Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment

Alexander Khanov
Oklahoma State University
for the ATLAS Collaboration
ICNFP2013, Crete (Greece)
9/5/13
Introduction

• We observed a Standard Model-like Higgs boson at $m_H=125$ GeV
 – is it a Standard Model Higgs boson indeed?
• There is a lot of room for non-SM interpretation!
 – Higgs with non-SM couplings (e.g. fermiophobic)
 – Part of a bigger family (MSSM, 2HDM, triplets)
 – NMSSM
MSSM Higgs $\phi \rightarrow \mu \mu / \tau \tau$

- Production: gluon fusion, b-associated production
 - separated into b-tagged and b-vetoed
- $\tau \tau$ channel: three groups ($e\mu$, $l+\text{had}$, $\text{had}+\text{had}$)

<table>
<thead>
<tr>
<th>$e\mu$</th>
<th>$l+\text{had}$</th>
<th>$\text{had}+\text{had}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{T_e}>25$ GeV, $p_{T}\mu>20$ GeV, $p_{Tl}+\text{MET}<120$ GeV, $\Delta \varphi(e\mu)<2$</td>
<td>$p_{T}/\mu>25/20$ GeV, $p_{T}\tau>20$ GeV, $\text{MET}>20$ GeV, $M_{T}<30$ GeV</td>
<td>$p_{T}\tau>30/45$ GeV, $\text{MET}>25$ GeV</td>
</tr>
</tbody>
</table>

- $\mu \mu$ channel:
 - $p_{T}>20$ GeV,
 - $|\eta|<2.5$,
 - $\text{MET}<40$ GeV

9/5/2013
MSSM Higgs $\phi \rightarrow \mu\mu/\tau\tau$: results

- Obtain combined limits for both channels
 - $\tan\beta$ vs m_A in m_h^{max}, $\mu>0$ MSSM scenario
 - Limit on production for a generic single scalar boson decaying into $\mu\mu/\tau\tau$
2HDM generic Higgs

- Search for heavier neutral CP even partner of 125 GeV Higgs
- Production: gluon fusion, VBF Decay: $H \rightarrow WW^* \rightarrow e\nu \mu\nu$
- Selection: $p_T > 25/15$ GeV, MET > 25 GeV, 0 or 2 jets
- Use neural network to separate signal from background
 - 0 jets has better S/B but worse NN separation

![Graphs showing event fraction and NN output distributions for different scenarios.](image-url)
2HDM generic Higgs: results

- No evidence found in the 135—300 GeV mass region
- Limits set for two models in terms of α, β, m_H
 - Type-I: all quarks couple to only one Higgs doublet
 - Type-II: $+2/3$ RH quarks couple to one HD, $1/3$ RH quarks couple to the other HD

ATLAS-CONF-2013-027
Invisible Higgs

- Production: associated ZH, $Z \rightarrow ll$ ($l=e,\mu$)
- H decay: stable/long lived weakly interacting particles
- Selection: $pT_l > 15$ GeV, $|m_{ll} - m_Z| < 15$ GeV, MET > 90 GeV, topo
- Limits are set in two scenarios:
 - on invisible BR of a SM Higgs at $m_H = 125$ GeV: at 95% C.L. observed/expected limits are 65%/84%
 - on production×BR of a Higgs-like particle vs m_H

ATLAS-CONF-2013-011
Assume that diphotons from a decays are highly collimated and result in a single EM cluster.

Selection: similar to $h \rightarrow \gamma \gamma$ but dedicated EM cluster reconstruction to detect photons from Higgs decays.

