The Associative Memory system for the FTK processor at ATLAS

Saverio Citraro – University of Pisa & INFN
Introduction

- Fast TracKer (FTK): New online silicon detector tracker for Atlas upgrade based on Associative Memory technique
- FTK working principles
- FTK architecture, with a detailed description of the Associative Memory system
- Test of the prototypes
 - High speed links
 - Pattern Matching in the AM chip
 - Crate cooling
An online silicon detector tracker for the ATLAS upgrade

- FTK reconstructs charged particles trajectories in the silicon detectors (Pixel & SCT) at “1.5” trigger level.
- Extremely difficult task
 - 25 ns inter-bunch time
 - ~70 overlapping events (pile-up) at Phase I highest luminosity.
• FTK reconstructs charged particles trajectories in the silicon detectors (Pixel & SCT) at “1.5” trigger level.
• Extremely difficult task
 25 ns inter-bunch time
 ~70 overlapping events (pile-up) at Phase I highest luminosity.
“1.5” Level Trigger processor

- Silicon data currently used only locally (ROI) and late in Level 2.
- FTK reconstructs all tracks with PT>1 GeV/c in time for Level 2.
- Track parameters are computed with full detector resolution.
Where FTK will be inserted in the ATLAS Trigger

- Silicon data currently used only locally (ROI) and late in Level 2.
- FTK reconstructs all tracks with $\text{PT}>1 \text{ GeV/c}$ in time for Level 2.
- Track parameters are computed with full detector resolution.
Pattern Bank: All the possible patterns (low resolution real track candidates) are precalculated and stored in the Pattern Bank.
• Pattern Bank: All the possible patterns (low resolution real track candidates) are precalculated and stored in the Pattern Bank.

• Pattern matching: All the hits in each event are compared with all the patterns in the Bank and track candidates (ROADs) are found.
Pattern matching

- **Pattern Bank**: All the possible patterns (low resolution real track candidates) are precalculated and stored in the Pattern Bank.
- **Pattern matching**: All the hits in each event are compared with all the patterns in the Bank and track candidates (ROADs) are found.
- **Track Fitting**: Fits of the full resolution silicon HITs contained in each ROAD determine particle tracks parameters.
AMchip

- Custom Associative Memory
- Base element of Pattern Bank
- 1 Pattern stored in 1 row
- Data from 8 silicon layers flow separately on 8 parallel buses (vertical lines)
- Programmable matching threshold
- Matched pattern's addresses are read-out
FTK architecture

- FTK processor: 8 VME Crates
 5 ATCA Crates
- Processing Unit: track reconstruction core
- 128 Processing Unit:
 ~1500 FPGAs
 ~8200 AMChips
Splitting the silicon detector in 64 η-Φ towers

- FTK is organized in 64 η-Φ towers.
- 4 η sectors times 16 Φ sectors.
- The blue and green arrows is an example of overlap coverage.
• Processing Unit: 9U VME board (AMB-FTK) + large Rear card (AUX Card) + 4 little mezzanines (LAMB-FTK).

• Silicon HITs relative to events accepted by Level 1 are distributed to all Amchips, this is done in parallel for the 64 tower (1 tower =128 AMChips).

• 1 HIT is compared with ~ 8million of Precalculated pattern.
Data from Data Formatter are distributed by 12 2Gb/s serial links from Data Formatter to the Input FPGAs on the AMBoard.

Through 4 LAMB connectors to all AMchips.
FTK Processor Unit

Matched ROADS:

- Collected on the AMB-FTK by 2 Output FPGAs (Blue squares).
- Transmitted to the AUX Board through 16 high-speed links (2Gib/s).
Prototype Tests

- Test Input Links & FPGAs to correctly send HITs to AM chips.

- Test Output Links & FPGAs to correctly collect the ROADS.

- Test the pattern matching.
Sent a known pattern of data from TX and check it in RX with Logical Analyzer.
Step 1: Store precalculated Patterns into Associative memory chips:
 - Through VME the data are stored in the AM by FPGA (yellow arrows)
Step 1: Store precalculated Patterns into Associative memory chips:
- Through VME the data are stored in the AM by FPGA (yellow arrows)

Step 2: Simulate silicon HITS Input:
- Silicon HITS Input are loaded into the inputs FPGAs memory (red square) through VME.
Test pattern matching: Check OUTPUT

- Step 1: Store precalculated Patterns into Associative memory chips:
 - Through VME the data are stored in the AM by FPGA (yellow arrows)
- Step 2: Simulate silicon HITS Input:
 - Silicon HITS Input are loaded into the inputs FPGAs memory (red square) through VME.
 - The FPGAs transmits data to the LAMBs at full speed.
- Step 3: Check pattern matching:
 - Collect ROADs in the Output FPGAs (blue squares).
 - Compare Hardware and Simulation output.
Cooling Tests

Expected power consumption
1 Processing unit ~ 300 Watt.

16 PU per crate (plus SSB, CPU)

5 kW per crate.

Need Cooling test!

Power supply voltages:
- 5V
- 3,3V
- 1,2V
Cooling Tests without chiller

- Cooling test work in progress INFN PAVIA.
- Power consumption simulated with resistors.
- Six sensor used to measure the temperature in the crate (red circles)
Cooling Tests Result without chiller

- With the Wiener Fan we have a peak of temperature in the upside of crate.

- The reason is the power of the fans.
Cooling Tests Result without chiller

- With CDF Fan the temperature is lower but there is a peak in the down front side of crate.
- The reason is the missing fan.
- Cooling test are in progress: next step is to resolve the problem with fans and use the chiller.
Conclusion

- AM system test results were excellent.
- Cooling test are in progress.
- Now we are improving the system for the final version.
- We will install the system for the next LHC power on, in 2015.
Thank You!
Backup