Contents

Preface xi
Acknowledgements xix

Chapter 1: Brief review of static optimization methods 1
1.1. Introduction: Significance of Mathematical Models 1
1.2. Unconstrained Problems 4
1.3. Equality Constraints and Lagrange Multipliers 7
1.4. Methods of Mathematical Programming 11
1.5. Iterative Search Methods 13
1.6. On Some Stochastic Optimization Techniques 17

Chapter 2: Dynamic optimization problems 45
2.1. Discrete Representations and Dynamic Programming Algorithms 45
2.2. Recurrence Equations 47
2.3. Discrete Processes Linear with Respect to the Time Interval 51
2.4. Discrete Algorithm of the Pontryagin's Type for Processes Linear in θ^N 55
2.5. Hamilton–Jacobi–Bellman Equations for Continuous Systems 58
2.6. Continuous Maximum Principle 70
2.7. Calculus of Variations 73
2.8. Viscosity Solutions and Non-smooth Analyses 76
2.9. Stochastic Control and Stochastic Maximum Principle 84

Chapter 3: Energy limits for thermal engines and heat-pumps at steady states 85
3.1. Introduction: Role of Optimization in Determining Thermodynamic Limits 85
3.2. Classical Problem of Thermal Engine Driven by Heat Flux 90
3.3. Toward Work Limits in Sequential Systems 109
3.4. Energy Utilization and Heat-pumps 112
3.5. Thermal Separation Processes 116
3.6. Steady Chemical, Electrochemical and Other Systems 117
3.7. Limits in Living Systems 123
3.8. Final Remarks 124

Chapter 4: Hamiltonian optimization of imperfect cascades 127
4.1. Basic Properties of Irreversible Cascade Operations with a Work Flux 127
<table>
<thead>
<tr>
<th>Chapter 5: Maximum power from solar energy</th>
<th>167</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. Introducing Carnot Controls for Modeling Solar-assisted Operations</td>
<td>167</td>
</tr>
<tr>
<td>5.2. Thermodynamics of Radiation</td>
<td>175</td>
</tr>
<tr>
<td>5.3. Classical Exergy of Radiation</td>
<td>180</td>
</tr>
<tr>
<td>5.4. Flux of Classical Exergy</td>
<td>184</td>
</tr>
<tr>
<td>5.5. Efficiencies of Energy Conversion</td>
<td>186</td>
</tr>
<tr>
<td>5.6. Towards a Dissipative Exergy of Radiation at Flow</td>
<td>187</td>
</tr>
<tr>
<td>5.7. Basic Analytical Formulae of Steady Pseudo-Newtonian Model</td>
<td>190</td>
</tr>
<tr>
<td>5.8. Steady Non-Linear Models applying Stefan–Boltzmann Equation</td>
<td>192</td>
</tr>
<tr>
<td>5.9. Dynamical Theory for Pseudo-Newtonian Models</td>
<td>195</td>
</tr>
<tr>
<td>5.10. Dynamical Models using the Stefan–Boltzmann Equation</td>
<td>204</td>
</tr>
<tr>
<td>5.11. Towards the Hamilton–Jacobi–Bellman Approaches</td>
<td>211</td>
</tr>
<tr>
<td>5.12. Final Remarks</td>
<td>212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 6: Hamilton–Jacobi–Bellman theory of energy systems</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1. Introduction</td>
<td>215</td>
</tr>
<tr>
<td>6.3. Two Different Works and Finite-Rate Exergies</td>
<td>219</td>
</tr>
<tr>
<td>6.4. Some Aspects of Classical Analytical HJB Theory for Continuous Systems</td>
<td>223</td>
</tr>
<tr>
<td>6.5. HJB Equations for Non-Linear Power Generation Systems</td>
<td>225</td>
</tr>
<tr>
<td>6.6. Analytical Solutions in Systems with Linear Kinetics</td>
<td>227</td>
</tr>
<tr>
<td>6.7. Extensions for Systems with Non-Linear Kinetics and Internal Dissipation</td>
<td>230</td>
</tr>
<tr>
<td>6.9. Final Remarks</td>
<td>235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 7: Numerical optimization in allocation, storage and recovery of thermal energy and resources</th>
<th>237</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1. Introduction</td>
<td>237</td>
</tr>
<tr>
<td>7.2. A Discrete Model for a Non-Linear Problem of Maximum Power from Radiation</td>
<td>239</td>
</tr>
</tbody>
</table>
7.3. Non-Constant Hamiltonians and Convergence of Discrete DP Algorithms to Viscosity Solutions of HJB Equations 240
7.4. Dynamic Programming Equation for Maximum Power From Radiation 249
7.5. Discrete Approximations and Time Adjoint as a Lagrange Multiplier 250
7.6. Mean and Local Intensities in Discrete Processes 257
7.7. Legendre Transform and Original Work Function 259
7.8. Numerical Approaches Applying Dynamic Programming 261
7.9. Dimensionality Reduction in Dynamic Programming Algorithms 265
7.10. Concluding Remarks 267

