SI units

Klaus WilhelmI, Martin C. E. HuberII, J. Len CulhaneIII, Anuschka PauluhnII, J. Gethyn TimothyIV and Alex ZehnderII

Introduction

The editors agreed that the Système International d’Unités (SI), the International System of Units, should be followed as closely as possible in order to arrive at a consistent presentation of the photon measurements. To achieve this goal the following guidelines have been provided, and their use has been strongly advocated. Nevertheless, some non-SI units that have been used in this book—although not recommended for use with SI—are defined in terms of SI units in this appendix.

Writing of physical quantities and equations

SI is based on the international metre convention, and is the legal system in most countries. The rules and style conventions for SI have been issued by the Bureau International des Poids et Mesures (BIPM 2006).1 In this guide, the SI rules and conventions that are most relevant for the present book are categorized by *** : required; ** : recommended; * : avoid (needs explanation); — : not permitted.

Physical quantities:
** The value of a physical quantity is the product of a number and a unit symbol, for instance, \(P = 1 \, \text{W} \) for a power of one watt.
*** \(20 \, \text{cm} \pm 2 \, \text{cm} \) or \((20 \pm 2) \, \text{cm} \), — not \(20 \pm 2 \, \text{cm} \).

Units:
*** Use, for instance, ... 1 m to 10 m ... or ... (1 to 10) m,
— not 1 – 10 m.
** Symbols for the quantities are recommendations only,
*** but the correct form of the unit symbols is mandatory, i.e., they must not be

1MPS—Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany
2PSI—Paul Scherrer Institut, Villigen, Switzerland
3UCL, MSSL—University College London/Mullard Space Science Laboratory, UK
4Nightsen, Inc., Tiverton RI, USA

1Available at www.bipm.fr/utils/common/pdf/si_brochure_8_fr.pdf in the official French version and at ..._en.pdf in English. For the English style conventions see also the Special Publication 811 of the National Institute of Standards and Technology (NIST) at physics.nist.gov/Pubs/SP811/sp811.html.
Table 41.1: SI prefixes

<table>
<thead>
<tr>
<th>Factor</th>
<th>Prefix name</th>
<th>Symbol</th>
<th>Factor</th>
<th>Prefix name</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1</td>
<td>deca</td>
<td>da</td>
<td>10^{-1}</td>
<td>deci</td>
<td>d</td>
</tr>
<tr>
<td>10^2</td>
<td>hecto</td>
<td>h</td>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
</tr>
<tr>
<td>10^3</td>
<td>kilo</td>
<td>k</td>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
</tr>
<tr>
<td>10^6</td>
<td>mega</td>
<td>M</td>
<td>10^{-6}</td>
<td>micro</td>
<td>µ</td>
</tr>
<tr>
<td>10^9</td>
<td>giga</td>
<td>G</td>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
</tr>
<tr>
<td>10^{12}</td>
<td>tera</td>
<td>T</td>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
</tr>
<tr>
<td>10^{15}</td>
<td>peta</td>
<td>P</td>
<td>10^{-15}</td>
<td>femto</td>
<td>f</td>
</tr>
<tr>
<td>10^{18}</td>
<td>exa</td>
<td>E</td>
<td>10^{-18}</td>
<td>atto</td>
<td>a</td>
</tr>
<tr>
<td>10^{21}</td>
<td>zetta</td>
<td>Z</td>
<td>10^{-21}</td>
<td>zepto</td>
<td>z</td>
</tr>
<tr>
<td>10^{24}</td>
<td>yotta</td>
<td>Y</td>
<td>10^{-24}</td>
<td>yocto</td>
<td>y</td>
</tr>
</tbody>
</table>

*a A unit symbol must be added without space, e.g., 1 GW is one gigawatt.

Table 41.2: SI base units

<table>
<thead>
<tr>
<th>Base quantity</th>
<th>Symbol</th>
<th>Unit name</th>
<th>Unit symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>l</td>
<td>metre*a</td>
<td>m</td>
<td>1983*b</td>
</tr>
<tr>
<td>Mass</td>
<td>m</td>
<td>kilogram*c</td>
<td>kg</td>
<td>1889*b</td>
</tr>
<tr>
<td>Time, duration</td>
<td>t</td>
<td>second*d</td>
<td>s</td>
<td>1967*b</td>
</tr>
<tr>
<td>Electric current</td>
<td>i</td>
<td>ampere*e</td>
<td>A</td>
<td>1946*f</td>
</tr>
<tr>
<td>Thermodynamic temperature</td>
<td>T</td>
<td>kelvin*g</td>
<td>K</td>
<td>1954*b</td>
</tr>
<tr>
<td>Amount of substance</td>
<td>n</td>
<td>mole*h</td>
<td>mol</td>
<td>1971*b</td>
</tr>
<tr>
<td>Luminous intensity</td>
<td>I_v</td>
<td>candela*i</td>
<td>cd</td>
<td>1979*b</td>
</tr>
</tbody>
</table>

*a Length of the path travelled in vacuum during $1/299792458$ s.

*b CGPM—Conférence générale des poids et mesures.

c Mass of the international prototype of the kilogram.

The 3rd CGPM (1901) explicitly stated: “The kilogram is the unit of mass”.

d The definition follows from $\nu = 9192631770$ Hz for the hyperfine splitting of the ground state of a 133Cs atom at rest and at 0 K. The definition of the second should be understood as the definition of the unit of proper time. It is wrong to correct for the local gravitational field (SI Brochure Appendix 2). The temps atomique international (TAI) is based on this second. Civil (legal) times are related to the coordinated Universal Time (UTC) derived from TAI by leap seconds.

e The definition follows from $\mu_0 = 4 \pi \times 10^{-7}$ H/m (exact) for the permeability of free space.

f CIPM—Comité international des poids et mesures.

g The triple point of water is exactly at 273.16 K.

h The molar mass of 12C is exactly 12 g/mol.

i Radiant intensity of $1/683$ W sr$^{-1}$ emitted in a certain direction at a frequency of $\nu = 540 \times 10^{12}$ Hz.

modified by any indices etc. However, SI prefixes (see Table 41.1) can and should be added (as required) to the unit symbols. In the case of the mass unit, prefixes are applied to “g” and not to the base unit “kg” (cf., Table 41.2) with definitions of the SI base units; in addition, many quantities have special unit symbols).

** Unit symbols can be treated as mathematical entities, for which multiplication
and division rules apply, e.g., \(t/\circ C = T/K - 273.15 \) defines the relationship between the thermodynamic and Celsius temperature scales (where 273.15 K is the ice point of water). This is also useful for labelling coordinate axes of diagrams or columns of tables, e.g., “Temperature, \(T/K \)” . It produces the numbers that are actually plotted or listed.

** This concept is required for logarithmic expressions, such as \(\lg(T/K) = 5 \), as a logarithm cannot be defined for physical quantities.

— Unit symbols cannot stand alone.

* Thus it should read, for instance: “a temperature of a few millikelvins” — and not “a few mK”.

** The names of units are written in lower case, even if they are derived from proper names, but then the corresponding unit symbols are capitalized (cf., Table 41.2).

** Unit symbols and prefixes are written in roman style.

** There must be a space between the number and the unit symbol of a physical quantity (e.g., \(P = 1 \text{ W} \)), except for the plane angle units degree, minute and second in expression like \(1 \circ = 60' = 3600'' \) or \(\alpha = 5 \circ 40'30'' \) . There must also be a space between successive unit symbols. For instance, \(1 \text{ m s}^{-1} \) is totally different from \(1 \text{ ms}^{-1} \). It looks, in general, nicer if the second space and later ones are written as narrow spaces.

* The non-decimal angular units, degrees, minutes and seconds, are outside SI, but are accepted for use with SI. The SI unit name for plane angles is “radian”: \(1 \text{ rad} = 1 \text{ m/m} = 1 \), and the name for solid angles is “steradian”: \(1 \text{ sr} = 1 \text{ m}^2/\text{m}^2 = 1 \).

** The symbol “%” represents the number 0.01. Thus it should read, for instance, the “relative increase” of the power, \(P \), is 10 % or the “fractional abundance” of the element is 10 %. It must always be clearly stated which dimensionless quantity is meant.

* The following non-SI unit symbols (and some others) are also accepted:

\[
1 \text{ d} = 24 \text{ h} = 1440 \text{ min} (= 86400 \text{ s}); 1 \text{ eV} (= 1.602176565(35) \times 10^{-19} \text{ J}); 1 \text{ ua, the astronomical unit}^2, \text{l’unité astronomique} (= 1.49597870691(6) \times 10^{11} \text{ m}).
\]

Also accepted are \(1 \text{ mas} = 0.001'' \) and \(1 \text{ µas} = 0.000001'' \).

* Equations should preferably be written between quantities and not between numerical values. In any case, the equations must be correct in their dimensions.

— More than one solidus (“/”) is not permitted in a single expression, unless parentheses are used.

The non-SI unit \(1 \text{ a} = 100 \text{ m}^2 \) defined in 1879 is still in use, but in the tables of this book the convention is that \(1 \text{ a} \) will be the length of time of a (tropical) year.

* Although \(1 \text{ Å}, 1 \text{ mA}, \text{ etc.} \) are acceptable, we tried to avoid them as much as possible.

— In any case, SI unit symbols of a certain quantity should not be mixed with non-SI symbols in one chapter.

* If, for special reasons, non-SI units have to be used, an explicit definition in terms of SI units is required in principle, e.g., \(W = 1 \times 10^7 \text{ erg} (= 1 \text{ J}) \), when employing the centimetre-gram-second (CGS) system. In order to avoid too many

\(^2\text{The International Astronomical Union (IAU) decided to fix the astronomical unit (AU) at 149,597,870,700 m during its Beijing meeting in August 2012. The decision was based on a proposal by Pitjeva and Standish (2009).}\)
repetitions of such definitions, the most common deviations from SI are compiled in Table 41.3.

