Micromegas detectors for the upgrade of the ATLAS Muon Spectrometer

André Zibell
Julius-Maximilians-Universität Würzburg

On behalf of the ATLAS Muon Collaboration

INSTR2014 Conference
Novosibirsk, 2014/2/28
Present ATLAS Muon System

ATLAS muon spectrometer inner endcap: „Small Wheels“
Outline

• Upgrade of the ATLAS Muon Spectrometer with increasing LHC luminosity
• Micromegas for the High Luminosity LHC Environment
• New Small Wheel (NSW)
• NSW electronics
• Status and outlook
Planned LHC Upgrades

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>LHC startup, 900 GeV</td>
</tr>
<tr>
<td>2010</td>
<td>7 + 8 TeV, L=6x10^{33}/cm²s, Bunch spacing 50 ns</td>
</tr>
<tr>
<td>2011</td>
<td>Go to design energy, nominal luminosity</td>
</tr>
<tr>
<td>2012</td>
<td>13 - 14 TeV, L~1x10^{34}/cm²s, bunch spacing 25 ns</td>
</tr>
<tr>
<td>2013</td>
<td>Injector + LHC Phase-1 upgrade to ultimate design luminosity</td>
</tr>
<tr>
<td>2014</td>
<td>14 TeV, L~2x10^{34}/cm²s, bunch spacing 25 ns</td>
</tr>
<tr>
<td>2015</td>
<td>HL-LHC Phase-2 upgrade: Interaction region, crab cavities?</td>
</tr>
<tr>
<td>2016</td>
<td>14 TeV, L=5x10^{34}/cm²s, luminosity levelling</td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
</tr>
</tbody>
</table>

- After the Long Shutdown 2 (LS2), the current ATLAS muon system would have:
 - Level 1 trigger inefficiency
 - Tracking resolution and efficiency degradation
Present Trigger Status

Endcap muon triggers dominated by „fakes“

All
L1_MU11 (P_\text{T}>11 \text{ GeV})

Reconstructed
P_\text{T} > 3 \text{ GeV}

Reconstructed
P_\text{T} > 10 \text{ GeV}

L1_MU20 @3\times10^{34}/\text{cm}^2\text{s} = 60 \text{ kHz} \quad \text{Close to max. available 100 kHz}
Reason for Trigger Problems

Present L1 trigger based on TGC information from Big Wheel

Small Wheel currently not included in L1 trigger

Phase-I:
Include Small Wheel angular information

Phase II Requirement:
IP pointing better than 1 mrad resolution
Importance of low Muon P_T Threshold

gg fusion \rightarrow H \rightarrow WW* \rightarrow lν lν + 0 jets

Raise of the muon trigger threshold to reduce the Level 1 trigger rate results in a significant loss of physics data.
MDT Detection Limit

- The innermost currently installed Small Wheel precision chambers (MDT) are not able to fulfill the requirements at \(L > 10^{34}/\text{cm}^2\text{s} \)

Extrapolation

- Extrapolation of measured hit rates to \(L = 3 \times 10^{34}/\text{cm}^2\text{s} \) at 8 TeV: exceed MDT capabilities

- Rate @ \(5 \times 10^{34}/\text{cm}^2\text{s} @ 14 \text{ TeV}: 15 \text{ kHz/cm}^2 \) for the innermost Small Wheel detectors
Design Values for the New Small Wheel Detectors

- single plane spatial resolution: 100 µm, independent of track angle
- track segment reconstruction: 50 µm = 10% \(@ (P_t = 1 \text{ TeV}) \)
- track segment efficiency: 97% \(@ (P_t > 10 \text{ GeV}) \)
- online angular resolution (trigger): 1 mrad
- trigger response time: < 25 ns (bunch crossing identification)
- spatial resolution second coordinate: ~cm from stereo strip layers
- hit rate capability: 15 kHz/cm²
- accumulated charge w/o ageing: 1 C/cm² (including a safety factor of 5)

Old Small Wheel => New Small Wheel

{ • Micromegas: precision coordinate + trigger
 • sTGCs: trigger + precision coordinate
}
Resistive Strip Micromegas

- High-rate capable planar gaseous detector technology
- Readout boards from standard industry pcb production process
- Discharge insensitivity by additional resistive strip layer above the readout plane

