Advanced Plasma Technology

Edited by
Riccardo d’Agostino, Pietro Favia, Yoshinobu Kawai,
Hideo Ikegami, Noriyoshi Sato, and
Farzaneh Arefi-Khonsari
Contents

Preface XV
List of Contributors XVII

1 Basic Approaches to Plasma Production and Control 1
 N. Sato
 1.1 Plasma Production 2
 1.1.1 Under Low Gas Pressure (<0.1 torr) 2
 1.1.2 Under Medium Gas Pressure (0.1–10 torr) 4
 1.1.3 Under High (Atmospheric) Gas Pressure (>10 torr) 6
 1.2 Energy Control 7
 1.2.1 Electron-Temperature Control 7
 1.2.2 Ion-Energy Control 10
 1.3 Dust Collection and Removal 11
 References 15

2 Plasma Sources and Reactor Configurations 17
 P. Colpo, T. Meziani, and F. Rossi
 2.1 Introduction 17
 2.2 Characteristics of ICP 18
 2.2.1 Principle 18
 2.2.2 Transformer Model 19
 2.2.3 Technological Aspects 20
 2.2.3.1 Matching 20
 2.2.3.2 Capacitive Coupling 22
 2.2.3.3 Standing Wave Effects 22
 2.3 Sources and Reactor Configuration 23
 2.3.1 Substrate Shape 23
 2.3.1.1 Flat Substrates 24
 2.3.1.2 Complex Three-Dimensional Shapes 24
 2.3.1.3 Large Area Treatment 26
 2.4 Conclusions 31
 References 32
5.2.2.2 Numerical Simulation of the Trajectories and Thermal Histories of Powders Injected in Industrial ICPTs 84

5.3 DC Transferred Arc Plasma Torches 85

5.3.1 Modeling Approach 85

5.3.1.1 Modeling Assumptions 85

5.3.1.2 Governing Equations 86

5.3.1.3 Computational Domain and Boundary Conditions 87

5.3.2 Selected Simulation Results 89

5.3.2.1 Magnetically Deflected Transferred Arc 89

5.3.2.2 The Twin Torch 89

5.3.2.3 The Cutting Torch 94

References 95

6 Radiofrequency Plasma Sources for Semiconductor Processing 99

F. F. Chen

6.1 Introduction 99

6.2 Capacitively Coupled Plasmas 99

6.2.1 Dual-Frequency CCPs 100

6.3 Inductively Coupled Plasmas 103

6.3.1 General Description 103

6.3.2 Anomalous Skin Depth 106

6.3.3 Magnetized ICPs 107

6.4 Helicon Wave Sources 109

6.4.1 General Description 109

6.4.2 Unusual Features 110

6.4.3 Extended Helicon Sources 114

References 114

7 Advanced Plasma Diagnostics for Thin-Film Deposition 117

R. Engeln, M.C.M. van de Sanden, W.M.M. Kessels, M. Creatore, and D.C. Schram

7.1 Introduction 117

7.2 Diagnostics Available to the (Plasma) Physicist 118

7.3 Optical Diagnostics 118

7.3.1 Thomson–Rayleigh and Raman Scattering 118

7.3.2 Laser-Induced Fluorescence 121

7.3.3 Absorption Techniques 122

7.3.4 Surface Diagnostics 126

7.4 Applications 127

7.4.1 Thomson–Rayleigh Scattering and Raman Scattering 127

7.4.2 Laser-Induced Fluorescence 128

7.4.3 Absorption Spectroscopy 130

7.4.4 Surface Diagnostics 133

References 134
8 Plasma Processing of Polymers by a Low-Frequency Discharge with Asymmetrical Configuration of Electrodes 137
F. Arefi-Khonsari and M. Tatoulian

