Measurements of $V+$jet production and MPI with ATLAS

Craig Sawyer

Oxford University

on behalf of the ATLAS Collaboration

3rd June 2013
Outline

1. **V+jet Production**
 - Z + jets
 - W + jets
 - R_{jets}
 - $W + D$
 - $W + b$

2. **Multiple Parton Interactions**
 - $W + 2$ jets

3. **Conclusions**
V+jet Production

- Provides an important test of perturbative QCD
- Constrains parton distribution functions
- Constitutes non-negligible background to many searches for new phenomena
- Measurements reported in the past for lower jet multiplicities
- Large LHC dataset allows measurement of higher jet multiplicities and higher energy regimes
- Exclusive $V+$jets studies (e.g. $W+2$-jets) sensitive to Multiple Parton Interactions
Measurement of Z boson production with associated jets from 4.6 fb$^{-1}$ of 2011 pp collisions at $\sqrt{s} = 7$ TeV

Extension of a previous measurement up to seven jets

Results unfolded and extrapolated to a phase space defined by:

<table>
<thead>
<tr>
<th>Fiducial Phase Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T^l > 20$ GeV, $</td>
</tr>
<tr>
<td>Opposite charge leptons</td>
</tr>
<tr>
<td>$66 \leq m_{ll} \leq 116$ GeV</td>
</tr>
<tr>
<td>$\Delta R^{ll} > 0.2$</td>
</tr>
<tr>
<td>$p_T^{jet} > 30$ GeV</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>$\Delta R^{lj} > 0.5$</td>
</tr>
</tbody>
</table>

Measurement compared to NLO predictions from BlackHat+Sherpa [1, 2, 3] and LO predictions from Alpgen [4] and Sherpa [5]
Jet Multiplicity Scaling

- Exclusive jet multiplicities expected to be described by two scaling patterns
 - 'Staircase scaling' - $R_{(n+1)/n}$ constant
 - 'Poisson scaling' - $R_{(n+1)/n}$ inversely proportional to n

- Standard Z selection used to investigate staircase scaling (left)

- Large scale differences between the core $Z+1$-jet process and second leading jet p_T enhance Poisson scaling (right)
- Staircase scaling well modelled
 - Flat staircase pattern provides acceptable description
- Poisson scaling well modelled
 - Described by $R_{(n+1)/n} = \frac{\bar{n}}{n}$
Jet Kinematics

- Jet p_T and rapidity distributions presented for up to 4-jets
- When p_T^{jet} exceeds scale of Z mass K-factors large from QCD corrections
- Higher-order electroweak corrections expected to reduce cross section by 5-20% for $100 < p_T^l < 500$ GeV

- Fixed order NLO predictions are consistent for all jet multiplicities
- Alpgen predicts p_T^{jet} for 2-4 jets well but leading jet p_T too hard
- Sherpa characterised by 5-15% offset to the data
- BlackHat+Sherpa and Sherpa predict too wide rapidity spectra
Inclusive Distributions

- Previously seen large discrepancies between fixed order pQCD calculations and data in inclusive distributions such as H_T the scalar p_T sum of all objects (arXiv:1201.1276)
- Extends this observation to higher energy regime - significant deviations seen above 350 GeV

- Mean jet multiplicity exceeds two at $H_T \sim 350$ GeV
- Agreement improved by replacing fixed-order BlackHat+Sherpa estimate for H_T with exclusive sum: $Z(+1 \text{ jet}) + Z(+ \geq 2 \text{ jets})$
W + jet Production (arXiv:1201.1276)

- Measurement of W boson production with associated jets from 36 pb$^{-1}$ of 2010 pp collisions at $\sqrt{s} = 7$ TeV
- Complementary to the Z+jets measurement
- Results are unfolded and extrapolated to a phase space defined by:

<table>
<thead>
<tr>
<th>Fiducial Phase Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T > 20$ GeV, $</td>
</tr>
<tr>
<td>$E_T^{\text{miss}} > 25$ GeV</td>
</tr>
<tr>
<td>$m_T(W) > 40$ GeV</td>
</tr>
<tr>
<td>$p_T^{\text{jet}} > 30$ GeV</td>
</tr>
<tr>
<td>$</td>
</tr>
<tr>
<td>$\Delta R^{lj} > 0.5$</td>
</tr>
</tbody>
</table>