Chapter 8: Optimal control of separation processes 271
8.1. General Thermokinetic Issues 271
8.2. Thermodynamic Balances toward Minimum Heat or Work 273
8.3. Results for Irreversible Separations Driven by Work or Heat 279
8.4. Thermoeconomic Optimization of Thermal Drying with Fluidizing Solids 282
8.5. Solar Energy Application to Work-Assisted Drying 312
8.6. Concluding Remarks 320

Chapter 9: Optimal decisions for chemical and electrochemical reactors 321
9.1. Introduction 321
9.2. Driving Forces in Transport Processes and Chemical Reactions 321
9.3. General Non-Linear Equations of Macrokinetics 324
9.4. Classical Chemical and Electrochemical Kinetics 325
9.5. Inclusion of Non-Linear Transport Phenomena 327
9.6. Continuous Description of Chemical (Electrochemical) Kinetics and Transport Phenomena 329
9.7. Towards Power Production in Chemical Systems 331
9.8. Thermodynamics of Power Generation in Non-Isothermal Chemical Engines 334
9.9. Non-Isothermal Engines in Terms of Carnot Variables 338
9.10. Entropy Production in Steady Systems 340
9.11. Dissipative Availables in Dynamical Systems 341
9.12. Characteristics of Steady Isothermal Engines 343
9.15. Results of Computations 358
9.16. Some Additional Comments 359
9.17. Comparison of Chemical and Thermal Operations of Power Production 360
9.18. Fuel Cell Application 361
9.19. Final Remarks 365

Chapter 10: Energy limits and evolution in biological systems 367
10.1. Introduction 367
10.2. Energy and Size Limits 368
10.3. Toward a Quantitative Description of Development and Evolution of Species 375
10.4. Significance of Complexity and Entropy 378
10.5. Evolutions of Multiple Organs without Mutations 381
10.6. Organisms with Mutations or Specializations of Organs 383
10.7. A Variational Approach to the Dynamics of Evolution 384
10.8. Concluding Remarks 388

Chapter 11: Systems theory in thermal & chemical engineering 391
11.1. Introduction 391
11.2. System Energy Analyses 392
11.3. Mathematical Modeling of Industrial Energy Management 392
11.4. Linear Model of the Energy Balance for an Industrial Plant and its Applications 395
11.5. Non-Linear Mathematical Model of a Short-Term Balance of Industrial Energy System 399
11.6. Mathematical Optimization Model for the Preliminary Design of Industrial Energy Systems 401
11.7. Remarks on Diverse Methodologies and Link with Ecological Criteria 406
11.8. Control Thermodynamics for Explicitly Dynamical Systems 412
11.10. Towards the Thermoecnomics and Integration of Heat Energy 425

Chapter 12: Heat integration within process integration 427

Chapter 13: Maximum heat recovery and its consequences for process system design 437
13.1. Introduction and Problem Formulation 437
13.2. Composite Curve (CC) Plot 439
13.3. Problem Table (PR-T) Method 446
13.4. Grand Composite Curve (GCC) Plot 450
13.5. Special Topics in MER/MUC Calculations 454
13.6. Summary and Further Reading 458
Chapter 14: Targeting and supertargeting in heat exchanger network design

14.1. Targeting Stage in Overall Design Process 461
14.2. Basis of Sequential Approaches for HEN Targeting 462
14.3. Basis of Simultaneous Approaches for HEN Targeting 467

Chapter 15: Minimum utility cost (MUC) target by optimization approaches 469

15.1. Introduction and MER Problem Solution by Mathematical Programming 469
15.2. MUC Problem Solution Methods 472
15.3. Dual Matches 485
15.4. Minimum Utility Cost under Disturbances 488

Chapter 16: Minimum number of units (MNU) and minimum total surface area (MTA) targets 495

16.1. Introduction 495
16.2. Minimum Number of Matches (MNM) Target 496
16.3. Minimum Total Area for Matches (MTA-M) Target 515
16.4. Minimum Number of Shells (MNS) Target 521
16.5. Minimum Total Area for Shells (MTA-S) Target 525

Chapter 17: Simultaneous HEN targeting for total annual cost 533

Chapter 18: Heat exchanger network synthesis 547

18.1. Introduction 547
18.2. Sequential Approaches 548
18.3. Simultaneous Approaches to HEN Synthesis 566

Chapter 19: Heat exchanger network retrofit 583

19.1. Introduction 583
19.2. Network Pinch Method 586
19.3. Simultaneous Approaches for HEN Retrofit 596

Chapter 20: Approaches to water network design 613

20.1. Introduction 613
20.2. Mathematical Models and Data for Water Network Problem 617
20.3. Overview of Approaches in the Literature 621

References 659

Glossary of symbols 725

Index 735