** Equations and relations:**

* Approximately: \(\approx \); proportional: \(\sim \) or better \(\propto \).

** The differential symbol, “d” is written in roman style, i.e.,

\[
\frac{d \exp(x)}{dx} = e^x \quad \text{and} \quad \int \cos x \, dx = \sin x.
\]

** General:**

** Differentiate between “radiance” for measurements with spatial resolution and “intensity” without spatial resolution (cf., Table 41.4).

* In the context of radiometry the quantity to describe a detector response is called “responsivity” and should be preferred over the much more general expression “sensitivity”.

— A prefix cannot stand alone, nor can it be combined with another prefix (cf., Table 41.1).

** The decimal marker is a point on the line in publications in English.

— No comma is inserted between groups of three digits,

* but a small space can be introduced (as in 11222.33344455).

** In the context of calibrated measurements an uncertainty definition is required. The distinction between “accuracy” and “precision” should be kept in mind. Precision is related to an inherent consistency of a data set, whereas accuracy refers back to a standard. The standard uncertainty (i.e., the estimated standard deviation) has a coverage factor of \(k = 1 \) (1 \(\sigma \) in old, but still acceptable, notation) and is denoted by \(u \). Uncertainties can also be given with \(k = 2 \) (2 \(\sigma \)) or \(k = 3 \) (3 \(\sigma \), as required, but this has to be indicated (conveniently by \(U = k u \); \(k = 2, 3, \ldots \)).

As an example, the Newtonian constant of gravitation, \(G \), will be considered: after 2010 CODATA (Committee on Data for Science and Technology) it is

\[
G = \left(6.673 \; 84(80) \times 10^{-11}\right) \; \text{m}^3\text{kg}^{-1}\text{s}^{-2}, \text{ which is equivalent to } G = \left(6.673 \; 84 \pm 0.00084\right) \times 10^{-11} \; \text{m}^3\text{kg}^{-1}\text{s}^{-2}\;
\]

or \(u(G) = 8.0 \times 10^{-15} \; \text{m}^3\text{kg}^{-1}\text{s}^{-2} \), see also Mohr et al. (2008).

The same information can be conveyed in the form of a relative uncertainty

\[
u_r(G) = u(G)/G = 0.00012 = 0.012 \% \quad \text{or} \quad U_r(G) = 0.024 \%; \quad k = 2.
\]

Contrary to many statements in the literature, an accuracy and not a precision is defined by the relative standard uncertainty.
Table 41.4: Examples of physical quantities without special unit symbols

<table>
<thead>
<tr>
<th>Quantity and symbol</th>
<th>Unit name</th>
<th>Unit symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat flux density(^a), irradiance, (E)</td>
<td>watt per square metre</td>
<td>W m(^{-2})</td>
</tr>
<tr>
<td>Energy density(^b), (w)</td>
<td>joule per cubic metre</td>
<td>J/m(^3) or J m(^{-3})</td>
</tr>
<tr>
<td>Radiance, (L)</td>
<td>watt per square metre and steradian</td>
<td>W m(^{-2}) sr(^{-1})</td>
</tr>
<tr>
<td>Spectral radiance, (L_{\lambda})</td>
<td>watt per square metre, steradian, and metre</td>
<td>W m(^{-2}) sr(^{-1}) m(^{-1})</td>
</tr>
<tr>
<td>Radiant intensity, (I)</td>
<td>watt per steradian</td>
<td>W sr(^{-1})</td>
</tr>
</tbody>
</table>

\(^a\) In the official French document: flux thermique surfacique; \(^b\) energie volumique.

* In order to assign lines to the spectrum of a given element and ionisation stage, one uses the convention that the spectrum of an atom (e.g., carbon) is called C\(1\), the first spectrum of the element. The singly-charged carbon ion, C\(^+\), emits the C\(1\) spectrum, etc. A spectral line is identified by the spectrum and its wavelength. Astronomers use brackets to indicate that a line belongs to a forbidden transition (usually involving a quadrupole rather than a dipole transition); thus one may speak of a [S\(iv\)] line at 10.5 \(\mu\)m.

Final remark

The nature of this publication, with many figures and diagrams taken from the literature, unfortunately but necessarily led to many deviations from SI rules since it is impractical to redraw existing figures. Nevertheless, the editors want to stress that SI defines the rules of the future, and must be respected as far as possible under given circumstances. Common usage within a discipline in the past is certainly not a sufficient justification for ignoring SI rules.

References

List of missions and acronyms

Missions
ACE Advanced Composition Explorer
AGILE Astro-rivelatore Gamma a Immagini Leggero, Italian high-energy astrophysics mission
AKARI Japanese space mission for infrared astronomy, formerly Astro-F
ASCE Advanced Spectroscopic and Coronagraphic Explorer
Aura NASA mission for atmospheric physics
AXAF Advanced X-ray Astrophysics Facility, now Chandra
BeppoSAX Italian-Dutch satellite for X-ray astronomy
Cassini NASA mission to Saturn
CGRO Compton Gamma-Ray Observatory
Chandra X-ray observatory, formerly AXAF
CHASE Coronal Helium Abundance Spacelab Experiment
COBE Cosmic Background Explorer
CorE Cosmic Origins Explorer
CORONAS Complex Orbital Near-Earth Observations of the Solar Activity
COROT Convection, Rotation and planetary Transits
CubeSat Series of mini-satellites (10 cm per side) for educational purposes
DART Demonstration for Autonomous Rendezvous Technology
ERS-1/2 Earth Remote Sensing satellites
EURECA European Retrievable Carrier
EUVE Extreme Ultraviolet Explorer
EXOSAT European X-ray Observatory Satellite
Fermi Gamma-ray Space Telescope, formerly GLAST
FIRI Far Infrared Interferometer
FUSE Far-Ultraviolet Spectroscopic Explorer
GALEX Galaxy Evolution Explorer
GEMS Gravity and Extreme Magnetism Small Explorer
GLAST Gamma-ray Space Telescope, now Fermi
GOCE Gravity field and steady-state Ocean Circulation Explorer
GOES Geostationary Orbiting Earth Satellite
GRACE Gravity Recovery and Climate Experiment
GRAIL Gravity Recovery And Interior Laboratory
GRANAT Russian X-ray satellite
GRIPS Gamma-Ray Imaging, Polarimetry and Spectroscopy mission
GRI Gamma-Ray Imager
HALCA Highly Advanced Laboratory for Communications and Astronomy
HEAO High Energy Astronomy Observatories
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HETE</td>
<td>High Energy Transient Explorer</td>
</tr>
<tr>
<td>Hinode</td>
<td>Solar observatory, formerly Solar-B</td>
</tr>
<tr>
<td>Hipparcos</td>
<td>High Precision Parallax Collecting Satellite</td>
</tr>
<tr>
<td>HSM</td>
<td>HST Servicing Mission</td>
</tr>
<tr>
<td>HST</td>
<td>Hubble Space Telescope</td>
</tr>
<tr>
<td>IMAGE</td>
<td>Imager for Magnetopause-to-Aurora Global Exploration</td>
</tr>
<tr>
<td>IMP</td>
<td>Interplanetary Monitoring Platform</td>
</tr>
<tr>
<td>INTEGRAL</td>
<td>International Gamma-Ray Astrophysics Laboratory</td>
</tr>
<tr>
<td>IRAS</td>
<td>Infrared Astronomy Satellite</td>
</tr>
<tr>
<td>IRIS</td>
<td>Interface Region Imaging Spectrograph</td>
</tr>
<tr>
<td>IRTS</td>
<td>Infrared Telescope in Space</td>
</tr>
<tr>
<td>ISEE</td>
<td>International Sun Earth Explorer</td>
</tr>
<tr>
<td>ISO</td>
<td>Infrared Space Observatory</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>IUE</td>
<td>International Ultraviolet Explorer</td>
</tr>
<tr>
<td>IXO</td>
<td>International X-ray Observatory</td>
</tr>
<tr>
<td>JWST</td>
<td>James Webb Space Telescope</td>
</tr>
<tr>
<td>LISA</td>
<td>Laser Interferometer Space Antenna</td>
</tr>
<tr>
<td>Magellan</td>
<td>NASA mission to Venus</td>
</tr>
<tr>
<td>MIDEX</td>
<td>Medium-class Explorer Mission</td>
</tr>
<tr>
<td>MSG</td>
<td>Meteosat Second Generation</td>
</tr>
<tr>
<td>MSX</td>
<td>Midcourse Space Experiment</td>
</tr>
<tr>
<td>NuSTAR</td>
<td>Nuclear Spectroscopic Telescope Array</td>
</tr>
<tr>
<td>OAO</td>
<td>Orbiting Astronomical Observatory</td>
</tr>
<tr>
<td>OSO</td>
<td>Orbiting Solar Observatory</td>
</tr>
<tr>
<td>Proba</td>
<td>Project for On-Board Autonomy</td>
</tr>
<tr>
<td>RHESSI</td>
<td>Reuven Ramaty High Energy Solar Spectroscopic Imager</td>
</tr>
<tr>
<td>ROSAT</td>
<td>Röntgensatellit</td>
</tr>
<tr>
<td>RXTE</td>
<td>Rossi X-ray Timing Explorer</td>
</tr>
<tr>
<td>SAS</td>
<td>Small Astronomy Satellite</td>
</tr>
<tr>
<td>SDO</td>
<td>Solar Dynamics Observatory</td>
</tr>
<tr>
<td>SFU</td>
<td>Space Flyer Unit</td>
</tr>
<tr>
<td>SIM</td>
<td>Space Interferometry Mission, SIM PlanetQuest</td>
</tr>
<tr>
<td>SIRTF</td>
<td>Space Infrared Telescope Facility, now Spitzer</td>
</tr>
<tr>
<td>SMART</td>
<td>Small Missions for Advanced Research in Technology</td>
</tr>
<tr>
<td>SMEX</td>
<td>Small Explorer Mission</td>
</tr>
<tr>
<td>SMM</td>
<td>Solar Maximum Mission</td>
</tr>
<tr>
<td>SNAP</td>
<td>Supernova Acceleration Probe</td>
</tr>
<tr>
<td>SOHO</td>
<td>Solar and Heliospheric Observatory</td>
</tr>
<tr>
<td>SORCE</td>
<td>Solar Radiation and Climate Experiment</td>
</tr>
<tr>
<td>Spacelab</td>
<td>Laboratory for use on Space Shuttle flights</td>
</tr>
<tr>
<td>SPARTAN</td>
<td>Shuttle-launched satellites for solar studies</td>
</tr>
<tr>
<td>SPECS</td>
<td>Submillimeter Probe of the Evolution of Cosmic Structure</td>
</tr>
<tr>
<td>SPIRICA</td>
<td>Space Infrared telescope for Cosmology and Astrophysics</td>
</tr>
<tr>
<td>SPIRIT</td>
<td>Space Infrared Interferometric Telescope</td>
</tr>
<tr>
<td>Spitzer</td>
<td>Space Infrared Telescope Facility, formerly SIRTF</td>
</tr>
<tr>
<td>SRG</td>
<td>Spectrum-Röntgen-Gamma</td>
</tr>
</tbody>
</table>
STEREO Solar Terrestrial Relations Observatory
STS Space Transportation System
Suzaku Japanese X-ray astronomy mission, formerly *Astro-E2*
SWAS Submillimeter Wave Astronomy Satellite
Swift NASA Gamma-Ray Burst Mission
TDRSS Tracking and Data Relay Satellite System
TIMED Thermosphere, Ionosphere and Mesosphere Energetics and Dynamics mission
TOPEX Topology Ocean Experiment
TRACE Transition Region and Coronal Explorer
TSRSS Tracking and Data Relay Satellite System
UARS Upper Atmosphere Research Satellite
WIRE Wide Field Infrared Explorer
WMAP Wilkinson Microwave Anisotropy Probe
XEUS X-Ray Evolving Universe Spectroscopy Mission
XMM-Newton X-ray Multi-Mirror Mission
Yohkoh Solar X-ray observatory