- Measurement compared to NLO predictions from BlackHat+Sherpa and LO predictions from Alpgen and Sherpa
Results

- Leading jet p_T and H_T demonstrate similar effects as $Z+\text{jets}$
\(R_{\text{jets}} \) (arXiv:1108.4908)

- **Ratio measurement**
 \[
 R_{\text{jets}}(X) = \frac{W + \text{jets}(X)}{Z + \text{jets}(X)}
 \]

- **Similarity of** \(Z \) **and** \(W \) **production used to reduce systematics limitations of a** \(V + \text{jets} \) **measurement**

- **Performed using** 36pb\(^{-1} \) **of 2010** \(pp \) **collisions at** \(\sqrt{s} = 7 \) **TeV**

- **Function of jet** \(p_T \) **threshold in the exclusive 1-jet bin**

- **Comparison to LO (Pythia [6] & Alpgen) and NLO (MCFM [7]) predictions shows consistency with the measurement**
W + D Production (ATLAS-CONF-2013-045)

- $pp \rightarrow WcX$ measured at $\sqrt{s} = 7$ TeV from $4.6 fb^{-1}$ of 2011 pp collisions
- Analysis (arXiv:1108.4908) of inclusive W and Z data from ATLAS and HERA data bolstered the case for an SU(3) symmetric sea at $x \sim 0.01$
- Large production rates provide the possibility of a measurement to directly constrain the s-quark PDF
- Sensitive to s-quark distribution at values of $x \sim M_W/\sqrt{s} \sim 0.01$
- Results unfolded to a common fiducial region

<table>
<thead>
<tr>
<th>Fiducial Phase Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T^l > 20$ GeV, $</td>
</tr>
<tr>
<td>$p_T^\nu > 25$ GeV</td>
</tr>
<tr>
<td>$m_W > 40$ GeV</td>
</tr>
<tr>
<td>$p_T^D > 8$ GeV, $</td>
</tr>
</tbody>
</table>
Extraction of Cross-sections

- Charge correlation between the lepton from W and $D^{(*)}$ used to extract single-charm component
- Form opposite charge (OS) and same charge (SS) distributions
- OS-SS combination used for extraction
- Yield extracted by fitting the D^\pm mass or $D^* - D^0$ mass difference
Differential Results

- Results presented differential in lepton $|\eta|$ and p_T^D

- Compared to aMC@NLO using 6 different PDF sets
 - 'Standard PDFs' with suppressed strangeness
 - epWZ from Hera and ATLAS WZ data with strangeness equal to \bar{u} and \bar{d}
 - NNPDF2.3coll including only collider data which has even more enhanced strange than epWZ
Cross-section Results

- Shapes of the differential distributions agree well with NLO QCD predictions
- Normalisation strongly dependent on the PDF used
- \[R_c^\pm = \frac{\sigma(W^+D^{(*)-})}{\sigma(W^-D^{(*)+})} \] sensitive to \[\frac{s}{\bar{s}} \]

Results favour PDFs with enhanced strangeness
- Corroborates preference for an SU(3) symmetric sea
\(W + b \) (arXiv:1302.2929)

- Measurement of \(W \) boson production with associated \(b \)-quark jets from 4.6\(fb^{-1} \) of 2011 \(pp \) collisions at \(\sqrt{s} = 7 \) TeV
- Important test of perturbative QCD in the presence of heavy quarks
- \(W+b \)-jet events from top-quark decay not included in the primary signal definition
- Additional measurements performed including the contribution from single-top
Measurement Technique

- Measurement is defined in a restricted fiducial region at particle level

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton transverse momentum</td>
<td>$p_T^l > 25$ GeV</td>
</tr>
<tr>
<td>Lepton pseudorapidity</td>
<td>$</td>
</tr>
<tr>
<td>Neutrino transverse momentum</td>
<td>$p_T^{\nu} > 25$ GeV</td>
</tr>
<tr>
<td>W Transverse Mass</td>
<td>$m_T(W) > 60$ GeV</td>
</tr>
<tr>
<td>Jet transverse momentum</td>
<td>$p_T^j > 25$ GeV</td>
</tr>
<tr>
<td>Jet rapidity</td>
<td>$</td>
</tr>
<tr>
<td>Jet multiplicity</td>
<td>$n \leq 2$</td>
</tr>
<tr>
<td>b-jet multiplicity</td>
<td>$n_b = 1$ or $n_b = 2$</td>
</tr>
<tr>
<td>Jet-lepton separation</td>
<td>$\Delta R(l, \text{jet}) > 0.5$</td>
</tr>
</tbody>
</table>

