Contents

Preface xvii

Part 1 Current Developments 1

1 Design Considerations for Efficient and Stable Polymer Solar Cells 3

Prajwal Adhikary, Jing Li, and Qiquan Qiao

1.1 Introduction 4

1.1.1 Background 4

1.1.2 Theory 6

1.1.2.1 Photovoltaic Processes in Donor-Acceptor (D-A) System 7

1.1.2.2 Equivalent Circuit Diagram of a PV Cell under Illumination 9

1.1.2.3 Parameters Governing Performance of Solar Cells 9

1.2 Role of Interfacial Layer for Efficient BHJ Solar Cells 11

1.2.1 Role of Interfacial Layer on V_{oc} 12

1.2.2 Influence on Active Layer Vertical Morphology Based on underneath Interfacial Layer 14

1.2.3 Light Trapping Strategies and Plasmonic Effects for Efficient Light Harvesting 16

1.2.4 Morphology Control of Active Layer and ETL by Processing 19

1.3 Selection of Interfacial Layer for Stable and Longer Lifetime 20

1.3.1 Stability of Active Layer Materials 21

1.3.2 Stability of Metal Electrodes 23

1.3.3 Stability of Transparent Electrode 23
1.3.4 Stability by Electron Transport Layers (ETLs) 24
1.3.5 Stability by Hole Transport Layers (HTLs) 25
1.4 Materials Used as Interfacial Layer 26
1.4.1 Conventional Solar Cell Devices 26
 1.4.1.1 Cathode and Electron Transport Layers 26
 1.4.1.2 Anode and Hole Transport Layers 28
1.4.2 Inverted Device Structure 31
 1.4.2.1 Cathode and Electron Transport Layers 31
 1.4.2.2 Anode and Hole Transport Layers 33
1.5 Conclusion and Outlook 34
Acknowledgement 34
References 35

2 Carbazole-Based Organic Dyes for Dye-Sensitized Solar Cells: Role of Carbazole as Donor, Auxiliary Donor and \(\pi \)-linker 41
 A. Venkateswararao and K. R. Justin Thomas
2.1 Introduction 42
2.2 Carbazole as a Donor for Dye-Sensitized Solar Cells 44
 2.2.1 Carbazole as Donor via C3-Position 45
 2.2.2 Carbazole as Donor and Linked through N9-position 60
2.3 Carbazole as a \(\pi \)-Linker 64
 2.3.1 Carbazole as a Bridge via C2, C7 Positions 65
 2.3.2 Carbazole as a Linker via C3, C6 Positions 67
2.4 Carbazole as Auxiliary Donor for DSSC 75
 2.4.1 Carbazole as Auxiliary Donor via C2-position 76
 2.4.2 Carbazole as Auxiliary Donor via C3-Position 77
 2.4.3 Carbazole as Auxiliary Donor via N9-Position 80
 2.4.4 Carbazole as Auxiliary Donor via C3, C6-positions 87
2.5 Carbazole as Donor as Well as Linker for DSSC 87
2.6 Conclusion and Outlook 91
Acknowledgements 92
References 92
3 Colloidal Synthesis of CuInS$_2$ and CuInSe$_2$ Nanocrystals for Photovoltaic Applications

Joanna Kolny-Olesiak

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>97</td>
</tr>
<tr>
<td>3.2 Synthesis of CuInS$_2$ and CuInSe$_2$ Nanocrystals</td>
<td>99</td>
</tr>
<tr>
<td>3.2.1 Ligand Shell and Colloidal Stability</td>
<td>100</td>
</tr>
<tr>
<td>3.2.2 Adjusting the Reactivity of the Precursors</td>
<td>102</td>
</tr>
<tr>
<td>3.2.3 Shape Control</td>
<td>103</td>
</tr>
<tr>
<td>3.2.4 Crystallographic Structure</td>
<td>106</td>
</tr>
<tr>
<td>3.2.5 Composition</td>
<td>107</td>
</tr>
<tr>
<td>3.3 Application of Colloidal CuInS$_2$ and CuInSe$_2$ Nanoparticles in Solar Energy Conversion</td>
<td>109</td>
</tr>
<tr>
<td>3.3.1 All-Inorganic Solar Cells</td>
<td>109</td>
</tr>
<tr>
<td>3.3.2 Organic-Inorganic Hybrid Solar Cells</td>
<td>110</td>
</tr>
<tr>
<td>3.3.3 Nanocrystal Sensitized Solar Cells</td>
<td>111</td>
</tr>
<tr>
<td>3.4 Conclusion and Outlook</td>
<td>112</td>
</tr>
<tr>
<td>References</td>
<td>112</td>
</tr>
</tbody>
</table>