General
AAE Absolute attitude error
AAME Absolute attitude measurement error
AAS Absolute attitude stability
AC Autocorrelator and alternating current
ACBAR Arcminute Cosmology Bolometer Array Receiver
ACRIM Active Cavity Radiometer Irradiance Monitor
ACS Advanced Camera for Surveys
ADC Analogue-to-digital converter
ADR Adiabatic demagnetization refrigerator
ADS Astrophysics Data System
AFB Airforce base
AGC Automatic gain control
AGN Active galactic nucleus
AIA Atmospheric Imaging Assembly
AIV Assembly, integration and verification
AKR (Terrestrial) auroral kilometric radiation
ALMA Atacama Large Millimeter/submillimeter Array
AMR Advanced Microwave Radiometer
AO Adaptive optics
AOS Acousto-optical spectrometer
APEX Atacama Pathfinder Experiment
APS Active pixel sensor
AR Active region and anti-reflective
ASAR Advanced Synthetic Aperture Radar
ASI Agenzia Spaziale Italiana
ASIC Application specific integrated circuit
ATM Apollo Telescope Mount
BAT Burst Alert Telescope
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BATSE</td>
<td>Burst And Transient Source Experiment</td>
</tr>
<tr>
<td>BCS</td>
<td>Bragg Crystal Spectrometer and bent crystal spectrometer</td>
</tr>
<tr>
<td>BGO</td>
<td>Bismuth germanate, $\text{Bi}_4\text{Ge}3\text{O}{12}$</td>
</tr>
<tr>
<td>BIB</td>
<td>Blocked impurity band</td>
</tr>
<tr>
<td>BICEP</td>
<td>Background Imaging of Cosmic Extragalactic Polarization</td>
</tr>
<tr>
<td>BIPM</td>
<td>Bureau International des Poids et Mesures</td>
</tr>
<tr>
<td>BLAST</td>
<td>Balloon-borne Large-Aperture Submillimetre Telescope</td>
</tr>
<tr>
<td>BMDO</td>
<td>Ballistic Missile Defense Organization</td>
</tr>
<tr>
<td>BOLD</td>
<td>Blind to optical light detector</td>
</tr>
<tr>
<td>BRAIN</td>
<td>B-mode Radiation Interferometer</td>
</tr>
<tr>
<td>BUSS</td>
<td>Balloon-borne Ultraviolet Stellar Spectrograph</td>
</tr>
<tr>
<td>cBN</td>
<td>Cubic BN, cubic boron nitride</td>
</tr>
<tr>
<td>CCD</td>
<td>Charge-coupled device</td>
</tr>
<tr>
<td>CDS</td>
<td>Coronal Diagnostic Spectrometer</td>
</tr>
<tr>
<td>CEM</td>
<td>Channel electron multiplier</td>
</tr>
<tr>
<td>CERN</td>
<td>Conseil Européen pour la Recherche Nucléaire</td>
</tr>
<tr>
<td>CFC</td>
<td>Chlorofluorocarbon</td>
</tr>
<tr>
<td>CFRP</td>
<td>Carbon fibre reinforced plastic</td>
</tr>
<tr>
<td>CG</td>
<td>Centre of gravity</td>
</tr>
<tr>
<td>CHASE</td>
<td>Coronal Helium Abundance Spacelab Experiment</td>
</tr>
<tr>
<td>CHIANTI</td>
<td>An atomic database for spectroscopic diagnostics of astrophysical plasmas</td>
</tr>
<tr>
<td>CID</td>
<td>Charge induction device</td>
</tr>
<tr>
<td>CIRS</td>
<td>Composite Infrared Spectrometer</td>
</tr>
<tr>
<td>CLOVER</td>
<td>Ground-based telescope to detect the imprint of inflationary gravity waves on the polarisation of the CMB</td>
</tr>
<tr>
<td>CMA</td>
<td>Channel multiplier array</td>
</tr>
<tr>
<td>CMB</td>
<td>Cosmic Microwave Background</td>
</tr>
<tr>
<td>CME</td>
<td>Coronal mass ejection</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary metal oxide superconductor</td>
</tr>
<tr>
<td>CNES</td>
<td>Centre National d’Etudes Spatiales</td>
</tr>
<tr>
<td>CNM</td>
<td>Cold neutral medium</td>
</tr>
<tr>
<td>CNRS</td>
<td>Centre National de la Recherche Scientifique</td>
</tr>
<tr>
<td>CODACON</td>
<td>Coded anode converter</td>
</tr>
<tr>
<td>COMPTEL</td>
<td>Imaging Compton Telescope</td>
</tr>
<tr>
<td>COS</td>
<td>Cosmic Origins Spectrograph</td>
</tr>
<tr>
<td>COSPAR</td>
<td>Committee on Space Research</td>
</tr>
<tr>
<td>COSTAR</td>
<td>Corrective Optics Space Telescope Axial Replacement</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation, Australia</td>
</tr>
<tr>
<td>CTE</td>
<td>Charge transfer efficiency and thermal expansion coefficient</td>
</tr>
<tr>
<td>CTI</td>
<td>Charge transfer inefficiency</td>
</tr>
<tr>
<td>CTIA</td>
<td>Capacitive transimpedance amplifier</td>
</tr>
<tr>
<td>CVD</td>
<td>Chemical vapour deposition</td>
</tr>
<tr>
<td>CZT</td>
<td>Cadmium zinc telluride ($\text{Cd}_{1-x}\text{Zn}_x\text{Te}$)</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Project Agency</td>
</tr>
<tr>
<td>DASI</td>
<td>Degree Angular Scale Interferometer</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>DC</td>
<td>Direkt current</td>
</tr>
<tr>
<td>DDL</td>
<td>Double-delay line</td>
</tr>
<tr>
<td>DECT</td>
<td>Digital enhanced cordless telecommunications</td>
</tr>
<tr>
<td>DEM</td>
<td>Differential emission measure</td>
</tr>
<tr>
<td>DF</td>
<td>Dielectric filter</td>
</tr>
<tr>
<td>DIRBE</td>
<td>Diffuse Infrared Background Experiment</td>
</tr>
<tr>
<td>DLR</td>
<td>Deutsches Luft- und Raumfahrtzentrum</td>
</tr>
<tr>
<td>DMR</td>
<td>Differential Microwave Radiometer</td>
</tr>
<tr>
<td>DORIS</td>
<td>Doppler Orbitography and Radio-positioning Integrated by Satellite</td>
</tr>
<tr>
<td>DPU</td>
<td>Data processing unit</td>
</tr>
<tr>
<td>DQE</td>
<td>Detective quantum efficiency</td>
</tr>
<tr>
<td>DROID</td>
<td>Distributed read-out imaging device</td>
</tr>
<tr>
<td>DRT</td>
<td>Decoupled ring technique</td>
</tr>
<tr>
<td>EBIT</td>
<td>Electron Beam Ion Trap (facility, LLNL)</td>
</tr>
<tr>
<td>EBS</td>
<td>Electron-bombarded silicon</td>
</tr>
<tr>
<td>ECR</td>
<td>Electrically calibrated radiometer</td>
</tr>
<tr>
<td>ECS</td>
<td>EBIT calorimeter spectrometer</td>
</tr>
<tr>
<td>EE</td>
<td>Encircled energy</td>
</tr>
<tr>
<td>EGRET</td>
<td>Energetic Gamma Ray Experiment Telescope</td>
</tr>
<tr>
<td>EGS</td>
<td>Extreme-ultraviolet Grating Spectrograph</td>
</tr>
<tr>
<td>EIS</td>
<td>EUV Imaging Spectrometer</td>
</tr>
<tr>
<td>EISM</td>
<td>Equal index solid Michelson (interferometer)</td>
</tr>
<tr>
<td>EIT</td>
<td>Extreme-ultraviolet Imaging Telescope</td>
</tr>
<tr>
<td>EM</td>
<td>Emission measure</td>
</tr>
<tr>
<td>EOF</td>
<td>Experimenters’ operation facility</td>
</tr>
<tr>
<td>EPIC</td>
<td>European Photon Imaging Camera</td>
</tr>
<tr>
<td>ePSF</td>
<td>Effective PSF</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>ESRO</td>
<td>European Space Research Organisation, now part of ESA</td>
</tr>
<tr>
<td>ESTEC</td>
<td>European Space Research and Technology Centre, ESA</td>
</tr>
<tr>
<td>ETH</td>
<td>Eidgenössische Technische Hochschule, Zürich</td>
</tr>
<tr>
<td>EUNIS</td>
<td>(Solar) EUV Normal-Incidence Spectrometer</td>
</tr>
<tr>
<td>EUV</td>
<td>Extreme ultraviolet</td>
</tr>
<tr>
<td>EUVI</td>
<td>EUV Imager</td>
</tr>
<tr>
<td>FEEP</td>
<td>Field emission electric propulsion</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier transform</td>
</tr>
<tr>
<td>FIFI</td>
<td>Far Infrared Imaging Fabry–Perot Interferometer</td>
</tr>
<tr>
<td>FILM</td>
<td>Far-Infrared Line Mapper</td>
</tr>
<tr>
<td>FIP</td>
<td>First-ionization potential</td>
</tr>
<tr>
<td>FIR</td>
<td>Far infrared</td>
</tr>
<tr>
<td>FIRAS</td>
<td>Far Infrared Absolute Spectrophotometer</td>
</tr>
<tr>
<td>FIRP</td>
<td>Far IR Photometer</td>
</tr>
<tr>
<td>FIS</td>
<td>Far Infrared Surveyor</td>
</tr>
<tr>
<td>FOC</td>
<td>Faint Object Camera</td>
</tr>
<tr>
<td>FOT</td>
<td>Flight operations team</td>
</tr>
<tr>
<td>FOV</td>
<td>Field of view</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>FP</td>
<td>Fabry–Perot</td>
</tr>
<tr>
<td>FPA</td>
<td>Focal plane array</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field programmable gate array</td>
</tr>
<tr>
<td>FPI</td>
<td>Fabry–Perot interferometer</td>
</tr>
<tr>
<td>FTS</td>
<td>Fourier transform spectrometer</td>
</tr>
<tr>
<td>FUSEP</td>
<td>Far-Ultraviolet Spectropolarimeter</td>
</tr>
<tr>
<td>FUV</td>
<td>Far ultraviolet</td>
</tr>
<tr>
<td>FWHM</td>
<td>Full width at half maximum</td>
</tr>
<tr>
<td>GEANT</td>
<td>Geometry and Tracking</td>
</tr>
<tr>
<td>GEM</td>
<td>Gas electron multiplier</td>
</tr>
<tr>
<td>GEO</td>
<td>Geosynchronous orbit</td>
</tr>
<tr>
<td>GEC</td>
<td>Galileo Electro-Optics Corporation</td>
</tr>
<tr>
<td>GFRP</td>
<td>Glass fibre reinforced plastic</td>
</tr>
<tr>
<td>GHRS</td>
<td>Goddard High Resolution Spectrograph</td>
</tr>
<tr>
<td>GI</td>
<td>Grazing incidence</td>
</tr>
<tr>
<td>GMES</td>
<td>Global Monitoring for Environmental Security</td>
</tr>
<tr>
<td>GP</td>
<td>Goniopolarimetry</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GPSP</td>
