Edited by
Nicola Pinna and Mato Knez

Atomic Layer Deposition of Nanostructured Materials
Contents

Foreword V
Preface XVII
Introduction XXI
List of Contributors XXXIII

Part One Introduction to ALD 1

1 Theoretical Modeling of ALD Processes 3
 Charles B. Musgrave
 1.1 Introduction 3
 1.2 Overview of Atomistic Simulations 3
 1.2.1 Quantum Simulations 4
 1.2.2 Wave Function-Based Quantum Simulations 5
 1.2.3 Density Functional-Based Quantum Simulations 6
 1.2.4 Finite and Extended Quantum Simulations 8
 1.2.5 Basis Set Expansions 9
 1.3 Calculation of Properties Using Quantum Simulations 10
 1.3.1 Calculation of Transition States and Activation Barriers 10
 1.3.2 Calculation of Rates of Reaction 12
 1.4 Prediction of ALD Chemical Mechanisms 13
 1.4.1 Gas-Phase Reactions in ALD 14
 1.4.2 Surface Reactions in ALD 14
 1.4.2.1 Adsorption Reactions in ALD 14
 1.4.2.2 Ligand Exchange Reactions 15
 1.5 Example of a Calculated ALD Mechanism: ALD of Al2O3
 Using TMA and Water 16
 References 20

2 Step Coverage in ALD 23
 Sovan Kumar Panda and Hyunjung Shin
 2.1 Introduction 23
 2.2 Growth Techniques 24
 2.3 Step Coverage Models in ALD 28
3 Precursors for ALD Processes 41
Matti Putkonen
3.1 Introduction 41
3.2 General Requirements for ALD Precursors 42
3.3 Metallic Precursors for ALD 42
3.3.1 Inorganic Precursors 44
3.3.1.1 Elemental Precursors 44
3.3.1.2 Halides 44
3.3.1.3 Oxygen-Coordinated Compounds 44
3.3.1.4 Nitrogen-Coordinated Precursors 46
3.3.1.5 Precursors Coordinated through Other Inorganic Elements 46
3.3.2 Organometallic ALD Precursors 47
3.3.2.1 Metal Alkyls 47
3.3.2.2 Cyclopentadienyl-Type Compounds 47
3.3.2.3 Other Organometallic Precursors 49
3.4 Nonmetal Precursors for ALD 49
3.4.1 Reducing Agents 49
3.4.2 Oxygen Sources 49
3.4.3 Nitrogen Sources 50
3.4.4 Sulfur and Other Chalcogenide Precursors 50
3.5 Conclusions 50
References 51

4 Sol–Gel Chemistry and Atomic Layer Deposition 61
Guyihaine Clavel, Catherine Marichy, and Nicola Pinna
4.1 Aqueous and Nonaqueous Sol–Gel in Solution 61
4.1.1 Aqueous Sol–Gel 61
4.1.1.1 Introduction 61
4.1.1.2 Development of Sol–Gel Chemistry 61
4.1.2 Nonaqueous Sol–Gel 62
4.1.2.1 Introduction 62
4.1.2.2 Synthesis of Nanomaterials 63
4.2 Sol–Gel and ALD: An Overview 63
4.2.1 Metal Oxide Formation via Hydrolytic Routes 64
4.2.1.1 Reaction with Metal Halides 64
4.2.1.2 Reaction with Metal Alkoxide 65
4.2.1.3 Reaction with Organometallic Compounds 66
4.2.2 Metal Oxide Deposition under Nonaqueous Conditions 67
4.2.2.1	Alkyl Halide Elimination	67
4.2.2.2	Ether Elimination	68
4.2.2.3	Ester Elimination	68
4.2.2.4	Other Reactions	69
4.2.3	Concluding Remarks	69
4.3	Mechanistic and In Situ Studies	70
4.3.1	General Considerations	71
4.3.1.1	Differences between Sol–Gel in Solution and in ALD	71
4.3.1.2	Reaction Mechanism Study	71
4.3.2	Comparison of Selected Reactions	72
4.3.2.1	Case of the Silica Deposition	72
4.3.2.2	Case of Alkyl Halide Condensation	75
4.3.3	Conclusions	76
References	76	

5 Molecular Layer Deposition of Hybrid Organic–Inorganic Films 83

Steven M. George, B. Yoon, Robert A. Hall, Aziz I. Abdulagatov, Zachary M. Gibbs, Younhee Lee, Dragos Seghete, and Byoung H. Lee

5.1 Introduction 83

5.2 General Issues for MLD of Hybrid Organic–Inorganic Films 85

5.3 MLD Using Trimethylaluminum and Ethylene Glycol in an AB Process 87

5.4 Expansion to an ABC Process Using Heterobifunctional and Ring-Opening Precursors 89

5.5 Use of a Homotrifunctional Precursor to Promote Cross-Linking in an AB Process 93

5.6 Use of a Heterobifunctional Precursor in an ABC Process 96

5.7 MLD of Hybrid Alumina–Siloxane Films Using an ABCD Process 99

5.8 Future Prospects for MLD of Hybrid Organic–Inorganic Films 103

References 106

6 Low-Temperature Atomic Layer Deposition 109

Jens Meyer and Thomas Riedl

6.1 Introduction 109

6.2 Challenges of LT-ALD 110

6.3 Materials and Processes 113

6.4 Toward Novel LT-ALD Processes 115

6.5 Thin Film Gas Diffusion Barriers 117

6.6 Encapsulation of Organic Electronics 119

6.6.1 Encapsulation of Organic Light Emitting Diodes 119

6.6.2 Encapsulation of Organic Solar Cells 123

6.7 Conclusions 125

References 125
Plasma Atomic Layer Deposition 131
Erwin Kessels, Harald Profij, Stephen Potts, and Richard van de Sanden