- The measurement performed using events with exactly one b-tagged jet and unfolded to this region
- This and 3rd jet veto reduce top-quark background
Fiducial Cross-section Results

- Results compared to NLO predictions from MCFM and Powheg [8, 9] and LO Alpgen predictions scaled to NNLO

- Measured results above both LO and NLO predictions
 - In 1-jet and 1+2-jet bins predictions are within 1.5σ
Differential Cross-section Results

- Measure the differential cross-sections as a function of $p_T^{b\text{-jet}}$

- Data above predictions in both 1- and 2-jet bins
- Increased deviation at high p_T but consistent within theoretical and experimental errors
Effects of DPI

- Neither MCFM or Powheg predictions include the contribution from DPI
- Additive correction is derived from Alpgen
- Represents a 25% effect on the total cross-section and is concentrated in lower momentum bins in the 1-jet region
- Compare the additive DPI correction to multiplicative non-perturbative correction
- DPI contribution consistent with direct DPI measurements

<table>
<thead>
<tr>
<th></th>
<th>1 jet</th>
<th>2 jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{fid}</td>
<td>5.0 ± 0.5 (stat) ± 1.2 (syst)</td>
<td>2.2 ± 0.2 (stat) ± 0.5 (syst)</td>
</tr>
<tr>
<td>Non-perturbative DPI [pb]</td>
<td>0.92 ± 0.02 (had.) ± 0.03 (UE)</td>
<td>0.96 ± 0.05 (had.) ± 0.03 (UE)</td>
</tr>
<tr>
<td></td>
<td>1.02 ± 0.05 (stat) $\pm 0.4_{0.29}$ (syst)</td>
<td>0.32 ± 0.02 (stat) $\pm 0.12_{0.09}$ (syst)</td>
</tr>
</tbody>
</table>
Results including Single-Top

- Combining $W + b$-jet and single-top templates provides a complementary perspective
- Higher statistical precision
- Results are compared to $W + b$-jets as taken from Alpgen combined with single-top from AcerMC scaled to NLO
- Observe increase in data over prediction as p_T increases
DOUBLE PARTON INTERACTIONS (DPI)

- DPI is characterised by the effective area parameter, $\sigma_{\text{eff}}(s)$, which is assumed to be independent of phase space and process
- Previously a number of measurements have been performed in pp and $p\bar{p}$ collisions at $\sqrt{s} = 63$ GeV, 630 GeV, 1.8 TeV and 1.96 TeV
- Measured values range from 5mb at low energies up to 15mb at Tevatron energies
- Interest in DPI at the LHC due to
 - Higher centre-of-mass enhances parton densities so expect larger impact of DPI on many signatures
 - Higher energy and luminosity means multiple interactions occur at higher transverse momentum
$W + 2$ JETS (arXiv:1301.6872)

- Measurement of $\sigma_{\text{eff}}(s)$ in 36pb$^{-1}$ of 2010 pp collisions at $\sqrt{s} = 7$ TeV using W+2-jet events

- Extract the fraction of W+2 jet events from DPI, $f_{\text{DP}}^{(D)}$

$$f_{\text{DP}}^{(D)} = \frac{N_{W2j+2j_{\text{DPI}}}}{N_{W2j+2j}} = \frac{N_{W2j+2j_{\text{DPI}}}}{N_{W2j} + N_{W2j+2j_{\text{DPI}}}}$$

- Used to extract σ_{eff} via

$$\sigma_{\text{eff}} = \frac{\sigma_{W0j} \cdot \sigma_{2j}}{\sigma_{W2j+2j_{\text{DPI}}}} = \frac{N_{W0j} \cdot N_{2j}}{f_{\text{DP}}^{(D)} \cdot N_{W+2j}} \cdot \frac{1}{\epsilon_{2j}} \cdot \frac{1}{L_{2j}}$$

- W boson and 2j system assumed to factorise
Sample Definitions

- 3 samples are constructed

$W+0$-jet
events passing W selection but with no additional jets found

$W+2$-jet
events passing W selection and with exactly two additional jets found

dijet
events with exactly two jets using minimum bias trigger taken from a sample with negligible pile-up corresponding to 184 μb$^{-1}$ of data
RESULTS