<td>Global Positioning System Payload</td>
</tr>
<tr>
<td>GRAPE</td>
<td>Gamma Ray Polarimeter Experiment</td>
</tr>
<tr>
<td>GRB</td>
<td>Gamma ray burst</td>
</tr>
<tr>
<td>GSFC</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>GSO</td>
<td>Gadolinium orthosilicate, Gd$_2$SiO$_5$</td>
</tr>
<tr>
<td>GTO</td>
<td>Geosynchronous transfer orbit</td>
</tr>
<tr>
<td>HAWC</td>
<td>High-resolution Airborne Wideband Camera</td>
</tr>
<tr>
<td>HCO</td>
<td>Harvard College Observatory</td>
</tr>
<tr>
<td>HEB</td>
<td>Hot electron bolometer</td>
</tr>
<tr>
<td>HEFT</td>
<td>High Energy Focusing Telescope</td>
</tr>
<tr>
<td>HEMT</td>
<td>High Electron Mobility Transistor</td>
</tr>
<tr>
<td>HEO</td>
<td>Highly eccentric orbit</td>
</tr>
<tr>
<td>HEP</td>
<td>High-efficiency particle air (filter)</td>
</tr>
<tr>
<td>HESS</td>
<td>High Energy Stereoscopic System</td>
</tr>
<tr>
<td>HEXTE</td>
<td>High-Energy X-ray Timing Experiment</td>
</tr>
<tr>
<td>HFI</td>
<td>High Frequency Instrument</td>
</tr>
<tr>
<td>HIFI</td>
<td>Heterodyne Instrument for the Far-Infrared</td>
</tr>
<tr>
<td>HMI</td>
<td>Helioseismic and Magnetic Imager for SDO</td>
</tr>
<tr>
<td>HPF</td>
<td>High-level Processing Facilities (ESA)</td>
</tr>
<tr>
<td>HRC</td>
<td>High Resolution Camera</td>
</tr>
<tr>
<td>HRDI</td>
<td>High Resolution Doppler Imager</td>
</tr>
<tr>
<td>HRI</td>
<td>High Resolution Imager</td>
</tr>
<tr>
<td>HRTS</td>
<td>High Resolution Telescope and Spectrograph</td>
</tr>
<tr>
<td>HV</td>
<td>High voltage</td>
</tr>
<tr>
<td>HXD</td>
<td>Hard X-ray Detector</td>
</tr>
<tr>
<td>IAF</td>
<td>International Astronautical Federation</td>
</tr>
<tr>
<td>IAU</td>
<td>International Astronomical Union</td>
</tr>
<tr>
<td>IAPS</td>
<td>Intensified active pixel sensor</td>
</tr>
<tr>
<td>IBIS</td>
<td>Imager on Board the INTEGRAL Spacecraft</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>ICCD</td>
<td>Intensified charge coupled device</td>
</tr>
<tr>
<td>IF</td>
<td>Intermediate frequency</td>
</tr>
<tr>
<td>IFU</td>
<td>Integral field unit</td>
</tr>
<tr>
<td>IMO</td>
<td>Inverted-mode operation</td>
</tr>
<tr>
<td>InSAR</td>
<td>Interferometric synthetic aperture radar</td>
</tr>
<tr>
<td>IP</td>
<td>Ionization potential</td>
</tr>
<tr>
<td>IPS</td>
<td>Instrument pointing system</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>IRAM</td>
<td>Institut de Radioastronomie Millimétrique</td>
</tr>
<tr>
<td>IRMB</td>
<td>Institut Royal Météorologique de Belgique</td>
</tr>
<tr>
<td>ISAS</td>
<td>Institute of Space and Astronautical Science, Japan</td>
</tr>
<tr>
<td>ISM</td>
<td>Interstellar Medium</td>
</tr>
<tr>
<td>ISOCAM</td>
<td>Camera on ISO</td>
</tr>
<tr>
<td>ISOPHOT</td>
<td>Imaging photo-polarimeter on ISO</td>
</tr>
<tr>
<td>ISRO</td>
<td>Indian Space Research Organisation</td>
</tr>
<tr>
<td>ISSI</td>
<td>International Space Science Institute</td>
</tr>
<tr>
<td>IXPS</td>
<td>Imaging X-ray Polarimeter for Solar Flares</td>
</tr>
<tr>
<td>J-PEX</td>
<td>Joint astrophysical Plasmadynamic Experiment</td>
</tr>
<tr>
<td>JAXA</td>
<td>Japan Aerospace Exploration Agency</td>
</tr>
<tr>
<td>JFET</td>
<td>Junction field effect transistors</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>KAO</td>
<td>Kuiper Airborne Observatory</td>
</tr>
<tr>
<td>KOG</td>
<td>Kilometric optical gyro</td>
</tr>
<tr>
<td>LASCO</td>
<td>Large Angle Spectroscopic Coronagraph</td>
</tr>
<tr>
<td>LASP</td>
<td>Laboratory for Atmospheric and Space Physics</td>
</tr>
<tr>
<td>LAT</td>
<td>Large Area Telescope</td>
</tr>
<tr>
<td>LEO</td>
<td>Low Earth orbit</td>
</tr>
<tr>
<td>LEP</td>
<td>Laboratoires d’Electronique et de Physique Appliquée</td>
</tr>
<tr>
<td>LESIA</td>
<td>Laboratoire d’études spatiales et d’instrumentation en astrophysique</td>
</tr>
<tr>
<td>LFI</td>
<td>Low Frequency Instrument</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>LMSAL</td>
<td>Lockheed Martin Solar and Astrophysics Laboratory</td>
</tr>
<tr>
<td>LNA</td>
<td>Low-noise amplifier</td>
</tr>
<tr>
<td>LO</td>
<td>Local oscillator</td>
</tr>
<tr>
<td>LOS</td>
<td>Line of sight</td>
</tr>
<tr>
<td>LRA</td>
<td>Laser Retroreflector Array</td>
</tr>
<tr>
<td>LSF</td>
<td>Line spread function</td>
</tr>
<tr>
<td>LWIR</td>
<td>Long-wave IR</td>
</tr>
<tr>
<td>LWS</td>
<td>Long Wavelength Spectrometer</td>
</tr>
<tr>
<td>LYRA</td>
<td>Lyman Alpha Radiometer</td>
</tr>
<tr>
<td>MAGIC</td>
<td>Major Atmospheric Gamma Imaging Cherenkov telescope</td>
</tr>
<tr>
<td>MAMA</td>
<td>Multi-Anode Microchannel Array</td>
</tr>
<tr>
<td>MBE</td>
<td>Molecular beam epitaxy</td>
</tr>
<tr>
<td>MBI</td>
<td>Millimeter-Wave Bolometric Interferometer</td>
</tr>
<tr>
<td>MCP</td>
<td>Microchannel plate</td>
</tr>
<tr>
<td>MCS</td>
<td>Multi-channel spectrometer</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MDI</td>
<td>Michelson Doppler Imager</td>
</tr>
<tr>
<td>MEGA</td>
<td>Medium Energy Gamma-Ray Astronomy experiment</td>
</tr>
<tr>
<td>MEM</td>
<td>Magnetic electron multiplier</td>
</tr>
<tr>
<td>MEMS</td>
<td>Micro-electro-mechanical systems</td>
</tr>
<tr>
<td>MI</td>
<td>Michelson interferometer</td>
</tr>
<tr>
<td>MIPS</td>
<td>Multiband Imaging Photometer for Spitzer</td>
</tr>
<tr>
<td>MIR</td>
<td>Mid infrared</td>
</tr>
<tr>
<td>MIRI</td>
<td>Mid-Infrared Instrument</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MKID</td>
<td>Microwave kinetic inductance detector</td>
</tr>
<tr>
<td>MLI</td>
<td>Multilayer insulation</td>
</tr>
<tr>
<td>MLS</td>
<td>Microwave Limb Sounder</td>
</tr>
<tr>
<td>MMC</td>
<td>Metallic magnetic calorimeter</td>
</tr>
<tr>
<td>MOSFET</td>
<td>Metal oxide semiconductor field-effect transistor</td>
</tr>
<tr>
<td>MIPS</td>
<td>Max-Planck-Institut für Sonnensystemforschung, formerly Max-Planck-Institut für Aeronomie (MPAE)</td>
</tr>
<tr>
<td>MSDP</td>
<td>Multi channel subtraction double pass</td>
</tr>
<tr>
<td>MSM</td>
<td>Metal-semiconductor-metal</td>
</tr>
<tr>
<td>MSSL</td>
<td>Mullard Space Science Laboratory</td>
</tr>
<tr>
<td>MSSTA</td>
<td>Multi-Spectral Solar Telescope Array</td>
</tr>
<tr>
<td>MUV</td>
<td>Medium ultraviolet</td>
</tr>
<tr>
<td>MWIR</td>
<td>Mid-wave MW</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration (US)</td>
</tr>
<tr>
<td>NBS</td>
<td>National Bureau of Standards, now NIST</td>
</tr>
<tr>
<td>NCT</td>
<td>Nuclear Compton Telescope</td>
</tr>
<tr>
<td>NEP</td>
<td>Noise equivalent power</td>
</tr>
<tr>
<td>NETD</td>
<td>Noise equivalent temperature difference</td>
</tr>
<tr>
<td>NGC</td>
<td>New General Catalogue (of nebulae and clusters of stars)</td>
</tr>
<tr>
<td>NI</td>
<td>Normal incidence</td>
</tr>
<tr>
<td>NICMOS</td>
<td>Near Infrared Camera and Multi-Object Spectrometer</td>
</tr>
<tr>
<td>NIR</td>
<td>Near infrared</td>
</tr>
<tr>
<td>NIRSpec</td>
<td>Near infrared multiobject dispersive spectrograph to be flown on the JWST</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology (US)</td>
</tr>
<tr>
<td>NIXT</td>
<td>Normal Incidence X-ray Telescope</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration (US)</td>
</tr>
<tr>
<td>NOAO</td>
<td>National Optical Astronomy Observatory</td>
</tr>
<tr>
<td>NRL</td>
<td>Naval Research Laboratory (US)</td>
</tr>
<tr>
<td>NSF</td>
<td>National Science Foundation</td>
</tr>
<tr>
<td>NSSDC</td>
<td>National Space Science Data Center (US)</td>
</tr>
<tr>
<td>NTD</td>
<td>Neutron-transmutation-doped</td>
</tr>
<tr>
<td>NUV</td>
<td>Near ultraviolet</td>
</tr>
<tr>
<td>OIR</td>
<td>Optical infrared</td>
</tr>
<tr>
<td>OMT</td>
<td>Orthomode-transducer</td>
</tr>
<tr>
<td>Acronyms</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>OPD</td>
<td>Optical path difference</td>
</tr>
<tr>
<td>OSC</td>
<td>Orbital Science Corporation</td>
</tr>
<tr>
<td>OSSE</td>
<td>Oriented Scintillation Spectrometer Experiment</td>
</tr>
<tr>
<td>PA</td>
<td>Power amplifier</td>
</tr>
<tr>
<td>PACS</td>
<td>Photodetector Array Camera and Spectrometer for Herschel</td>
</tr>
<tr>
<td>PAH</td>
<td>Polycyclic aromatic hydrocarbon</td>
</tr>
<tr>
<td>PDF</td>
<td>Probability density function</td>
</tr>
<tr>
<td>PDR</td>
<td>Photodissociation region</td>
</tr>
<tr>
<td>PEM</td>
<td>Piezoelectric modulator</td>
</tr>
<tr>
<td>PFO</td>
<td>Particle fall out</td>
</tr>
<tr>
<td>PHOTICON</td>