4 Two Dimensional Layered Semiconductors: Emerging Materials for Solar Photovoltaics

Mariyappan Shanmugam and Bin Yu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>118</td>
</tr>
<tr>
<td>4.2 Material Synthesis</td>
<td>119</td>
</tr>
<tr>
<td>4.2.1 Chemical Exfoliation</td>
<td>119</td>
</tr>
<tr>
<td>4.2.2 CVD Synthesis of 2D Layered Semiconductors</td>
<td>120</td>
</tr>
<tr>
<td>MoS$_2$ and WS$_2$</td>
<td></td>
</tr>
<tr>
<td>4.2.3 Material Characterization</td>
<td>122</td>
</tr>
<tr>
<td>4.3 Photovoltaic Device Fabrication</td>
<td>122</td>
</tr>
<tr>
<td>4.3.1 Bulk Heterojunction Solar Cells</td>
<td>122</td>
</tr>
<tr>
<td>4.3.2 Schottky Barrier Solar Cells</td>
<td>122</td>
</tr>
<tr>
<td>4.3.3 Device Characterization</td>
<td>123</td>
</tr>
<tr>
<td>4.4 Microstructural and Raman Spectroscopic Studies of MoS$_2$ and WS$_2$</td>
<td>124</td>
</tr>
<tr>
<td>4.5 Photovoltaic Performance Evaluation</td>
<td>126</td>
</tr>
<tr>
<td>4.5.1 BHJ Solar Cells</td>
<td>126</td>
</tr>
<tr>
<td>4.5.2 Schottky Barrier Solar Cells</td>
<td>127</td>
</tr>
</tbody>
</table>
CONTENTS

4.6 Electronic Transport and Interfacial Recombination 129
 4.6.1 BHJ Solar Cells 129
 4.6.2 Schottky Barrier Solar Cells 131
4.7 Conclusion and Outlook 132
References 133

5 Control of ZnO Nanorods for Polymer Solar Cells 135
Hsin-Yi Chen, Ching-Fuh Lin
 5.1 Introduction 136
 5.2 Preparation and Characterization of ZnO NRs 137
 5.2.1 ZnO NRs Prepared by Hydrothermal Method 137
 5.2.1.1 Control of HMT and Zn(NO$_3$)$_2$ 138
 5.2.1.2 Control of Seed Layer Synthesis and Heating Temperature 140
 5.2.2 Morphology Control of ZnO NRs 144
 5.2.3 Summary of ZnO NR Growth 146
 5.3 Application of ZnO NR in Polymer Solar Cells 147
 5.3.1 ZnO-NR/Polymer Solar Cells Based on Vertically-Aligned Zno NRs 148
 5.3.2 ZnO NR as a Cathode Buffer Layer in Polymer Solar Cells 150
 5.4 Conclusion and Outlook 154
References 154

Part 2 Noble Approaches 159

6 Dye-Sensitized Solar Cells 161
Lakshmi V. Munukutla, Aung Htun,
Sailaja Radhakrishnan, Laura Main, and
Arunachala M. Kannan
 6.1 Introduction 161
 6.2 Background 163
 6.2.1 DSCC Operation Principle 164
 6.2.2 DSSC Structure 166
 6.2.3 DSSC Challenges 168
6.2.4 DSSC Components 168
6.2.4.1 Working Electrode 168
6.2.4.2 Dye Sensitizer 169
6.2.4.3 Electrolyte 170
6.2.4.4 Platinum-Coated Counter Electrode 171
6.2.4.5 Equivalent Circuit of DSSC 172
6.3 DSSC Key Performance Parameters 173
6.4 Device Improvements 174
6.4.1 Experimental 175
6.4.1.1 Working Electrode Preparation 175
6.4.1.2 Cell Assembly 175
6.4.1.3 Electrolyte Injection 176
6.4.2 DSSC Performance Results 176
6.4.2.1 TiO₂ Film Thickness Optimization 176
6.4.2.2 Optimization of Nanoparticle Size in TiO₂ 178
6.4.2.3 Scaling Down the DSS Cell Size 180
6.5 DSSC Performance with Different Electrolytes 180
6.5.1 Liquid Electrolyte 180
6.5.2 Quasi-Solid Electrolyte 181
6.6 Conclusion and Outlook 183
References 183