Limits on prod×BR for $m_a=100, 200, 400$ MeV.
Charged Higgs

- Charged Higgs appears in many BSM scenarios (e.g. 2HDM)
- SM doesn’t have H+, so its observation would indicate BSM
- H+ production and decay depends on mH+ compared to mt

<table>
<thead>
<tr>
<th></th>
<th>Light H+</th>
<th>Heavy H+</th>
</tr>
</thead>
<tbody>
<tr>
<td>production</td>
<td>tt→bW bH+</td>
<td>gb→tH+, gg→tbH+</td>
</tr>
<tr>
<td>dominant decay modes</td>
<td>H+→τν (low tanβ), H+→cs (high tanβ)</td>
<td>H+→tb, τν, χ+χ0</td>
</tr>
</tbody>
</table>

- Presenting results for both light and heavy charged Higgs

9/5/2013
Light charged Higgs $H^+ \rightarrow \tau \nu$

- $tt \rightarrow bbWH^+$, $W \rightarrow qq$, $H^+ \rightarrow \tau$(had)ν
- Selection: ≥ 4 jets, ≥ 1 b-jet, τ(had vis) pT>40 GeV, second e/µ/τ veto, MET>65 GeV, cut on MET/$\sqrt{\sum p_T}$(vtx trk)
- Discriminating variable: τ(had vis) + MET transverse mass
- Limits are set on $Br(t \rightarrow H+b)$ and (for MSSM $m_{h_{max}}$) on tan β
Heavy charged Higgs $H^+ \rightarrow \tau \nu$

- $t(b)H^+ \rightarrow b(b)WH^+, W \rightarrow qq, H^+ \rightarrow \tau(\text{had})\nu$
- Selection: ≥ 3 jets, ≥ 1 b-jet, $\tau(\text{had vis})$ $p_T > 40$ GeV, second e/\(\mu/\tau\) veto, MET > 80 GeV, cut on MET/$\sqrt{\Sigma p_T(\text{vtx trk})}$
- Discriminating variable: $\tau(\text{had vis}) + \text{MET transverse mass}$
- Limits are set on $\text{Br}(t \rightarrow H^+ b)$ and (for MSSM m_h^{max}) on $\tan \beta$

ATLAS-CONF-2013-090

new!

9/5/2013
Light charged Higgs $H^+ \rightarrow cs$

- $tt \rightarrow bbWH^+, \ W \rightarrow l\nu$
- Selection: $e/\mu \ p_T > 20 \ GeV, \geq 4 \ jets \ (p_T > 20 \ GeV), \geq 1 \ b$-jets, $MT > 25 \ GeV, \ MT + MET > 60 \ GeV$
- Look for a second peak in dijet mass, set limits on $Br(t \rightarrow bH^+)$

Doubly charged Higgs

- Appears in LR symmetric models, Seesaw Type II, Little Higgs
- Possible way to probe origin of neutrino masses at the LHC!
- Production: mostly pairs (DY-like) $H^{++} H^{--}$
- Method: generic same-sign dilepton spectrum search
 - $p_{T\text{e}}>25$ GeV, $p_{T\mu}>20$ GeV, Z-window

Search for FCNC in $t \rightarrow cH$, $H \rightarrow \gamma \gamma$

- In SM, FCNC are forbidden at tree level, suppressed by GIM mechanism at higher orders
 - observation \rightarrow direct indication of new physics
- Selection: two photons ($p_T > 40/30$ GeV)
 - $t\bar{t} \rightarrow bW cH \rightarrow bjj \gamma \gamma$: ≥ 4 jets, ≥ 1 b-jet, top mass cuts
 - $t\bar{t} \rightarrow bW cH \rightarrow bl\nu \gamma \gamma$: 1 e/\mu, $m_T > 30$ GeV, ≥ 2 jets, ≥ 1 b-jet, top mass cuts
- Observed/expected limits at 95% CL:
 - $\text{Br}(t \rightarrow cH)$: $0.83/0.53\%$, tcH coupling $0.17/0.14$

ATLAS-CONF-2013-081
Conclusions

• ATLAS has a wide physics program on BSM Higgs
 – many analyses on full Run I data set are still to be completed
• In spite of SM-like Higgs observed, many BSM channels remain relevant
 – some models get restricted which improves their prediction power
• Looking forward to new exciting discoveries!
Backup
ATLAS: A Toroidal LHC ApparatuS

- muon detectors
- tile calorimeter
- liquid argon calorimeter
- toroid magnets
- solenoid magnet
- tracker (SCT, pixel, TRT)

Diameter: 25 m
Length: 46 m
Weight: 7000 tons
Total cable length: 3000 km