5mm, 0.6 kV/cm

128 µm, 40 kV/cm

No dead time due to discharges
Standard Micromegas Performance

- LMU Munich Micromegas detector beam telescope in CERN SPS 120 GeV π test beam, perpendicular incidence.
- Detector size 10 x 10 cm2
- Residual width: $\sigma_{ex} = 55 \mu m$ @250 μm strip pitch
- Three detectors define π-track
- One detector excluded from fit
Resistive Strip Micromegas in Neutron and Carbon Ion Beam

Stable running @ >>HL-LHC current

Variety of additional ageing test, no problems observed

K. Parodi, J. Bortfeldt
PhD thesis LMU (2014)

10^7 n/cm^2 s 30x30cm^2
Resistive Strip Micromegas @inclined tracks

- Combination of centroid cluster position determination and micro-TPC mode
- Resolution below 100 µm, independent from track inclination
- TPC-like track angle reconstruction well understood

J. Bortfeldt PhD thesis LMU (2014)

- Additional trigger information from frontend chips with 1 mrad angular resolution

450 µm pitch
NSW Micromegas Sector Layout

- 8 large and 8 small sectors
- 2 modules per sector
- Micromegas Module construction in institutes:
 - Italy: SM1
 - France: LM1
 - Germany: SM2
 - Russia, Greece: LM2
NSW Micromegas Module Layout

• Eight layers Micromegas and 8 layers sTGC in total
• Micromegas:
 2 layers eta plus
 2 layers stereo strips
• 2 quadruplets per module with readout-panel back-to-back
• Precision requirement: 40 μm
NSW Micromegas Panel Layout

- Drift panels carrying grounded meshes and readout panels are built separately and will be joined during module assembly.
- Pillars on the readout structure assure precise mesh-anode distance.
VMM Electronics

- Common frontend chip for Micromegas and sTGCs
- On-chip time and amplitude extraction and digitization => Zero Suppression
- VMM2 chip currently in production
- VMM3 for final detectors

Electronics boards
8 VMM chips à 64 ch
Total: 512 ch/board

GTB trigger boards
1 link 32 VMM chips
Total: 16 boards/mp

GBT data boards
1 link 64 VMM chips
Total: 4 boards/mp

IBM 8RF 130 nm CMOS process, 1.2 V 9.1 x 9.1 mm², ~6.5 mW/channel
1m x 0.6m Fully Working Quadruplet for ATLAS (2014)

- Installation of a precisely built pre-series 4-layer 4kch. Micromegas chamber during LS1 (2014)
- Full integration into ATLAS data acquisition infrastructure
- Test of detector design and electronics under real ATLAS environmental conditions
- DAQ electronics based on RD51 Scalable Readout System (SRS) and VMM2 frontend chip
Electronics Integration Test Setup

Validation of SRS-based DAQ infrastructure in different ATLAS-like environments:

- Test setup at CERN with Readout System (ROS) running ATLAS DAQ software
- Installation of 1 m² L1 Micromegas detector in LMU Munich Cosmic Ray Facility for track comparison with 9 m² MDT reference chambers, using ATLAS trigger and DAQ hardware

Readout of APV25 frontend chips
- Up to 8k channels, zero suppressed data from 4 frontend boards
- Tested at 70kHz+ trigger rate
- No invalid data observed
Project status

- Commissioning in ATLAS
- Installation
- NSW commissioning on surface
- NSW structure Assembly
- MM module series production
- MM module 0 production
- Design, R&D
- TDR
- ATLAS Approval
- VMM3 production run
- VMM3 test
- VMM3 fabrication
- VMM3 frontend chip design
- VMM2 test
- VMM2 fabrication
- VMM2 frontend chip design
Summary

• Future LHC luminosity upgrades will lead to rates in the ATLAS Small Wheels that are too high for the presently installed detectors

• During the LHC Long Shutdown 2, these innermost endcap muon stations will be replaced by New Small Wheels, which contain Resistive Strip Micromegas as precision tracking and trigger devices

• This high-rate capable technology shows an excellent spatial resolution over a large range of track angles. Its integration into the muon trigger will solve issues with fake muon triggers

• The size of the single detector modules reaches up to 3.1 m², containing more than 80 k readout channels each, for a total of 1 Mch. per wheel, resulting in the largest Micromegas detector system ever built

• A pre-series Micromegas chamber with 4096 channels will be installed on a Small Wheel already in 2014. Its integration into the ATLAS data acquisition infrastructure yields the unique opportunity to operate this chamber with four readout planes under real LHC conditions, and to study its performance within the ATLAS muon tracking system