<td>Resistive anode encoder (with special photocathodes)</td>
</tr>
<tr>
<td>PI</td>
<td>Proportional-integral</td>
</tr>
<tr>
<td>PIN</td>
<td>p-type/intrinsic/n-type semiconductor (diode)</td>
</tr>
<tr>
<td>PIXIE</td>
<td>Pixel Imaging Experiment, now POLARIX</td>
</tr>
<tr>
<td>PMOD/WRC</td>
<td>Physikalisch-Meteorologisches Observatorium Davos / World Radiation Center</td>
</tr>
<tr>
<td>PMT</td>
<td>Photo-multiplier tube</td>
</tr>
<tr>
<td>PoGO</td>
<td>Polarized Gamma-ray Observer</td>
</tr>
<tr>
<td>POLAR</td>
<td>Space-borne hard X-ray polarimeter dedicated to the polarisation measurement of GRBs</td>
</tr>
<tr>
<td>POLRAD</td>
<td>Experiment to measure power spectra and polarisation of the auroral kilometric radiation (AKR)</td>
</tr>
<tr>
<td>PSB</td>
<td>Polarization-Sensitive Bolometer</td>
</tr>
<tr>
<td>PSD</td>
<td>Phase-sensitive detector</td>
</tr>
<tr>
<td>PSF</td>
<td>Point spread function</td>
</tr>
<tr>
<td>PSI</td>
<td>Paul Scherrer Institut</td>
</tr>
<tr>
<td>QCL</td>
<td>Quantum-cascade laser</td>
</tr>
<tr>
<td>QCM</td>
<td>Quartz crystal micro balance</td>
</tr>
<tr>
<td>QE</td>
<td>Quantum efficiency</td>
</tr>
<tr>
<td>QP</td>
<td>Quasi-particle</td>
</tr>
<tr>
<td>QuAD</td>
<td>Quest At DASI</td>
</tr>
<tr>
<td>QUIET</td>
<td>Q/U Imaging Experiment</td>
</tr>
<tr>
<td>RAE</td>
<td>Resistive anode encoder and relative attitude error</td>
</tr>
<tr>
<td>RAISE</td>
<td>Rapid Acquisition Imaging Spectrograph</td>
</tr>
<tr>
<td>RAL</td>
<td>Rutherford Appleton Laboratory</td>
</tr>
<tr>
<td>RAME</td>
<td>Relative attitude measurement error</td>
</tr>
<tr>
<td>RANICON</td>
<td>Resistive anode encoder</td>
</tr>
<tr>
<td>RAS</td>
<td>Relative attitude stability</td>
</tr>
<tr>
<td>RDE</td>
<td>Relative displacement error</td>
</tr>
<tr>
<td>RDME</td>
<td>Relative displacement measurement error</td>
</tr>
<tr>
<td>RDS</td>
<td>Relative displacement stability</td>
</tr>
<tr>
<td>RESIK</td>
<td>Rentgenovsky Spektrometr s Izognutymi Kristalami</td>
</tr>
<tr>
<td>RGA</td>
<td>Residual gas analyzer</td>
</tr>
<tr>
<td>RGS</td>
<td>Reflection Grating Spectrometer</td>
</tr>
<tr>
<td>RMC</td>
<td>Rotation Modulation Collimator</td>
</tr>
<tr>
<td>RMS</td>
<td>Root mean square</td>
</tr>
<tr>
<td>ROIC</td>
<td>Readout integrated circuit</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>RTG</td>
<td>Radioisotope thermoelectric generators</td>
</tr>
<tr>
<td>RTS</td>
<td>Random telegraph signal</td>
</tr>
<tr>
<td>SAA</td>
<td>South Atlantic Anomaly</td>
</tr>
<tr>
<td>SAFARI</td>
<td>SPICA Far-infrared Instrument</td>
</tr>
<tr>
<td>SAFIRE</td>
<td>Submillimeter and Far-Infrared Experiment</td>
</tr>
<tr>
<td>SAO</td>
<td>Smithsonian Astrophysical Observatory</td>
</tr>
<tr>
<td>SAR</td>
<td>Synthetic aperture radar</td>
</tr>
<tr>
<td>SBI</td>
<td>Solar Bolometric Imager</td>
</tr>
<tr>
<td>SCD</td>
<td>Swept charge device</td>
</tr>
<tr>
<td>SCIAMACHY</td>
<td>Scanning Imaging Absorption Spectrometer for Atmospheric Chartography</td>
</tr>
<tr>
<td>SDD</td>
<td>Silicon drift detector</td>
</tr>
<tr>
<td>SEC</td>
<td>Secondary Electron Conduction, method of intensifying in image tubes</td>
</tr>
<tr>
<td>SECCHI</td>
<td>Sun Earth Connection Coronal and Heliospheric Investigation</td>
</tr>
<tr>
<td>SEE</td>
<td>Solar EUV Experiment</td>
</tr>
<tr>
<td>SEL</td>
<td>Single-event latch-up</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope and Solar Extreme-ultraviolet Monitor</td>
</tr>
<tr>
<td>SERTS</td>
<td>Solar Extreme-ultraviolet Research Telescope and Spectrograph</td>
</tr>
<tr>
<td>SGR</td>
<td>Soft gamma repeater</td>
</tr>
<tr>
<td>SI</td>
<td>Système International d’Unités, International System of Units</td>
</tr>
<tr>
<td>SICDH</td>
<td>Science instruments command and data handling system</td>
</tr>
<tr>
<td>SIGMA</td>
<td>French telescope aboard GRANAT</td>
</tr>
<tr>
<td>SIS</td>
<td>Superconductor-insulator-superconductor</td>
</tr>
<tr>
<td>SLAC</td>
<td>Stanford Linear Accelerator Center</td>
</tr>
<tr>
<td>SN</td>
<td>Supernova</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
</tr>
<tr>
<td>SOC</td>
<td>Science operations coordinator</td>
</tr>
<tr>
<td>SOFIA</td>
<td>Stratospheric Observatory For Infrared Astronomy</td>
</tr>
<tr>
<td>SOLSTICE</td>
<td>Solar-Stellar Irradiance Comparison Experiment</td>
</tr>
<tr>
<td>SPAN</td>
<td>Spiral anode</td>
</tr>
<tr>
<td>SPENVIS</td>
<td>Space Environment Information System</td>
</tr>
<tr>
<td>SPI</td>
<td>Spectrometer on INTEGRAL</td>
</tr>
<tr>
<td>SPIFI</td>
<td>South Pole Imaging Fabry–Perot Interferometer</td>
</tr>
<tr>
<td>SPIRE</td>
<td>Spectral and Photometric Imaging Receiver</td>
</tr>
<tr>
<td>SPOrt</td>
<td>Sky Polarization Observatory</td>
</tr>
<tr>
<td>SQUID</td>
<td>Superconducting quantum interference device</td>
</tr>
<tr>
<td>SRC</td>
<td>Science Research Council (UK)</td>
</tr>
<tr>
<td>SRON</td>
<td>Netherlands Institute for Space Research</td>
</tr>
<tr>
<td>SSI</td>
<td>Solar spectral irradiance</td>
</tr>
<tr>
<td>SSPP</td>
<td>Solar/Stellar Pointing Platform</td>
</tr>
<tr>
<td>SST</td>
<td>Sea surface temperature and Swedish Solar Telescope</td>
</tr>
<tr>
<td>STFC</td>
<td>Science and Technology Facilities Council, UK</td>
</tr>
<tr>
<td>STIS</td>
<td>Space Telescope Imaging Spectrograph</td>
</tr>
<tr>
<td>STJ</td>
<td>Superconducting tunnel junction</td>
</tr>
</tbody>
</table>
STR Special theory of relativity
STScI Space Telescope Science Institute
SUMER Solar Ultraviolet Measurements of Emitted Radiation
SUMI Solar Ultraviolet Magnetograph Investigation
SURF Synchrotron Ultraviolet Radiation Facility
SUSIM Solar Ultraviolet Spectral Irradiance Monitor
SVD Singular value decomposition
SWB Spider-Web Bolometer
SWFM Solid wide field Michelson (interferometer)
SWIR Short-wave IR
SWS Short Wavelength Spectrometer
SXT Soft X-ray Telescope
TAI Temps atomique international, international atomic time
TDI Time, delay and integrate (mode)
TDM Time division multiplexer
TDMA Time division multiple access
TEMS Transition-Edge Microcalorimeter Spectrometer
TES Transition-edge sensor and Tropospheric Emission Spectrometer
TGRS Transient Gamma-Ray Spectrometer
THEMIS Telescopio Heliografico para el Estudio del Magnetismo y de las Inestabilidades Solares
TID Total ionising dose
TIM Total Irradiance Monitor
TOF Time of flight
TPF Terrestrial Planet Finder / Darwin
TQCM Temperature-controlled quartz crystal micro balance
TRC Transition Region Camera
TSI Total solar irradiance
TXI Tunable X-ray Imager
UC/UVS University of Colorado/Ultraviolet Spectrometer
UCS Ultraviolet Coronal Spectrometer
ULIRG Ultraluminous infrared galaxy
URA Uniformly Redundant Array
UTC Coordinated universal time
UV Ultraviolet
UVCS Ultraviolet Coronagraph Spectrometer
UVISI Ultraviolet and Visible Imagers and Spectrographic Imagers on MSX
UVOT Ultraviolet and Spectroscopic Telescope
UVSP Ultraviolet Spectrometer and Polarimeter
VAULT Very high Angular-resolution Ultraviolet Telescope
VDF Velocity distribution function
VIRGO Variability of Solar Irradiance and Gravity Oscillations
VLA Very Large Array
VLBI Very Long Baseline Interferometry
VLT Very Large Telescope
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLWIR</td>
<td>Very long-wave IR</td>
</tr>
<tr>
<td>VPG</td>
<td>Volume phase grating</td>
</tr>
<tr>
<td>VUV</td>
<td>Vacuum ultraviolet</td>
</tr>
<tr>
<td>WBG(M)</td>
<td>Wide band gap (material)</td>
</tr>
<tr>
<td>WBS</td>
<td>Wide Band Spectrometer</td>
</tr>
<tr>
<td>WFC</td>
<td>Wide Field Camera</td>
</tr>
<tr>
<td>WFM</td>
<td>Wide field Michelson (interferometer)</td>
</tr>
<tr>
<td>WFPC</td>
<td>Wide Field and Planetary Camera</td>
</tr>
<tr>
<td>WFS</td>
<td>Wavefront sensor</td>
</tr>
<tr>
<td>WIM</td>
<td>Warm ionized medium</td>
</tr>
<tr>
<td>WRR</td>
<td>World radiometric reference</td>
</tr>
<tr>
<td>WSA</td>
<td>Wedge-and-strip array</td>
</tr>
<tr>
<td>XDL</td>
<td>Cross-delay line</td>
</tr>
<tr>
<td>XQC</td>
<td>X-ray Quantum Calorimeter</td>
</tr>
<tr>
<td>XS</td>
<td>Crossed strip</td>
</tr>
<tr>
<td>XUV</td>
<td>Extreme ultraviolet</td>
</tr>
<tr>
<td>YBCO</td>
<td>Yttrium barium copper oxide, YBa$_2$Cu$_3$O$_7$</td>
</tr>
<tr>
<td>ZIMPOL</td>
<td>Zurich Imaging Polarimeter</td>
</tr>
</tbody>
</table>
Authors’ addresses

