Molten Carbonate Fuel Cells

Modeling, Analysis, Simulation, and Control

Edited by
Kai Sundmacher, Achim Kienle, Hans Josef Pesch,
Joachim F. Berndt, and Gerhard Huppmann
Contents

Preface XI

List of Contributors XV

Part I Design and Operation 1

1 MTU's Carbonate Fuel Cell HotModule 3
 Gerhard Huppmann
 1.1 The Significance of Fuel Cells 3
 1.2 Basic Statements of Power Production and Combined Heat and Power Systems 4
 1.3 Fuels for Fuel Cells 5
 1.3.1 Fuels Containing Gaseous Hydrocarbons 5
 1.3.2 Synthesis Gases 6
 1.3.3 Group of Gasified Hydrocarbons 7
 1.3.4 Secondary Fuel 7
 1.4 Why Molten Carbonate Fuel Cells 7
 1.5 The Carbonate Fuel Cell and its Function 8
 1.6 Optimisation by Integration: The HotModule Concept 11
 1.7 Manufacturing 12
 1.8 Advantages of the MCFC and its Utilization in Power Plants 13
 1.8.1 Electrical Efficiency 13
 1.8.2 Modularity 13
 1.8.3 Inherent Safety 15
 1.8.4 Environmentally Friendly – Pollution Free 16
 1.8.5 Silent 16
 1.9 History 16
 1.9.1 The European MCFC Development Consortium 16
 1.9.2 Continuing of the HotModule Development at MTU CFC Solutions 17
 1.10 Possible Applications of MCFC Systems 20
 1.10.1 Different Applications Using Different Fuels 20
Contents

1.10.2 Different Applications Using the Different Products of the MCFC System 23
1.11 Economical Impacts 25

2 Operational Experiences 27
Mario Koch, Joachim Berndt, and Matthias Gundermann

2.1 Combined Heat and Power Plant of the Company IPF in Magdeburg 27
2.2 The HotModule in Magdeburg 27
2.3 Operation Experience 30
2.4 Results and Outlook 32

Part II Model-based Process Analysis 33

3 MCFC Reference Model 35
Peter Heidebrecht, and Kai Sundmacher

3.1 Model Hierarchy 35
3.2 General 36
3.3 Model Equations 40
3.3.1 Indirect Internal Reformer 41
3.3.2 Anode Channel 43
3.3.3 Combustion Chamber 45
3.3.4 Reversal Chamber 48
3.3.5 Cathode Channels 49
3.3.6 Electrode Pores 51
3.3.7 Solid Phase 53
3.3.8 Electric Potential 55
3.3.9 Reaction Kinetics 57
3.3.10 Thermodynamics 59
3.4 Summary 61
Bibliography 61

4 Index Analysis of Models 63
Kurt Chudej, Hans Josef Pesch, and Joachim Rang

4.1 Differential Time Index 63
4.2 MOL Index 68
4.3 Perturbation Index 69
4.3.1 Transformation to Homogenous Dirichlet Boundary Conditions 69
4.3.2 Abstract Problem 70
4.3.3 Perturbation Index 70
4.3.4 Garding-Type Inequality 71
4.3.5 Estimate for v and s 71
4.3.6 Estimate for u, w and \bar{w} with Garding-Type Inequality 72
4.4 Conclusion 73
Bibliography 73
5 Parameter Identification 75
Matthias Gundermann and Kai Sundmacher

5.1 Experimental Work 75
5.1.1 Measurement of Cell Current and Cell Voltage 76
5.1.2 Temperature Measurement 76
5.1.3 Measurement of Concentrations 79
5.1.4 Measurement of Flow Rates 80
5.1.5 Conversion of the Measurements into Dimensionless Values 81
5.1.6 Measurement Errors 81
5.1.7 Measuring Campaigns 83
5.2 Strategy for Parameter Estimation 84
5.2.1 Determination of Relevant Parameters 84
5.2.2 Balancing of the Fuel Cell Plant 86
5.2.3 Sensitivity Analysis 93
5.2.4 Parameter Estimation for a Single Load Case 97
5.2.5 Parameter Estimation for the Whole Operating Range 99
5.2.6 Temperature Dynamics 103
5.3 Results of the Parameter Identification 104
5.3.1 Steady State Measurements 104
5.3.2 Plant Balancing and Error Minimisation 107
5.3.3 Parameter Estimation 109
5.3.4 Dynamic Measurements 113
5.3.5 Estimation of the Solid Heat Capacity 116
5.3.6 Evaluation of the Results 117
5.4 Summary 122

Bibliography 123

6 Steady State and Dynamic Process Analysis 125
Peter Heidebrecht, Matthias Gundermann, and Kai Sundmacher

6.1 Steady State Simulation 125
6.2 Current-Voltage Curve 132
6.3 Transient Simulation 133
6.4 Summary 139

Bibliography 140

7 Hot Spot Formation and Steady State Multiplicities 141
Michael Krasnyk, Michael Mangold, Achim Kienle, and Kai Sundmacher

7.1 Introduction 141
7.2 Models Nonlinear Analysis 143
7.2.1 Spatially Distributed Model 143
7.2.2 Lumped Model 145
7.3 Analysis of the Lumped FC Model 146
7.4 Analysis of the Spatially Distributed FC Model 152