- Fit the variable Δ_{jets}^n to distinguish DPI and non-DPI events in $W + 2$-jet events
- Template A (DPI-off) taken from MC with hard MPI events removed
- Template B (DPI-only) taken from dijet sample
- f_{DP} also evaluated at parton level in MC and after hadron level unfolding
 - Shown to be within 10% of $f_{\text{DP}}^{(D)}$
 - $f_{\text{DP}}^{(D)} = 0.076 \pm 0.013\,(\text{stat}) \pm 0.018\,(\text{sys})$
 - $\sigma_{\text{eff}} = 15 \pm 3\,(\text{stat}) \pm 5 \pm 3\,(\text{syst})\,\text{mb} $
Comparing DPI measurements

- ATLAS value is consistent with previous DPI measurements

![Graph showing DPI measurements for different experiments and ATLAS, with ATLAS (W + 2 jets) highlighted.](image)
Conclusions

- ATLAS has carried out pQCD constraining measurements of
 - $V + \text{light jet}$ production
 - $W + c$ production
 - $W + b$ production

- In many regions of the phase space experimental uncertainties are below theoretical uncertainties

- $W + c$ measurements give important information on s-quark PDFs

- ATLAS has also carried out measurements of DPI using $W + 2$-jet events and provided a measurement of σ_{eff} consistent with previous measurements

- Many of these measurements will benefit from increased datasets and/or energy which will allow us to
 - Reduce errors
 - Extend measurements to more extreme phase spaces
 - Further constrain theoretical calculations and PDFs
REFERENCES

Z + jet Event Selection

Electron Selection
- $p_T^e > 20$ GeV
- $|\eta| < 2.47$
 (excluding $1.37 < |\eta| < 1.52$)

Muon Selection
- $p_T^\mu > 20$ GeV
- $|\eta| < 2.4$

Z Selection
- exactly 2 opposite sign leptons
- $66 \leq m_\| \leq 116$ GeV
- $\Delta R_\| > 0.2$

Jet Selection
- anti-k_t jets with $R = 0.4$
- $p_T > 30$ GeV
- $|y| < 4.4$
- jets within $\Delta R = 0.5$ of leptons are removed\(^a\)
- jets with $|JVF| < 0.75$ are rejected\(^b\)

\(^a\) $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

\(^b\) JVF = p_T weighted fraction of tracks in the jet coming from interaction vertex
$W + D$ Event Selection

Electron Selection
- $p_T^e > 25$ GeV
- $|\eta| < 2.47$
 - (excluding $1.37 < |\eta| < 1.52$)

Muon Selection
- $p_T^\mu > 20$ GeV
- $|\eta| < 2.4$

W Selection
- exactly 1 lepton
- $E_{T}^{\text{miss}} > 25$ GeV
- $m_T > 40$ GeV

D Selection
- Tracking information used to reconstruct D using the decays
 - $D^+ \rightarrow K^- \pi^+ \pi^+$
 - $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$
 - $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^0 \pi^+$
 - $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^- \pi^+ \pi^+$
 - and conjugate processes

Additional event vetos
- To improve background rejection events are rejected if
 - An additional lepton is found
 - Three or more $p_T > 25$ GeV, $|\eta| < 2.5$ jets, Anti-k_t, $R = 0.4$ jets are found
W + 2-jets Event Selection

Electron Selection
- $p_T^e > 20$ GeV
- $|\eta| < 2.47$
 (excluding $1.37 < |\eta| < 1.52$)

Muon Selection
- $p_T^\mu > 20$ GeV
- $|\eta| < 2.4$

W Selection
- exactly 1 lepton
- $E_T^{\text{miss}} > 25$ GeV
- $m_T > 40$ GeV

Jet Selection
- anti-k_t jets with $R = 0.4$
- $p_T > 20$ GeV
- $|y| < 2.8$
- jets within $\Delta R = 0.5$ of leptons are removeda
- jets with $|JVF| < 0.75$ are rejectedb

$^a \Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

b JVF = p_T weighted fraction of tracks in the jet coming from interaction vertex
Strategy is to fit the variable $\Delta_{n_{\text{jets}}}^n$ to distinguish DPI and non-DPI events.

Fit is performed on $W+2$-jet events after background subtraction.