Peter A.R. Ade
Cardiff University
School of Physics and Astronomy
Cardiff CF24 3AA
Wales, UK
peter.ade@astro.cf.ac.uk

Bernd Aschenbach
Mozartstr. 8
85591 Vaterstetten, Germany
via gok@mpe.mpg.de

Steven V.W. Beckwith
University of California
1111 Franklin St.
Oakland CA 94607, USA
steven.beckwith@ucop.edu

Ettore Carretti
CSIRO Astronomy and Space Science
Parkes Observatory
PO Box 276
Parkes, NSW 2870, Australia
ettore.carretti@csiro.au

Baptiste Cecconi
LESIA
Observatoire de Paris
5, place Jules Janssen
F-92195 Meudon Cedex, France
baptiste.ceconi@obspm.fr

J. Len Culhane
Mullard Space Science Laboratory
University College London
Holmbury St. Mary
Dorking, Surrey, RH5 6NT, UK
jlc@mssl.ucl.ac.uk

Hervé Dole
Institut d’Astrophysique Spatiale
Université Paris Sud 11
91405 Orsay Cedex, France
herve.dole@ias.u-psud.fr

Harry A.C. Eaton
Johns Hopkins University
Applied Physics Laboratory
1110 Johns Hopkins Road
Laurel MD 20723, USA
harry.eaton@jhuapl.edu

Claus Fröhlich
Physikalisch-Meteorologisches
Observatorium Davos /
World Radiation Center (PMOD/WRC)
7260 Davos Dorf, Switzerland
claus.froehlich@modwrc.ch

Matt J. Griffin
Cardiff University
School of Physics and Astronomy
Cardiff CF24 3AA
Wales, UK
matt.griffin@astro.cf.ac.uk

Wojtek Hajdas
Paul Scherrer Institut
5232 Villigen PSI, Switzerland
wojtek.hajdas@psi.ch

Jean-François Hochedez
LATMOS—Laboratoire Atmosphères
Milieux, Observations Spatiales
11 Boulevard D’Alembert
78280 Guyancourt, France
jean-francois.hochedez@latmos.ipsl.fr