8.1 Introduction 137
8.2 Plasma Treatment of Polymers 139
8.2.1 Surface Activation 139
8.2.2 Functionalization (Grafting) Reactions 139
8.2.3 Crosslinking Reactions 140
8.2.4 Surface Etching (Ablation) Reactions 142
8.2.4.1 Decarboxylation 142
8.2.4.2 β-Scission 142
8.2.4.3 Plasma Cleaning/Etching Effect 142
8.3 Surface Treatment of Polymers in a Low-Frequency, Low-Pressure Reactor With Asymmetrical Configuration of Electrodes (ACE) 145
8.3.1 Surface Functionalization 147
8.3.2 Ablation Effect of an Ammonia Plasma During Grafting of Nitrogen Groups 148
8.3.3 Acid–Base Properties 151
8.3.3.1 Introduction 151
8.3.3.2 Contact Angle Titration Method 152
8.3.4 Aging of Plasma-Treated Surfaces 155
8.3.4.1 Aging of Ammonia Plasma-Treated PP 156
8.3.4.2 Stability of PP Treated in Plasmas of Mixtures of He + NH₃ for Improved Adhesion to Aluminum 157
8.4 Plasma Polymerization 158
8.4.1 Influence of the Chemical Composition of the Substrate on the Plasma Polymerization of a Mixture of CF₄ + H₂ 160
8.4.2 Plasma Polymerization of Acrylic Acid 165
8.5 Conclusions 169
References 170

9 Fundamentals on Plasma Deposition of Fluorocarbon Films 175
A. Milella, F. Palumbo, and R. d'Agostino

9.1 Deposition of Fluorocarbon Films by Continuous Discharges 175
9.1.1 Active Species in Fluorocarbon Plasmas 176
9.1.2 Effect of Ion Bombardment 178
9.1.3 The Activated Growth Model 179
9.2 Afterglow Deposition of Fluorocarbon Films 181
9.3 Deposition of Fluorocarbon Films by Modulated Glow Discharges 183
9.4 Deposition of Nanostructured Thin Films from Tetrafluoroethylene Glow Discharges 185
References 193
10 Plasma CVD Processes for Thin Film Silicon Solar Cells 197
 A. Matsuda
10.1 Introduction 197
10.2 Dissociation Reaction Processes in SiH₄ and SiH₄/H₂ Plasmas 198
10.3 Film-Growth Processes on the Surface 199
 10.3.1 Growth of a-Si:H 199
 10.3.2 Growth of μc-Si:H 200
 10.3.2.1 Nucleus Formation Process 201
 10.3.2.2 Epitaxial-Like Crystal Growth 203
10.4 Defect Density Determination Process in a-Si:H and μc-Si:H 203
 10.4.1 Growth of a-Si:H and μc-Si:H with SiH₃ (H) Radicals 203
 10.4.2 Contribution of Short-Lifetime Species 204
10.5 Solar Cell Applications 206
10.6 Recent Progress in Material Issues for Thin-Film Silicon Solar Cells 207
 10.6.1 Control of Photoinduced Degradation in a-Si:H 207
 10.6.2 High-Rate Growth of Device-Grade μc-Si:H 208
10.7 Summary 210
References 210

11 VHF Plasma Production for Solar Cells 211
 Y. Kawai, Y. Takeuchi, H. Mashima, Y. Yamauchi, and H. Takatsuka
11.1 Introduction 211
11.2 Characteristics of VHF H₂ Plasma 212
11.3 Characteristics of VHF SiH₄ Plasma 214
11.4 Characteristics of Large-Area VHF H₂ Plasma 219
11.5 Short-Gap VHF Discharge H₂ Plasma 222
References 226

12 Growth Control of Clusters in Reactive Plasmas and Application to High-Stability a-Si:H Film Deposition 227
 Y. Watanabe, M. Shiratani, and K. Koga
12.1 Introduction 227
12.2 Review of Cluster Growth Observation in SiH₄ HFCCP 228
 12.2.1 Precursor for Cluster Growth Initiation 228
 12.2.2 Cluster Nucleation Phase 230
 12.2.3 Effects of Gas Flow on Cluster Growth 231
 12.2.4 Effects of Gas Temperature Gradient on Cluster Growth 232
 12.2.5 Effects of H₂ Dilution on Cluster Growth 233
 12.2.6 Effects of Discharge Modulation on Cluster Growth 234
 12.3 Cluster Growth Kinetics in SiH₄ HFCCP 235
 12.4 Growth Control of Clusters 237
 12.4.1 Control of Production Rate of Precursor Radicals 238
 12.4.2 Control of Growth Reactions and Transport Loss of Clusters 238
Contents