7 Nanoimprint Lithography for Photovoltaic Applications 185
Benjamin Schumm and Stefan Kaskel
7.1 Introduction 186
7.2 Soft Lithography 186
7.2.1 Soft Lithography Methods 186
7.2.2 Stamp Materials Used for Nanoimprint Lithography 188
7.3 NIL-Based Techniques for PV 190
7.3.1 Antireflection Layers Prepared with NIL Methods 190
7.3.1.1 Structured Substrates — Outside 191
7.3.1.2 Structured Wafers 191
7.3.1.3 Structured Substrates — Inside 192
7.3.2 NIL-Patterned Films as Etching Masks 193
7.3.3 NIL for Organic Solar Cell Processing 194
7.3.4 Plasmonic Films Prepared with NIL Methods 196
7.3.5 Up-Scaling Potential of NIL Processes 197
7.4 Conclusion and Outlook 198
References 199

8 Indoor Photovoltaics: Efficiencies, Measurements and Design 203
Monika Freunek (Müller)
8.1 Introduction 203
8.2 Indoor Radiation 205
8.2.1 Spectra and Intensities 205
8.3 Maximum Efficiencies 208
8.3.1 Maximum Indoor Efficiencies and Ideal Materials 208
8.3.2 Monochromatic Radiation 209
8.3.3 Intensity Effects 211
8.4 Optimization Strategies 213
8.5 Characterization and Measured Efficiencies 216
8.6 Irradiance Measurements 217
8.7 Characterization 217
8.8 Conclusion and Outlook 219
References 221

9 Photon Management in Rare Earth Doped Nanomaterials for Solar Cells 223
Jiajia Zhou, Jianrong Qiu
9.1 Introduction 223
9.2 Basic Aspects of Solar Cell 224
9.2.1 Mechanism of Efficiency Limitation 224
9.2.2 EQEs of Solar Cells 225
9.2.3 Photon Management Approaches to Enhance the Efficiency of Solar Cell 227
9.3 Up-Conversion Nanomaterials for Solar Cell Application 228
9.3.1 Principles of Photon Up-Conversion 228
9.3.2 Spectroscopy Analysis and Application Demonstration 229
CONTENTS