Andrew Holland
Planetary and Space Sciences Research Institute
Open University, Walton Hall
Milton Keynes MK7 6AA, UK
a.d.holland@open.ac.uk

Martin C.E. Huber
Paul Scherrer Institut
OVGA/404
CH-5232 Villigen PSI, Switzerland
mceh@bluewin.ch
Gordon J. Hurford
Space Sciences Laboratory
University of California
7 Gauss Way
Berkeley CA 94720, USA
ghurford@ssl.berkeley.edu

Kevin Hurley
Space Sciences Laboratory
University of California
7 Gauss Way
Berkeley CA 94720, USA
khurley@ssl.berkeley.edu

Gottfried Kanbach
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße
85748 Garching, Germany
gok@mpe.mpg.de

Barry J. Kent
Independent Consultant
previously with Rutherford Appleton Laboratory
Didcot, Oxfordshire OX11 0QX, UK
barry_kent1@btinternet.com

Jean-Michel Lamarre
LERMA
Observatoire de Paris and CNRS
61 Av. de l’Observatoire
75014 Paris, France
jean-michel.lamarre@obspm.fr

Philippe Lemaire
Institut d’Astrophysique Spatiale
Université de Paris XI
91405 Orsay Cedex, France
philippe.lemaire@ias.u-psud.fr

Lennart Lindegren
Lund Observatory
Box 43
22100 Lund, Sweden
lennart@astro.lu.se

David H. Lumb
ESA/ESTEC
P.O. Box 299
2200 AG Noordwijk, The Netherlands
david.lumb@esa.int

Didier D.E. Martin
ESA/ESTEC
P.O. Box 299
2200 AG Noordwijk, The Netherlands
didier.martin@esa.int

Anuschka Pauluhn
Paul Scherrer Institut
CH-5232 Villigen PSI, Switzerland
anuschka.pauluhn@psi.ch

F. Scott Porter
NASA
Goddard Space Flight Center
Code 662
Greenbelt MD 20771, USA
frederick.s.porter@nasa.gov

Andreas Quirrenbach
ZAH, Landessternwarte
Königstuhl
D-69117 Heidelberg, Germany
a.quirrenbach@lsw.uni-heidelberg.de

Walfried Raab
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße
85748 Garching, Germany
raab@mpe.mpg.de

Nicola Rando
ESA/ESTEC
P.O. Box 299
2200 AG Noordwijk, The Netherlands
nicola.rando@esa.int

Cyrille Rosset
Université Paris XI
Bâtiment 200, B.P. 34
F-91898 Orsay Cedex, France
rosset@cdf.in2p3.fr

Volker Schönfelder
Max-Planck-Institut für extraterrestrische Physik
Giessenbachstraße
85748 Garching, Germany
vos@mpe.mpg.de
Udo Schühle
Max-Planck-Institut für Sonnensystemforschung
Max-Planck-Straße 2
37191 Katlenburg-Lindau, Germany
schuehle@mps.mpg.de

John F. Seely
Space Science Division
Naval Research Laboratory
Washington D.C. 20375-5320, USA
john.seely@nrl.navy.mil

David M. Smith
Physics Department and Santa Cruz Institute for Particle Physics
University of California, Santa Cruz
Santa Cruz CA 95064, USA
dsmith@scipp.ucsc.edu

Jan O. Stenflo
Institute of Astronomy
ETH Zürich
8093 Zürich, Switzerland
stenflo@astro.phys.ethz.ch

Estela Suarez-Garcia
Technology Department
Jülich Supercomputing Center (JSC)
Forschungszentrum Jülich
Leo Brandt Strasse
52428 Jülich, Germany
e.suarez@fz-juelich.de

Bruce Swinyard
Space Science and Technology Department
Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot, Oxfordshire OX11 0QX, UK
bruce.swinyard@stfc.ac.uk

A.G.G.M. Tielens
University Leiden Observatory
P.O. Box 9513
NL-2300 RA Leiden, The Netherlands
tielens@strw.leidenuniv.nl

J. Gethyn Timothy
Nightsen, Inc.
P.O. Box 296
Tiverton RI 02878, USA
nightsen@earthlink.net

Alan M. Title
Lockheed Martin Space Systems
Advanced Technology Center (ATC)
Palo Alto CA 94304, USA
title@lmsal.com

Peter Verhoeve
ESA/ESTEC
P.O. Box 299
2200 AG Noordwijk, The Netherlands
peter.verhoeve@esa.int

Nick Waltham
Space Science and Technology Department
Rutherford Appleton Laboratory
Harwell Science and Innovation Campus
Didcot, Oxfordshire OX11 0QX, UK
nick.waltham@stfc.ac.uk

Wolfgang Wild
European Southern Observatory
Karl-Schwarzschild-Str. 2
D-85748 Garching, Germany
wwild@eso.org

Klaus Wilhelm
Max-Planck-Institut für Sonnensystemforschung
Max-Planck-Str. 2
37191 Katlenburg-Lindau, Germany
wilhelm@mps.mpg.de

Lidong Xia
School of Space Science and Physics
Shandong University at Weihai
Weihai, Shandong 264209, China
xld@sdu.edu.cn

Alex Zehnder
Paul Scherrer Institut
OVGA/404
5232 Villigen PSI, Switzerland
azehnder@sy-silmaril.ch
Index

