Contents

Preface vii

Acknowledgments ix

Illustration Credits xi

Chapter 1. Introduction 1
 1.1. A Brief History of Space-Filling Curves 1
 1.2. Notation 2
 1.3. Definitions and Netto's Theorem 4
 1.4. Problems 6

Chapter 2. Hilbert's Space-Filling Curve 9
 2.1. Generation of Hilbert's Space-Filling Curve 9
 2.2. Nowhere Differentiability of the Hilbert Curve 12
 2.3. A Complex Representation of the Hilbert Curve 13
 2.4. Arithmetization of the Hilbert Curve 18
 2.5. An Analytic Proof of the Nowhere Differentiability of the Hilbert Curve 19
 2.6. Approximating Polygons for the Hilbert Curve 21
 2.7. Moore's Version of the Hilbert Curve 24
 2.8. A Three-Dimensional Hilbert Curve 26
 2.9. Problems 29

Chapter 3. Peano's Space-Filling Curve 31
 3.1. Definition of Peano's Space-Filling Curve 31
 3.2. Nowhere Differentiability of the Peano Curve 34
 3.3. Geometric Generation of the Peano Curve 34
 3.4. Proof that the Peano Curve and the Geometric Peano Curve are the Same 36
 3.5. Cesàro's Representation of the Peano Curve 40
 3.6. Approximating Polygons for the Peano Curve 42
 3.7. Wunderlich's Versions of the Peano Curve 43
3.8. A Three-Dimensional Peano Curve
3.9. Problems

Chapter 4. Sierpiński's Space-Filling Curve
4.1. Sierpiński's Original Definition
4.2. Geometric Generation and Knopp's Representation of the Sierpiński Curve
4.3. Representation of the Sierpiński-Knopp Curve in Terms of Quaternaries
4.4. Nowhere Differentiability of the Sierpiński-Knopp Curve
4.5. Approximating Polygons for the Sierpiński-Knopp Curve
4.6. Pólya's Generalization of the Sierpiński-Knopp Curve
4.7. Problems

Chapter 5. Lebesgue's Space-Filling Curve
5.1. The Cantor Set
5.2. Properties of the Cantor Set
5.3. The Cantor Function and the Devil's Staircase
5.4. Lebesgue's Definition of a Space-Filling Curve
5.5. Approximating Polygons for the Lebesgue Curve
5.6. Problems

Chapter 6. Continuous Images of a Line Segment
6.1. Preliminary Remarks and a Global Characterization of Continuity
6.2. Compact Sets
6.3. Connected Sets
6.4. Proof of Netto's Theorem
6.5. Locally Connected Sets
6.6. A Theorem by Hausdorff
6.7. Pathwise Connectedness
6.8. The Hahn-Mazurkiewicz Theorem
6.9. Generation of Space-Filling Curves by Stochastically Independent Functions
6.10. Representation of a Space-Filling Curve by an Analytic Function
6.11. Problems

Chapter 7. Schoenberg's Space-Filling Curve
7.1. Definition and Basic Properties
7.2. The Nowhere Differentiability of the Schoenberg Curve