MC used to estimate $Z \rightarrow ll$, diboson, $W \rightarrow \tau \nu$, $t\bar{t}$ and single t production.

Multi-jet background taken from data-driven method.
\(W+2\text{-jets} \) **Extracting** \(f_{\text{DP}}^{(D)} \) (II)

- Two templates derived for fitting
 - Template A (DPI-off) taken from MC with hard MPI events removed
 - Template B (DPI-only) taken from dijet sample
- fit yields result \(f_{\text{DP}}^{(D)} = 0.076 \pm 0.013\text{(stat)} \pm 0.018\text{(sys)} \)
- \(f_{\text{DP}} \) evaluated at parton level in MC and after hadron level unfolding shown to be within 10\% of \(f_{\text{DP}}^{(D)} \)

<table>
<thead>
<tr>
<th>Systematic source</th>
<th>Uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>10</td>
</tr>
<tr>
<td>Pile-up</td>
<td>13</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>12</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>8</td>
</tr>
<tr>
<td>Background modelling</td>
<td></td>
</tr>
<tr>
<td>Lepton response</td>
<td>11</td>
</tr>
<tr>
<td>Total systematic</td>
<td>24</td>
</tr>
<tr>
<td>Total statistical</td>
<td>17</td>
</tr>
</tbody>
</table>
$W+2$-jets Extracting σ_{eff}

- We derive σ_{eff} from $f_{\text{DP}}^{(D)}$
- Take the other necessary values from
 - N_{W0j}/N_{W+2j} from event yields in the W samples
 - $N_{2j}, \mathcal{L}_{2j} = 184 \mu b^{-1}$ and $\epsilon_{2j} = 1$ from dijet selection
 - A further correction to N_{2j} for the lepton-jet overlap removal not applied in the dijet selection
- Gives a measured value of
 $$\sigma_{\text{eff}} = 15 \pm 3(\text{stat}) \pm_{-3}^{+5}(\text{syst}) \text{ mb}$$

Reminder

$$\sigma_{\text{eff}} = \frac{N_{W0j} N_{2j}}{f_{\text{DP}}^{(D)} \cdot N_{W+2j}} \cdot \frac{1}{\epsilon_{2j}} \cdot \frac{1}{\mathcal{L}_{2j}}$$

<table>
<thead>
<tr>
<th>Systematic source</th>
<th>Uncertainty [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_{\text{DP}}^{(D)}$</td>
<td>24</td>
</tr>
<tr>
<td>Background modelling</td>
<td>} 5</td>
</tr>
<tr>
<td>Lepton response</td>
<td></td>
</tr>
<tr>
<td>Luminosity</td>
<td>3</td>
</tr>
<tr>
<td>Total systematic</td>
<td>$+33$</td>
</tr>
<tr>
<td>Total statistical</td>
<td>-20</td>
</tr>
</tbody>
</table>
W + 2-jets at hadron level

ATLAS

- Wlv unfolded data, \(\sqrt{s} = 7 \) TeV
- Fit distribution
- A+H+J particle-level template A
- PYTHIA particle-level template B

\[\int Ldt = 36 \text{ pb}^{-1} \]
W + b Event Selection

Electron Selection
- $p_T^e > 25$ GeV
- $|\eta| < 2.47$
 (excluding $1.37 < |\eta| < 1.52$)

Muon Selection
- $p_T^\mu > 25$ GeV
- $|\eta| < 2.4$

W Selection
- exactly 1 lepton
- $E_T^{\text{miss}} > 25$ GeV
- $m_T > 60$ GeV

Jet Selection
- 1 or 2 anti-k_t jets with $R = 0.4$
- exactly one b-tagged jet
- $p_T > 25$ GeV
- $|y| < 2.1$
- jets within $\Delta R = 0.5$ of leptons are removeda
- jets with $|JVF| < 0.75$ are rejectedb

$^a\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$

$^bJVF = p_T$ weighted fraction of tracks in the jet coming from interaction vertex
W + b Background Estimation

- Single-top, $t\bar{t}$ and multijet backgrounds are estimated from data.
- MC is used to extrapolate to signal regions for single-top and $t\bar{t}$ backgrounds.
- MC used to estimate Z and diboson contributions.
- $W+b$-jets, $W+c$-jets and $W+$light-jets contributions are statistically separated using the different responses to the CombNN b tagging algorithm and templates derived from MC.