aberration, 30, 187, 214, 301
absorption, 5, 94
adaptive optics, 122
airglow, 7, 123
Airy disk, 41
albedo, 380
alignment, 188, 250
altimeter, 671
Anger camera, 368
annihilation, 24, 61
antenna, 285
aperture synthesis, 317
APS, 455
astrometry, 299
atmosphere
 solar, 103
 terrestrial, 4, 93
atomic databases, 100
attenuation, 40
Auger process, 443
autoionisation, 75
background, 122, 380
balloons, 7, 700
band gap, 470
band-gap energy, 525
beam splitter, 350
Big Bang, 165, 168
birefringent crystal, 350
bispectrum, 320
black body, 632
black hole, 62, 129
 stellar, 59
blazar, 65
blazed grating, 212
bolometer, 171, 515, 519
bootstrapping, 319
Bragg crystal, 450, 600, 602
Bragg diffraction, 79, 220
bremsstrahlung, 59, 74
 electron-proton, 60
 non-thermal, 76
 proton-electron, 60
Brewster angle, 594
calibration, 629
CCD, 13, 414, 423
 back-illuminated, 430
 intensified, 455
X-ray, 443
centroiding, 303, 308, 458
Cepheid stars, 129
Čerenkov
counter, 232
 radiation, 56
telescope, 69
channel electron multiplier, 393
charge induction device, 464
charge-transfer efficiency, 427
chromosphere, 103
cleanliness, 680
cleanroom, 681
closure phases, 319
CMOS, 414, 438
 back-illuminated, 439
coophasing, 318
coating
 multilayer, 201
 optical, 357
CODACON, 408
coherencing, 318
cold gas thruster, 664
collimator, 196
 bigrid, 246
 imaging, 246
 modulation, 246
 rotating modulation, 248
Soller, 243
X-ray, 78
coma, 214, 215
Compton effect, 30, 225
conduction band, 525
constellation of spacecraft, 657
contamination
 molecular, 680
particulate, 679
continuous-dynode electron multiplier, 13, 391
contribution function, 98
cooler
3He sorption, 648
adiabatic demagnetisation refrigerator, 649
Brayton, 648
dilution refrigerator, 649
Gifford, 648
Joule–Thomson, 648
mechanical, 646, 647
Peltier, 377
pulse tube, 648
solid-state, 650
Stirling, 648
stored-cryogen, 647
thermoelectric, 377
Cooper pair, 45, 480
corona, 103
coronagraph, 189
coronal hole, 103
Cosmic Microwave Background, 4, 131, 165, 263, 617
anisotropy, 167, 172
cosmic-ray effects, 537
cosmological constant, 174
Crab, 56, 62
Cramér–Rao bound, 301
cryogenics, 264, 519, 639
cubic boron nitride, 469
Czerny–Turner mounting, 217
dark current, 469
dark energy, 174
dark matter, 174
detective quantum efficiency, 398
detector
background, 380
BIB, 528
BOLD, 470
calorimeter, 502
CdTe, 377
coherent, 543
collimated, 74
cryogenic, 490, 639
CZT, 377
ferroelectric, 518
gamma-ray, 367
germanium, 373
heterodyne receiver, 46, 274, 543
incoherent, 525
microcalorimeters, 45
microchannel plate, 391
mid-infrared, 528
monolithic, 368
near-infrared, 526
photographic emulsion, 96
pyroelectric, 518
scintillation, 78
scintillator, 367, 608
semiconductor, 78, 371, 490
silicon, 376
solar-blind, 468
solid-state, 45, 367, 368
spectral response, 383
thermistor, 503
two-dimensional, 250
types, 363
visible-blind, 467
wide band gap, 467
X-ray, 367
diamond, 469
diffraction, 42
digital unit, 462
dilution refrigerator, 641
dipole component, 167
direction finding, 40
discrete dynode electron multiplier, 391
dispersion, 38, 79
distortion, 124
dither-clocking, 435
Doppler effect, 30
Doppler width, 100
drift-scanning, 306
dynamic range, 462
Earth observation, 643, 668
Ebert–Fastie mounting, 217
Einstein coefficient, 97
electric propulsion, 664
electrode configuration, 373
electromagnetic cascades, 56
 electronic transitions
 rotational, 127
 vibrational, 127
element abundance, 100
emission measure, 75, 98
differential, 75, 99
emissivity, 516
encircled energy, 186
entangled states, 22
environment
 launch, 677, 685
 preparation, 677
 space, 677, 691
 spacecraft, 677, 688
error, 659
éteunderline{d}ndue, 262, 349
Fano factor, 446, 450, 452
Fano limit, 485
Fermat’s principle, 40
Fermi acceleration, 59
fibre optic, 458
finessse, 334, 336
Fiske steps, 483
Fizeau effect, 39
flat-field, 397
fluorescence, 35, 443
focal plane array, 474
focussing, 79, 196
forbidden lines, 93
forbidden transitions, 75
formation flying, 326, 657
Fourier transform, 317
 inverse, 317
 spectrometer, 219, 322, 339
Fraunhofer approximation, 301
free-free radiation, 60, 126
Fresnel equations, 39, 192
fringe tracking, 318, 327
galaxy, 59, 153
 BL Lac type, 70
 radio, 59
 Seyfert, 59
gamma-ray
 burst, 10, 59, 256
 source, 58
gamma-ray astronomy, 55
galactic, 56
gas detectors, 378
gas scintillation proportional counter, 379
Geminga, 56, 62
geocorona, 7, 687
géoid, 672
goniopolarimetry, 283, 289
grating, 211
 concave, 214
 holographic, 213
 lithographic, 213
toric, 214
grating formulae, 42, 212
gravity field, 672, 673
grid, 250
grisk, 213, 219
Hanle effect, 584, 590
Heisenberg’s uncertainty principle, 25, 300
Hertzsprung–Russell diagram, 129
heterodyne receiver, 46, 274
holographic grating, 213
hot electron bolometer, 545, 547
Hubble constant, 129
hybridization, 474
image intensifier tube, 400
imaging
 bolometer, 515
 far-infrared, 261
 Fourier transform spectroscopy, 339
 gamma-ray, 225, 243
 general, 183
 infrared, 269
 interferometric, 313, 333
 Michelson interferometers, 349
time-tag, 412
 X-ray, 243
index of refraction, 192
indium bump bonding, 536
infrared, 139
InSAR, 671
insulation, 650, 683
intensified active pixel sensor, 455
intensified charge coupled device, 455
intensifier tube, 458
interference coatings, 203
interferometer, 300
 Bracewell, 324
 Fabry–Perot, 333, 349
 Fizeau, 321
 Fourier transform, 341
 Michelson, 315, 316, 321, 349
interferometric SAR, 671
interferometry, 292, 308, 313
 far-infrared, 329
 heterodyne, 322
 nulling, 322
 radio very long-baseline, 330
 very low frequency radio, 329
 X-ray, 329
intermediate frequency, 544
interstellar lines, 128
interstellar medium, 4, 127, 151
inverse Compton effect, 34, 60
ionisation, 75
ionosphere, 95
irradiance, 6, 36, 565
 spectral, 26
JFET, 520
 Johnson noise, 428
 Jones vector, 584
 Josephson current, 483
kilometric radiation, 293
 Lagrange point, 7, 105, 169
 Large Magellanic Cloud, 58
 Larmor precession, 591
 laser metrology, 325, 657
 laser-aligned structure, 657
 Laue lens, 69
 line emission, 128
 line formation, 97
 linear apodisation, 341
 lithographic grating, 213
 local oscillator, 553
 long-distance ranging, 663
 Lorentz factor, 22
 Lorentz transformation, 31
 Lyman continuum, 4
 Lyot stop, 189
 magnetic electron multiplier, 13, 392
 magnetic field, 104, 584
 magnetogram, 584
 mask, 250
 material outgassing, 683
 Maxwell’s equations, 38
 metal-semiconductor-metal, 471
 metrology, 663
 amplitude modulation, 663
 time-of-flight, 663
 micro-roughness, 188, 199
 microcalorimeters, 45
 microchannel plate, 13, 371, 391, 455
 mirror
 coating, 189
 roughness, 188
 mixer, 545
 Monte Carlo simulation, 368
 MSM photodiode, 472
 Mueller matrix, 585
 multi-anode microchannel array, 408
 multilayer coatings, 201
 multilayer insulation, 651, 683
 multiwire proportional counter, 378
 near-infrared, 121
 neutralino, 61
 neutron star, 62
 night vision, 400
 noise equivalent power, 533
 non-SI units, 706
 non-thermal radiation, 76
 nucleosynthesis, 56, 63
 Nyquist frequency, 341
 optical path difference, 308
 optics
 grazing-incidence, 74
 normal-incidence, 79
 orbit, 6, 231, 264, 375, 657, 670, 691
 geostationary, 690
 geostationary transfer, 662
geosynchronous, 108
halo, 105, 170, 264
heliocentric, 134, 657
high Earth, 375
highly eccentric, 662
low Earth, 104, 130, 236, 255, 264, 375, 570, 662, 690, 693
low-altitude, 233
polar, 105, 267
Sun-synchronous, 105, 166, 267
ortho-positronium, 61
ozone layer, 94
PAH, 127, 146, 151, 155
pair production, 45, 225, 368
para-positronium, 61
Parseval identity, 302
particle decay, 61
particle filter, 679
phase referencing, 351
performance characteristics, 462
Petzval surface, 185
point-spread function, 124, 186, 301
pointing, 188
polarimeter
 gamma-ray, 383
polarimetry
 gamma-ray, 599
 Stokes, 584
 VUV, 593
 X-ray, 599
polarization, 584, 599, 601
CMB, 617
polycyclic aromatic hydrocarbon, 127, 146
propulsion
 cold gas, 665
 electrostatic, 665
 FEEP, 665
 ion thruster, 665
proximity gap, 456
pulsar, 56, 65
push-broom imaging, 427
quantum efficiency, 44, 439, 531
quantum-cascade laser, 556
quartz crystal micro balance, 680
quasar, 58
radar, 670
radiance, 98
 spectral, 23
radiant energy, 515
radiant power density, 97
radiation
 damage, 436, 451
hardness, 469
radiator, 646
radio astronomy, 284
radiometer, 566, 670
Raman effect, 34
RANICON, 403
readout noise, 428
readout system, 402
receivers, 287
recombination, 75
redshift, 129
 gravitational, 29
reference frame, 658
reflectance, 334
reflection, 37
reflection grating, 212
diffraction, 38
Regener Tonne, 8
relative encircled energy, 186
responsivity, 473, 531
Rowland circle, 214

Sachs–Wolfe effect, 168
SAR, 658, 670
scattering, 33, 128
 Compton, 34, 60, 77, 225, 368, 608
 inverse Compton, 60, 77
 Rayleigh, 34
 Thomson, 34, 600
scatterometer, 671
Schottky diode, 472, 545, 550
Schottky mixer, 550
scintillation counters, 45
scintillator, 370
screen
 phosphor, 458
Second Solar Spectrum, 591
seeing, 4, 122, 124
 angle, 125
self-annihilation, 61
semiconducting thermistor, 519
semiconductor, 525
SI, 703
 base units, 704
 prefixes, 703
signal coupling, 544
SIN tunneling junction, 521
sine condition, 40
SIS mixer, 545
soft gamma repeaters, 258
solar chromatograph, 587
solar radiance spectrum, 24
solar radiometer, 566
solar radiometry, 565
solar spectral irradiance, 26, 468
solar-blind, 12, 415, 467
South Atlantic Anomaly, 375
space environment, 677
special theory of relativity, 30
speckle pattern, 124
spectrometer
 acousto-optical, 558
 backend, 557
 Fabry–Perot, 337
 fast-Fourier-transform, 558
 infrared, 271
 Mach–Zehnder, 344
spherical grating, 214
SQUID, 521, 645
SSI, 25
standard
 celestial, 630
 laboratory, 630
 primary, 632
 radiometric, 630, 632
star
 formation, 146
Stokes parameters, 289, 585
Stokes vector, 583, 585
Strehl ratio, 124
superconducting tunnel junction, 80, 479
superconductivity, 45
superconductor-insulator-superconductor, 544
supernova, 58, 62, 63
synchrotron radiation, 59, 60, 126
synthetic aperture radar, 658, 670

TDI mode, 306
telecope, 37, 183
 angular resolution, 198
 aplanetic, 188
Cassegrain, 185, 187
collecting area, 198
Compton, 225, 369, 383
gamma-ray, 225
grazing-incidence, 12, 192
Gregorian, 185, 187
Kirkpatrick–Baez, 195
lobster-eye, 196
normal-incidence, 12, 184
one-mirror, 184
pair-creation, 231
pair-tracking, 369
paraboloid, 187
PSF, 186
pupil, 301
Ritchey–Chrétien, 188
two-mirror, 185
Wolter, 194
Wolter–Schwarzschild, 195
X-ray, 243
temperature control, 355
thermal emission, 123
thermal expansion coefficient, 461
thermal radiation, 126
thermistor, 503, 518
 kinetic inductance, 505
 magnetic susceptibility, 505
semiconductor, 503
transition-edge, 504
thermometer, 518
time dilatation, 32
time projection chamber, 379
timing, 412
transition edge sensor, 519, 521
transition region, 103
transition-edge sensor, 480, 504
transmission, 333
transmission grating, 212
transmittance, 334
triangulation, 256
TSI, 26, 566, 577
tunnel junction, 545
ULIRG, 153
ultraviolet, 7
uncertainty principle, 25
Universe, 174
vacuum ultraviolet, 93
valence band, 525
van Cittert–Zernike theorem, 316
Vela, 56, 62
vibration, 687
visibility, 315
visible light, 121
visible spectrum, 93
Wadsworth mounting, 215
wavefront
 aberration, 301
 distortion, 124
 sensor, 307
wavenumber, 340
X-ray calorimeter, 497
X-ray spectrum, 74
X-rays, 73
Zeeman effect, 584
zodiacal emission, 123
zodiacal light, 533
Zurich Imaging Polarimeter, 586