Accelerated Testing
Statistical Models, Test Plans, and Data Analyses

WAYNE NELSON
Consultant, Schenectady, NY

WILEY-INTERSCIENCE
A JOHN WILEY & SONS, INC., PUBLICATION
Contents

Preface, xi

1. Introduction and Background, 1
 1. Survey of Methodology and Applications, 3
 2. Types of Data, 12
 3. Types of Acceleration and Stress Loading, 15
 4. Engineering Considerations, 22
 5. Common Accelerated Tests, 37
 6. Statistical Considerations, 43
 Problems, 49

2. Models for Life Tests with Constant Stress, 51
 1. Introduction, 51
 2. Basic Concepts and the Exponential Distribution, 53
 3. Normal Distribution, 58
 4. Lognormal Distribution, 60
 5. Weibull Distribution, 63
 6. Extreme Value Distribution, 65
 7. Other Distributions, 68
 8. Life-Stress Relationships, 71
 9. Arrhenius Life-Temperature Relationship, 75
 10. Inverse Power Relationship, 85
 11. Endurance (Fatigue) Limit Relationships and Distributions, 92
 12. Other Single Stress Relationships, 95
 13. Multivariable Relationships, 98
 14. Spread in Log Life Depends on Stress, 105
 Problems, 107

3. Graphical Data Analysis, 113
 1. Introduction, 113
 2. Complete Data and Arrhenius-Lognormal Model, 114
 3. Complete Data and Power-Weibull Model, 128
 4. Singly Censored Data, 134
5. Multiply Censored Data, 139
6. Interval (Read-Out) Data, 145
Problems, 154

4. Complete Data and Least Squares Analyses, 167
 1. Introduction, 167
 2. Least-Squares Methods for Lognormal Life, 170
 3. Checks on the Linear-Lognormal Model and Data, 182
 4. Least-Squares Methods for Weibull and Exponential Life, 189
 5. Checks on the Linear-Weibull Model and Data, 203
 6. Multivariable Relationships, 210
 Problems, 229

5. Censored Data and Maximum Likelihood Methods, 233
 1. Introduction to Maximum Likelihood, 234
 2. Fit the Simple Model to Right Censored Data, 242
 3. Assess the Simple Model and Right Censored Data, 255
 4. Other Models and Types of Data, 265
 5. Maximum Likelihood Calculations, 284
 Problems, 302

6. Test Plans, 317
 1. Plans for the Simple Model and Complete Data, 317
 2. Plans for the Simple Model and Singly Censored Data, 328
 3. Evaluation of a Test Plan by Simulation, 349
 4. Survey of Test Plans, 361
 5. ML Theory for Test Plans, 364
 Problems, 371

7. Competing Failure Modes and Size Effect, 377
 1. Series-System Model, 378
 2. Series Systems of Identical Parts, 383
 3. Size Effect, 385
 4. Nonuniform Stress, 387
 5. Graphical Analysis, 392
 6. ML Analysis for Competing Failure Modes, 407
 7. ML Theory for Competing Modes, 413
 Problems, 417

8. Least-Squares Comparisons for Complete Data, 425
 1. Hypothesis Tests and Confidence Intervals, 426
 2. Graphical Comparisons, 429
 3. Compare Log Standard Deviations, 434
 4. Compare (Log) Means, 437
 5. Compare Simple Relationships, 441
CONTENTS

6. Compare Multivariable Relationships, 445
Problems, 448

9. Maximum Likelihood Comparisons for Censored and Other Data, 451
1. Introduction, 451
2. One-Sample Comparisons, 452
3. Two-Sample Comparisons, 458
4. K-Sample Comparisons, 465
5. Theory for LR and Related Tests, 470
Problems, 488

10. Models and Data Analyses for Step and Varying Stress, 493
1. Survey of Theory for Tests with Varying Stress, 494
2. Step-Stress Model and Data Analyses, 495
3. Varying-Stress Model and Data Analyses, 506
Problems, 513

11. Accelerated Degradation, 521
1. Survey of Applications, 521
2. Degradation Models, 523
3. Arrhenius Analysis, 534
Problems, 544

Appendix A. Statistical Tables, 549
A2. Standard Normal Percentiles z_p, 552
A3. Standard Normal Two-Sided Factors K_p, 552
A4. t-Distribution Percentiles t(P;ν), 553
A5. Chi-Square Percentiles χ²(P;ν), 554
A6a. F-Distribution 95% Points F(0.95;ν₁,ν₂), 556
A6b. F-Distribution 99% Points F(0.99;ν₁,ν₂), 558
A7. Probability Plotting Positions Fᵢ = 100(ᵢ − 0.5)/n, 560

References, 561

Index, 579