12.5 Application of Cluster Growth Control to High-Stability a-Si:H Film Deposition 238
12.6 Conclusions 241
References 241

13 Micro- and Nanostructuring in Plasma Processes for Biomaterials: Micro- and Nano-features as Powerful Tools to Address Selective Biological Responses 243
E. Sardella, R. Cristina, R. d'Agostino, and P. Favia

13.1 Introduction: Micro and Nano, a Good Point of View in Biomedicine 243

13.2 Micro- and Nanofeatures Modulate Biointeractions In Vivo and In Vitro 246

13.3 Micro- and Nano-fabrication Technologies 249

13.3.1 Photolithography: The Role of Photolithographic Masks 249

13.3.1.1 Role of Plasma Processes in Photolithography 253

13.3.1.2 Limits of Photolithography 255

13.3.2 Soft Lithography 255

13.3.2.1 Description of the Technique 255

13.3.2.2 Role of Plasma Processes in Soft Lithography 255

13.3.2.3 Limits of Soft Lithography 256

13.3.3 Plasma-Assisted Micropatterning: The Role of Physical Masks 256

13.3.3.1 Micropatterning 257

13.3.3.2 Nanopatterning 260

13.3.4 Novel Approaches in Plasma-Patterning Procedures 262

13.3.4.1 Plasma Polymerization and Patterning of “Smart” Materials 262

13.3.4.2 Deposition of Micro- and Nanostructured Coatings 263

13.4 Conclusions 264
References 264

14 Chemical Immobilization of Biomolecules on Plasma-Modified Substrates for Biomedical Applications 269
L.C. Lopez, R. Cristina, R. d'Agostino, and P. Favia

14.1 Introduction 270

14.2 Immobilization of Biomolecules 274

14.2.1 Immobilization of PEO Chains (Unfouling Surfaces) 274

14.2.2 Immobilization of Polysaccharides 275

14.2.3 Immobilization of Proteins and Peptides 276

14.2.3.1 Immobilization of Collagen 277

14.2.3.2 Immobilization of Peptides 279

14.2.4 Immobilization of Enzymes 280

14.2.5 Immobilization of Carbohydrates 281

14.3 Conclusions 282
14.4 List of Abbreviations 283
References 284

15 In Vitro Methods to Assess the Biocompatibility of Plasma-Modified Surfaces 287
M. Nardulli, R. Gristina, R. d'Agostino, and P. Favia

15.1 Introduction 287
15.2 Surface Modification Methods: Plasma Processes and Biomolecule Immobilization 289
15.3 In Vitro Cell Culture Tests of Artificial Surfaces 290
15.4 Cytotoxicity Analysis 292
15.4.1 Viability Assays 292
15.4.2 Metabolic Assays 293
15.4.3 Irritancy Assays 294
15.5 Analysis of Cell Adhesion 294
15.6 Analysis of Cell Functions 298
15.7 Conclusions 299
References 299

16 Cold Gas Plasma in Biology and Medicine 301
E. Stoffels, I.E. Kieft, R.E.J. Sladek, M.A.M. Van Zandvoort, and D.W. Slaaf

16.1 Introduction 301
16.2 Experiments 303
16.3 Plasma Characteristics 307
16.4 Bacterial Inactivation 311
16.5 Cell and Tissue Treatment 314
16.6 Concluding Remarks and Perspectives 317
References 317

17 Mechanisms of Sterilization and Decontamination of Surfaces by Low-Pressure Plasma 319
F. Rossi, O. Kylián, and M. Hasiwa

17.1 Introduction 319
17.1.1 Overview of Sterilization and Decontamination Methods 320
17.1.1.1 Current Cleaning and Sterilization Processes 320
17.1.1.2 Low-Pressure Plasma-Based Method 322
17.2 Bacterial Spore Sterilization 322
17.3 Depyrogenation 324
17.4 Protein Removal 324
17.5 Experimental 325
17.5.1 Experimental Setup 325
17.5.2 Biological Tests 326
17.5.3 Pyrogen Samples Detection 326
17.5.4 Protein Removal Tests 327
Contents

