Electrocrystallization in Nanotechnology

Edited by Georgi Staikov
Contents

Preface xi

List of Contributors xiii

I Fundamentals

1 The Impact of Electrocrystallization on Nanotechnology 3
 Georgi Staikov and Alexander Milchev
 1.1 Introduction 3
 1.2 Thermodynamic Properties of Large and Small Phases 4
 1.2.1 The State of Thermodynamic Equilibrium 4
 1.2.2 Electrochemical Supersaturation and Undersaturation 6
 1.2.3 The Thermodynamic Work for Nucleus Formation 7
 1.2.3.1 Classical Nucleation Theory 8
 1.2.3.2 Atomistic Nucleation Theory 9
 1.3 Kinetics of Nucleus Formation in Electrocrystallization 10
 1.4 Energy State of the Electrode Surface and Spatial Distribution of Nanoclusters 11
 1.5 Electrochemical Growth of Nanoparticles and Ultrathin Films 14
 1.5.1 Growth of 3D Nanoclusters 15
 1.5.2 Growth of 2D Nanoclusters and Formation of UPD Monolayers 17
 1.6 Localization of Electrocrystallization Processes and Nanostructuring 20
 1.7 Conclusion 24
 Acknowledgments 25
 References 26

2 Computer Simulations of Electrochemical Low-dimensional Metal Phase Formation 30
 Marcelo M. Mariscal and Ezequiel P. M. Leiva
 2.1 Introduction 30
 2.2 Molecular Dynamics Simulations 32
 2.2.1 Generalities 32
 2.2.2 Nanostructuring of Metallic Surfaces 33
Acknowledgment 191
References 191

9 Nanowires by Electrochemical Step Edge Decoration (ESED) 195
Reginald M. Penner
9.1 Introduction 195
9.2 General Considerations 196
9.3 Direct Nanowire Electrodeposition 198
9.4 Compound Nanowires by Cyclic Electrodeposition/Stripping 200
9.5 Electrochemical/Chemical Synthesis of Nanowires 202
9.6 Nanowire “Thinning” by Electrooxidation 204
9.7 Summary 206
Acknowledgments 206
References 206

10 Electrochemical Fabrication of Arrayed Nanostructures 208
Takayuki Homma
10.1 Introduction 208
10.2 Formation of Metal Nanodots Along the Step Edge of the Si(111) Surface 208
10.3 Maskless Fabrication of Metal Nanodot Arrays using Electroless Deposition Induced by Controlled Local Surface Activities 210
10.4 Conclusion 215
References 216

11 Electrodeposition of Two-dimensional Magnetic Nanostructures on Single Crystal Electrode Surfaces 217
Philippe Allongue and Fouad Maroun
11.1 Introduction 217
11.2 Ultrathin Magnetic Films 219
11.2.1 Magnetic Moment of Ultrathin Films 220
11.2.2 In Situ Magnetic Characterizations 223
11.2.2.1 Alternating Gradient Field Magnetometry (AGFM) 224
11.2.2.2 Magneto Optical Kerr Effect (MOKE) 225
11.2.3 Description and Exploitation of in Situ Magnetic Measurements 225
11.3 Electrochemical Growth and Magnetic Properties of Iron Group Films on Au(111) 227
11.3.1 Electrochemistry of Au(111) in Iron Group Metal Solutions 227
11.3.2 Ni/Au(111) 228
11.3.2.1 Morphology and Structure 228
11.3.2.2 Magnetic Properties 229
11.3.3 Co/Au(111) 230
11.3.3.1 Morphology and Structure 230
11.3.3.2 Magnetic Properties 232
11.3.4 Fe/Au(111) 235