9.4 Down-Conversion Nanomaterials for Solar Cell Application

9.4.1 Principles of Photon Down-Conversion

9.4.2 Experimental and Spectroscopy Analysis

9.4.3 Evaluation

9.5 Conclusion and Outlook

9.5.1 Solution-Processable Nano-Coating for Broadband Up-Converter or Down-Converter

9.5.2 Efficient Photon Management Using Nanoplasmonic Effect

References

Part 3 Developments in Prospective

10 Advances in Plasmonic Light Trapping in Thin-Film Solar Photovoltaic Devices

J. Gwamuri, D. Ö. Güney, and J. M. Pearce

10.1 Introduction

10.1.1 Plasmonics Basics

10.1.2 Metamaterials

10.2 Theoretical Approaches to Plasmonic Light Trapping Mechanisms in Thin-film PV

10.2.1 Optimal Cell Geometry Modeling

10.2.2 Optical Properties Simulations

10.2.3 Electrical Properties Simulations

10.3 Plasmonics for Improved Photovoltaic Cells

10.3.1 Light Trapping in Bulk Si Solar Cells

10.3.2 Plasmonic Light-Trapping Mechanisms for Thin-Film PV Devices

10.3.3 Experimental Results

10.4 Fabrication Techniques and Economics

10.4.1 Lithography Nanofabrication Techniques

10.4.2 Physical/Chemical Processing Techniques

10.5 Conclusion and Outlook

Acknowledgements

References
11 Recent Research and Development of Luminescent Solar Concentrators

Yun Seng Lim, Shin Yiing Kee, and Chin Kim Lo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>272</td>
</tr>
<tr>
<td>11.2 Mechanisms of Power Losses in Luminescent Solar Concentrator</td>
<td>274</td>
</tr>
<tr>
<td>11.3 Modeling</td>
<td>276</td>
</tr>
<tr>
<td>11.3.1 Thermodynamic Modeling</td>
<td>276</td>
</tr>
<tr>
<td>11.3.2 Ray Tracing Modeling</td>
<td>277</td>
</tr>
<tr>
<td>11.3.3 Hybrid of Thermodynamic and Ray-Tracing Method</td>
<td>278</td>
</tr>
<tr>
<td>11.3.4 Monte Carlo Simulations</td>
<td>279</td>
</tr>
<tr>
<td>11.4 Polymer Materials</td>
<td>279</td>
</tr>
<tr>
<td>11.5 Luminescent Materials for Luminescent Solar Concentrator</td>
<td>280</td>
</tr>
<tr>
<td>11.5.1 Organic Dyes in LSC</td>
<td>280</td>
</tr>
<tr>
<td>11.5.2 Quantum Dots</td>
<td>283</td>
</tr>
<tr>
<td>11.5.3 Rare Earth</td>
<td>285</td>
</tr>
<tr>
<td>11.5.4 Semiconducting Polymer</td>
<td>286</td>
</tr>
<tr>
<td>11.6 New Designs of Luminescent Solar Concentrator</td>
<td>286</td>
</tr>
<tr>
<td>11.7 Conclusion and Outlook</td>
<td>287</td>
</tr>
</tbody>
</table>

References 289

12 Luminescent Solar Concentrators – State of the Art and Future Perspectives

M. Tonezzer, D. Gutierrez, and D. Vincenzi

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction to the Third Generation of Photovoltaic Systems</td>
<td>294</td>
</tr>
<tr>
<td>12.2 Luminescence Solar Concentrators (LSCs)</td>
<td>294</td>
</tr>
<tr>
<td>12.2.1 Description of LSC Devices</td>
<td>294</td>
</tr>
<tr>
<td>12.2.2 The Efficiency and Losses Mechanism in LSC Devices</td>
<td>295</td>
</tr>
<tr>
<td>12.3 Components of LSC Devices</td>
<td>299</td>
</tr>
<tr>
<td>12.3.1 Waveguide Slab</td>
<td>300</td>
</tr>
<tr>
<td>12.3.2 Fluorophore</td>
<td>301</td>
</tr>
<tr>
<td>12.3.2.1 Organic Fluorescent Dyes</td>
<td>301</td>
</tr>
<tr>
<td>12.3.2.2 Quantum Dots</td>
<td>303</td>
</tr>
<tr>
<td>12.3.2.3 Rare-Earth Materials</td>
<td>305</td>
</tr>
</tbody>
</table>
12.3.3 Solar Cells 306
12.3.4 Experimental Results 307
12.4 Pathways for Improving LSC Efficiency 308
12.4.1 Escape-Cone losses (P_{TR}) 308
12.4.2 Absorption Losses 309
12.4.3 Self Absorption Losses 310
12.5 Conclusion and Outlook 311
Acknowledgments 312
References 312

13 Organic Fluorophores for Luminescent Solar
Concentrators 317
Luca Beverina and Alessandro Sanguineti

13.1 Introduction 318
13.2 LSCs: Device Operation and Main Features 321
13.3 Luminophores in LSCs 324
13.3.1 Colloidal Quantum Dots (QDs) 325
13.3.2 Luminescent Lanthanides Chelates 327
13.3.3 Organic Dyes 333

13.4 Conclusion and Outlook 349
References 351

14 PAn-Graphene-Nanoribbon Composite Materials for
Organic Photovoltaics: A DFT Study of Their Electronic
and Charge Transport Properties 357
Javed Mazher, Asefa A. Desta, and Shabina Khan

14.1 Introduction 358
14.1.1 Organic Photovoltaic Technology 359
14.1.2 Bulk Heterojunction Solar Cells 362
14.1.3 Conjugated Polymers: Polyaniline (PAn) 365
14.1.4 Carbon Nanostructure: Graphene 367
14.1.5 Graphene Nanoribbons (GNRs) 372
14.1.5.1 Types of Graphene Nanoribbons 372
14.1.6 Nanocomposites and Their Percolation:
GNR-Polyaniline Composites 374
14.1.7 Origin of an Equilibrium Conductance in
Nanodevices 376
CONTENTS

14.1.8 Singularities Due to the Quantum Confinement of Nanostructures 378

14.2 Review of Computational Background 379
 14.2.1 Modern Theoretical Methods: Ab-initio Nanocomposite Theory 379
 14.2.2 Density Functional Theory (DFT) 380
 14.2.3 Nonequilibrium Green’s Function (NEGF) 384