17.6 Results 327
17.6.1 Sterilization 327
17.6.2 Depyrogenation 329
17.6.3 Protein Removal 331
17.7 Discussion 332
17.7.1 Plasma Sterilization 332
17.7.2 Depyrogenation 338
17.7.3 Protein Removal 338
17.8 Conclusions 338
References 339

18 Application of Atmospheric Pressure Glow Plasma:
Powder Coating in Atmospheric Pressure Glow Plasma 341
M. Kogoma and K. Tanaka
18.1 Introduction 341
18.2 Development of Silica Coating Methods for Powdered Organic and
Inorganic Pigments with Atmospheric Pressure Glow Plasma 341
18.2.1 Experimental 342
18.2.2 Results and Discussion 343
18.2.3 Conclusion 347
18.3 Application to TiO₂ Fine Powder Coating with Thin Film
of SiO₂ to Quench the Photosensitive Ability of the Powder 348
18.3.1 Experimental 348
18.3.2 Results and Discussion 349
18.3.2.1 XPS Analysis 349
18.3.2.2 TEM Analysis of Powder 350
18.3.2.3 GC/MS Spectrum of the Vapor from UV-Irradiated Squalene
Oil That Mixed With the Powders 351
18.3.3 Conclusion 352
References 352

19 Hydrocarbon and Fluorocarbon Thin Film Deposition in
Atmospheric Pressure Glow Dielectric Barrier Discharges 353
F. Fanelli, R. d'Agostino, and F. Fracassi
19.1 Introduction 353
19.2 DBDs for Thin Film Deposition: State of the Art 354
19.2.1 Filamentary and Glow Dielectric Barrier Discharges 354
19.2.2 Electrode Configurations and Gas Injection Systems 356
19.2.3 Hydrocarbon Thin Film Deposition 357
19.2.4 Fluorocarbon Thin Film Deposition 359
19.3 Experimental Results 360
19.3.1 Apparatus and Diagnostics 360
19.3.2 Deposition of Hydrocarbon Films by Means of
He–C₂H₄ GDBDs 361
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.3.3</td>
<td>Deposition of Fluorocarbon Films by Means of He–C₃F₆ and He–C₃F₈–H₂ GDBDs</td>
<td>364</td>
</tr>
<tr>
<td>19.4</td>
<td>Conclusion</td>
<td>366</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>367</td>
</tr>
<tr>
<td>20</td>
<td>Remark on Production of Atmospheric Pressure Non-thermal Plasmas for Modern Applications</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>R. Itatani</td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>371</td>
</tr>
<tr>
<td>20.2</td>
<td>Why Atmospheric Pressure Non-thermal Plasmas Are Attractive</td>
<td>372</td>
</tr>
<tr>
<td>20.3</td>
<td>Origin of Activities of Plasmas</td>
<td>373</td>
</tr>
<tr>
<td>20.4</td>
<td>Limits of Similarity Law of Gas Discharge</td>
<td>373</td>
</tr>
<tr>
<td>20.5</td>
<td>Reduction of Gas Temperature</td>
<td>374</td>
</tr>
<tr>
<td>20.6</td>
<td>Examples of Realization of the Above Discussion</td>
<td>375</td>
</tr>
<tr>
<td>20.7</td>
<td>Large-Area Plasma Production</td>
<td>376</td>
</tr>
<tr>
<td>20.8</td>
<td>Summery of Evidence To Date to Obtain Uniform DBDs</td>
<td>376</td>
</tr>
<tr>
<td>20.9</td>
<td>Consideration to Realize Uniform Plasmas of Large Area</td>
<td>377</td>
</tr>
<tr>
<td>20.10</td>
<td>Factors to be Considered to Realize Uniformity of DBD Plasma</td>
<td>377</td>
</tr>
<tr>
<td>20.11</td>
<td>Remote Plasmas</td>
<td>378</td>
</tr>
<tr>
<td>20.12</td>
<td>Conclusion</td>
<td>379</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>380</td>
</tr>
<tr>
<td>21</td>
<td>Present Status and Future of Color Plasma Displays</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>T. Shinoda</td>
<td></td>
</tr>
<tr>
<td>21.1</td>
<td>Introduction</td>
<td>381</td>
</tr>
<tr>
<td>21.2</td>
<td>Development of Color PDP Technologies</td>
<td>383</td>
</tr>
<tr>
<td>21.2.1</td>
<td>Panel Structure</td>
<td>383</td>
</tr>
<tr>
<td>21.2.2</td>
<td>Driving Technologies</td>
<td>387</td>
</tr>
<tr>
<td>21.3</td>
<td>Latest Research and Development</td>
<td>388</td>
</tr>
<tr>
<td>21.3.1</td>
<td>Analysis of Discharge in PDPs</td>
<td>388</td>
</tr>
<tr>
<td>21.3.2</td>
<td>High Luminance and High Luminous Efficiency</td>
<td>389</td>
</tr>
<tr>
<td>21.3.3</td>
<td>ALIS Structure</td>
<td>390</td>
</tr>
<tr>
<td>21.4</td>
<td>Conclusion</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>391</td>
</tr>
<tr>
<td>22</td>
<td>Characteristics of PDP Plasmas</td>
<td>393</td>
</tr>
<tr>
<td></td>
<td>H. Ikegami</td>
<td></td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>393</td>
</tr>
<tr>
<td>22.2</td>
<td>PDP Operation</td>
<td>394</td>
</tr>
<tr>
<td>22.3</td>
<td>PDP Plasma Structure</td>
<td>395</td>
</tr>
<tr>
<td>22.4</td>
<td>Plasma Density and Electron Temperature</td>
<td>397</td>
</tr>
<tr>
<td>22.5</td>
<td>Remarks</td>
<td>399</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>399</td>
</tr>
</tbody>
</table>
Contents

