Contents

Preface IX

1 Light rays 1
 1.1 Light rays in human experience 1
 1.2 Ray optics 2
 1.3 Reflection 2
 1.4 Refraction 3
 1.5 Fermat’s principle: the optical path length 5
 1.6 Prisms 8
 1.7 Light rays in wave guides 12
 1.8 Lenses and curved mirrors 16
 1.9 Matrix optics 19
 1.10 Ray optics and particle optics 27

Problems for chapter 1 30

2 Wave optics 33
 2.1 Electromagnetic radiation fields 33
 2.2 Wave types 42
 2.3 Gaussian beams 45
 2.4 Polarization 56
 2.5 Diffraction 60

Problems for chapter 2 77

3 Light propagation in matter 81
 3.1 Dielectric interfaces 81
 3.2 Complex refractive index 87
 3.3 Optical wave guides and fibres 91
 3.4 Functional types and applications of optical fibres 101
 3.5 Photonic materials 104
 3.6 Light pulses in dispersive materials 116
3.7 Anisotropic optical materials 127
3.8 Optical modulators 135
Problems for chapter 3 146

4 Optical images 149
4.1 The human eye 150
4.2 Magnifying glass and eyepiece 151
4.3 Microscopes 153
4.4 Telescopes 160
4.5 Lenses: designs and aberrations 165
Problems for chapter 4 174

5 Coherence and interferometry 177
5.1 Young’s double slit 177
5.2 Coherence and correlation 178
5.3 The double-slit experiment 181
5.4 Michelson interferometer: longitudinal coherence 189
5.5 Fabry–Perot interferometer 195
5.6 Optical cavities 201
5.7 Thin optical films 207
5.8 Holography 211
5.9 Laser speckle (laser granulation) 215
Problems for chapter 5 218

6 Light and matter 221
6.1 Classical radiation interaction 222
6.2 Two-level atoms 232
6.3 Stimulated and spontaneous radiation processes 244
6.4 Inversion and amplification 248
Problems for chapter 6 253

7 The laser 255
7.1 The classic system: the He–Ne laser 258
7.2 Mode selection in the He–Ne laser 260
7.3 Spectral properties of the He–Ne laser 266
7.4 Applications of the He–Ne laser 269
7.5 Other gas lasers 269
7.6 Molecular gas lasers 272
7.7 The workhorses: solid-state lasers 277
7.8 Selected solid-state lasers 281
7.9 Tunable lasers with vibronic states 289
7.10 Tunable ring lasers 293
Problems for chapter 7 295
8 Laser dynamics 297
 8.1 Basic laser theory 297
 8.2 Laser rate equations 304
 8.3 Threshold-less lasers and micro-lasers 308
 8.4 Laser noise 312
 8.5 Pulsed lasers 320
 Problems for chapter 8 332

9 Semiconductor lasers 333
 9.1 Semiconductors 333
 9.2 Optical properties of semiconductors 336
 9.3 The heterostructure laser 346
 9.4 Dynamic properties of semiconductor lasers 355
 9.5 Laser diodes, diode lasers, laser systems 362
 9.6 High-power laser diodes 366
 Problems for chapter 9 369

10 Sensors for light 371
 10.1 Characteristics of optical detectors 372
 10.2 Fluctuating opto-electronic quantities 376
 10.3 Photon noise and detectivity limits 378
 10.4 Thermal detectors 384
 10.5 Quantum sensors I: photomultiplier tubes 387
 10.6 Quantum sensors II: semiconductor sensors 391
 10.7 Position and image sensors 396
 Problems for chapter 10 400

11 Laser spectroscopy 401
 11.1 Laser-induced fluorescence (LIF) 401
 11.2 Absorption and dispersion 402
 11.3 The width of spectral lines 404
 11.4 Doppler-free spectroscopy 411
 11.5 Transient phenomena 418
 11.6 Light forces 424
 Problems for chapter 11 436

12 Photons — an introduction to quantum optics 439
 12.1 Does light exhibit quantum character? 439
 12.2 Quantization of the electromagnetic field 441
 12.3 Spontaneous emission 444
 12.4 Weak coupling and strong coupling 450
 12.5 Resonance fluorescence 454
12.6 Light fields in quantum optics 463
12.7 Two-photon optics 474
12.8 Entangled photons 478
Problems for chapter 12 487

13 Nonlinear optics I: optical mixing processes 489
13.1 Charged anharmonic oscillators 489
13.2 Second-order nonlinear susceptibility 491
13.3 Wave propagation in nonlinear media 497
13.4 Frequency doubling 500
13.5 Sum and difference frequency 513
13.6 Optical parametric oscillators 515
Problems for chapter 13 519

14 Nonlinear optics II: four-wave mixing 521
14.1 Frequency tripling in gases 522
14.2 Nonlinear refraction coefficient (optical Kerr effect) 523
14.3 Self-phase modulation 531
Problems for chapter 14 532

Appendix

A Mathematics for optics 533
A.1 Spectral analysis of fluctuating measurable quantities 533
A.2 Poynting theorem 539

B Supplements in quantum mechanics 541
B.1 Temporal evolution of a two-state system 541
B.2 Density-matrix formalism 542
B.3 Density of states 543

Bibliography 545

Index 553