosity of 10 fb$^{-1}$ per point is assumed. The same one- and two-dimensional fits of m_t and m_t and α_s combined are also performed for data points generated with the ILC beam spectrum.

Table 4 summarizes the results of both 1D and 2D fits, while Figure 7 shows the results of the combined extraction of the top mass and the strong coupling constant, illustrating the statistical uncertainty and the correlation of the two variables. In comparison to the statistical precision achieved assuming the CLIC beam energy spectrum, in the ILC case a 15% smaller uncertainty is observed in the 1D top mass fit, and a 20% smaller uncertainty on the top mass and a 10% smaller uncertainty on α_s is obtained in the combined extraction. The CLIC-ILC differences are negligible compared to the systematic uncertainties originating from theory and from the precision of the strong coupling constant.
6 Additional Systematic Studies

In addition to the theory uncertainties and the uncertainty of \(\alpha_s \) in the case of the 1D fit, additional potential sources for systematic errors were studied.

A potential dependence of the result on the choice of energy values for the scan in relation to the top mass was excluded by shifting the measurement points to higher energies by 0.5 GeV without a change in the determined mass and \(\alpha_s \) values.

The precise knowledge of the non-top background after event selection is crucial for the measurement of the signal cross section. The effect of an imperfect non-top physics background description is studied by subtracting 5\% and 10\% too little or too much background before the fit. The 5\% variation results in a 18 MeV shift in the top mass and 0.0007 in \(\alpha_s \), corresponding to approximately two thirds of the statistical uncertainty on the top mass and close to the statistical uncertainty on \(\alpha_s \). Subtracting only 90\% of the background leads to a shift of twice the size for both values, but also significantly reduces the stability of the template fit. Subtracting 110\% of the background leads to a 30 MeV shift of the top mass and a shift of 0.0014 in \(\alpha_s \). This shows that an understanding of the background contamination at the level of 5\% or better is important to keep systematic effects substantially below the statistical uncertainties.

In addition to these analysis-related uncertainties, also machine-related uncertainties, such as the knowledge of the center-of-mass energy of the collider and the shape of the luminosity spectrum are highly relevant for this study. Previous experience at LEP \[^{12}\] and studies in the context of the ILC \[^{13}\] suggests that a precision of \(10^{-4} \) on the center-of-mass energy is readily achievable given the high available integrated luminosity at each data point, resulting in systematics below the statistical errors of the top mass. The knowledge of the luminosity spectrum is very important for the correct description of the signal cross section, and thus also for the precision of the template fit. A full study has not yet been performed, but a very preliminary
first study indicates that already a 20% uncertainty of the RMS width of the main luminosity
peak results in top mass uncertainties of approximately 75 MeV, far in excess of the statistical
 uncertainties. Further studies to quantify the effects of realistic uncertainties of the beam energy
spectrum are needed.

7 Conclusions

In this study, we have investigated the achievable precision of the top quark mass measurement
with a threshold scan at CLIC. Compared to the direct measurement of the invariant mass of the
top quark decay products the threshold scan has the advantage that the mass is directly deter-
mined in a theoretically well-defined mass definition. The study uses event selection efficiencies
and background contaminations from fully simulated events including the effects of the CLIC
beam spectrum and $\gamma\gamma \rightarrow \text{hadrons}$ backgrounds and top pair signal cross-sections from NNLO
calculations corrected for ISR and the luminosity spectrum. With an integrated luminosity of
100 fb^{-1} divided across ten data points spaced by 1 GeV, a statistical precision of the top quark
mass in the 1S scheme of 33 MeV is obtained in a combined fit together with the strong cou-
pling constant, which is determined with a precision of 0.0009. A one-dimensional fit with
fixed α_s yields a precision of 21 MeV. Using the ILC luminosity spectrum results in 15% to
20% smaller uncertainties on the mass and in a 10% smaller uncertainty of the strong coupling
constant. Combined systematic uncertainties from theory and background understanding are ex-
pected to be of similar order as the statistical errors. Together with a previous study of top quark
mass measurements from direct reconstruction of the decay products this study demonstrates
that precision top measurements are possible at CLIC both at and above threshold.

References

LCD-Note-2011-026, 2011.

[4] T. Barklow, D. Dannheim, O. Sahin, and D. Schulte. Simulation of $\gamma\gamma \rightarrow \text{hadrons}$ back-
ground at CLIC. LCD-Note-2011-021, 2011.

LCD-Note-2011-028, 2011.

[6] A. Münich and A. Sailer. The CLIC ILD CDR Geometry for the CDR Monte Carlo Mass
Production. LCD-Note-2011-002, 2011.