23 Recent Progress in Plasma Spray Processing 401
M. Kambara, H. Huang, and T. Yoshida

23.1 Introduction 401
23.2 Key Elements in Thermal Plasma Spray Technology 401
23.3 Thermal Plasma Spraying for Coating Technologies 402
23.3.1 Plasma Powder Spraying 403
23.3.2 Plasma Spray CVD 406
23.3.3 Plasma Spray PVD 407
23.3.4 Thermal Barrier Coatings 407
23.4 Thermal Plasma Spraying for Powder Metallurgical Engineering 414
23.4.1 Thermal Plasma Spheroidization 414
23.4.2 Plasma Spray CVD 415
23.4.3 Plasma Spray PVD 415
23.5 Thermal Plasma Spraying for Waste Treatments 416
23.6 Concluding Remarks and Prospects 417
References 418

24 Electrohydraulic Discharge Direct Plasma Water Treatment Processes 421
J.-S. Chang, S. Dickson, Y. Guo, K. Urashima, and M.B. Emelko

24.1 Introduction 421
24.2 Characteristics of Electrohydraulic Discharge Systems 421
24.3 Treatment Mechanisms Generated by Electrohydraulic Discharge 422
24.4 Treatment of Chemical Contaminants by Electrohydraulic Discharge 424
24.5 Disinfection of Pathogenic Contaminants by PAED 429
24.6 Municipal Sludge Treatment 430
24.7 Concluding Remarks 432
References 432

25 Development and Physics Issues of an Advanced Space Propulsion 435
M. Inutake, A. Ando, H. Tobari, and K. Hattori

25.1 Introduction 436
25.2 Performance of Rocket Propulsion Systems 437
25.3 Experimental Researches for an Advanced Space Thruster 440
25.3.1 Experimental Apparatus and Diagnostics 440
25.3.2 Improvement of an MPDA Plasma Using a Magnetic Laval Nozzle 442
25.3.3 RF Heating of a High Mach Number Plasma Flow 444
25.4 Summary 447
References 448

Index 449