14.3 Atomistic Computational Simulations: Modeling and Methodology 385
 14.3.1 Atomistix Toolkit (ATK): Ab-initio DFT Software Package for Nanosystems 385
 14.3.2 Nanodevice Characteristics Simulation: PAn and GNR-PAn Composites 386

14.4 Results and Discussions 389
 14.4.1 Device Characteristics of Chlorinated PAn 390
 14.4.2 Device Characteristics of ZZGNR-PAn Nanocomposite 393
 14.4.3 Device Characteristics of ACGNR-PAn Nanocomposite 395
 14.4.4 Device Characteristics HGNR-PAn Nanocomposite 397

14.5 Conclusion and Outlook 398

References 400

15 Analytical Modeling of Thin-Film Solar Cells — Fundamentals and Applications 409

Kurt Taretto

15.1 Introduction 409

15.2 Basics 410
 15.2.1 Equivalent Solar Cell Circuit and Current-Voltage Equation 414

15.3 Fundamental Semiconductor Equations 417
 15.3.1 Electric Field and Free Carrier Currents 417
 15.3.2 Steady-State Continuity Equations 419
 15.3.3 Considerations for Excitonic Solar Cells 422
 15.3.4 Characteristic Lengths 422
 15.3.5 Tunneling Recombination Occurring at the Nanometer Scale 423
15.4 Analytical Models for Selected Solar Cells 425
 15.4.1 Horizontal PN Junction 425
 15.4.1.1 PN Junction under Moderately Absorbed Light 430
 15.4.1.2 Open-Circuit Voltage Limitations 431
 15.4.2 PN Heterojunction 433
 15.4.3 Vertical PN Multijunction 434
 15.4.4 Considerations for Nanorod Solar Cells 438
 15.4.5 PIN Junction 439
 15.4.5.1 Enhanced Uniform Field Approximation 439
 15.4.5.2 Drift-Diffusion Model 440
15.5 The Importance of the Temperature Dependence of V_{oc} 442
15.6 Conclusions and Outlook 444
Acknowledgements 444
References 444

16 Efficient Organic Photovoltaic Cells: Current Global Scenario 447
Sandeep Rai and Atul Tiwari 448
16.1 Introduction 448
16.2 Current Developments in OPVs 455
 16.2.1 Development of Low Optical Gap Materials 461
 16.2.2 Designing of Higher IP Polymers and Lower EA Acceptors 461
 16.2.3 Control of Blend Microstructure 463
16.3 Economics of Solar Energy 464
 16.3.1 Scenario in US 466
 16.3.2 Solar Potential in India 467
 16.3.3 Global Solar Cell Demand 467
16.4 Conclusions and Future Trends in Photovoltaic 468
References 471

17 Real and Reactive Power Control of Voltage Source Converter-Based Photovoltaic Generating Systems 475
S. Mishra and P. C. Sekhar 476
17.1 Introduction 476
17.2 State of Art 478
17.3 Proposed Solution 479
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>Modeling of the PV Generator</td>
<td>480</td>
</tr>
<tr>
<td>17.5</td>
<td>Control of the PV Generator</td>
<td>483</td>
</tr>
<tr>
<td>17.5.1</td>
<td>Maximum Power Point Tracking and the Perturb and Observe Algorithm</td>
<td>483</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Control of Reactive Power Output from the PV System</td>
<td>484</td>
</tr>
<tr>
<td>17.5.3</td>
<td>DC Link Voltage Control for Maximum Power Extraction</td>
<td>487</td>
</tr>
<tr>
<td>17.5.4</td>
<td>Reference Current Generation for Voltage Source Converter</td>
<td>488</td>
</tr>
<tr>
<td>17.5.5</td>
<td>Decoupled Control of VSC-based PV Generating System</td>
<td>489</td>
</tr>
<tr>
<td>17.6</td>
<td>Validation of the Proposed Control Architecture</td>
<td>491</td>
</tr>
<tr>
<td>17.6.1</td>
<td>Control of Real Power Feeding of PV Generator and PCC Voltage under</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>Reverse Power Flow in a Distribution System</td>
<td></td>
</tr>
<tr>
<td>17.6.2</td>
<td>Control of Real and Reactive Power Feedings of PV Generator</td>
<td>497</td>
</tr>
<tr>
<td>17.7</td>
<td>Conclusion and Outlook</td>
<td>501</td>
</tr>
<tr>
<td>References</td>
<td>502</td>
<td></td>
</tr>
</tbody>
</table>

Index 505