7.1 Introduction 131
7.2 Plasma Basics 134
7.3 Plasma ALD Configurations 139
7.4 Merits of Plasma ALD 142
7.5 Challenges for Plasma ALD 149
7.6 Concluding Remarks and Outlook 153
References 154

Atomic Layer Deposition for Microelectronic Applications 161
Cheol Seong Hwang

8.1 Introduction 161
8.2 ALD Layers for Memory Devices 162
8.2.1 Mass Production Level Memories 162
8.2.1.1 Dynamic Random Access Memory 163
8.2.1.2 Flash Memory 168
8.2.1.3 Phase Change Memory 172
8.2.2 Emerging Memories 174
8.2.2.1 Ferroelectric Memory 175
8.2.2.2 Magnetic Random Access Memory 178
8.2.2.3 Resistive Random Access Memory 178
8.2.3 Three-Dimensional Stacked Memories 179
8.3 ALD for Logic Devices 180
8.3.1 Front End of the Line Process 180
8.3.2 Back End of the Line Process 185
8.4 Concluding Remarks 187
References 188

Nanopatterning by Area-Selective Atomic Layer Deposition 193
Han-Bo-Ram Lee and Stacey F. Bent

9.1 Concept of Area-Selective Atomic Layer Deposition 193
9.2 Change of Surface Properties 195
9.2.1 Self-Assembled Monolayers 195
9.2.2 Polymers 201
9.2.3 Inherent Surface Reactivity 203
9.2.4 Vapor-Phase Deposition 204
9.3 Patterning 205
9.3.1 Surface Modification without Patterning 205
9.3.2 Microcontact Printing 205
9.3.3 Photolithography 207
9.3.4 Nanotemplating 212
9.3.5 Scanning Probe Microscopy 213
Contents

9.4 Applications of AS-ALD 215
9.5 Current Challenges 216
References 218

10 Coatings on High Aspect Ratio Structures 227
Jeffrey W. Elam
10.1 Introduction 227
10.2 Models and Analysis 228
10.2.1 Analytical Method 229
10.2.2 Monte Carlo Simulations 229
10.3 Characterization Methods for ALD Coatings in High Aspect Ratio Structures 230
10.4 Examples of ALD in High Aspect Ratio Structures 232
10.4.1 Aspect Ratio of 10 232
10.4.1.1 Trenches 232
10.4.1.2 MEMS 233
10.4.2 Aspect Ratio of 100 234
10.4.2.1 Anodic Aluminum Oxide 234
10.4.2.2 Inverse Opals 237
10.4.3 Aspect Ratio of 1000 and Beyond 238
10.4.3.1 Silica gel 238
10.4.3.2 Aerogels 240
10.5 Nonideal Behavior during ALD in High Aspect Ratios 242
10.6 Conclusions and Future Outlook 245
References 246

11 Coatings of Nanoparticles and Nanowires 251
Hong Jin Fan and Kornelius Nielsch
11.1 ALD on Nanoparticles 251
11.2 Vapor-Liquid-Solid Growth of Nanowires by ALD 254
11.3 Atomic Layer Epitaxy on Nanowires 256
11.4 ALD on Semiconductor NWs for Surface Passivation 257
11.5 ALD-Assisted Formation of Nanopeapods 258
11.6 Photocorrosion of Semiconductor Nanowires Capped by ALD Shell 260
11.7 Interface Reaction of Nanowires with ALD Shell 261
11.7.1 ZnO–Al2O3 261
11.7.2 ZnO–TiO2 262
11.7.3 ZnO–SiO2 264
11.7.4 MgO–Al2O3 265
11.8 ALD ZnO on NWs/Tubes as Seed Layer for Growth of Hyperbranch 265
11.9 Conclusions 267
References 268
12 Atomic Layer Deposition on Soft Materials 271

Gregory N. Parsons

12.1 Introduction 271
12.2 ALD on Polymers for Passivation, Encapsulation, and Surface Modification 274
12.3 ALD for Bulk Modification of Natural and Synthetic Polymers and Molecules 279
12.4 ALD for Polymer Sacrificial Templating: Membranes, Fibers, and Biological and Optical Structures 280
12.5 ALD Nucleation on Patterned and Planar SAMs and Surface Oligomers 283
12.6 Reactions during Al₂O₃ ALD on Representative Polymer Materials 286
12.6.1 Al₂O₃ ALD on Polypropylene 286
12.6.2 Al₂O₃ ALD on Polyvinyl Alcohol 288
12.6.3 Al₂O₃ ALD on Polyamide 6 289
12.6.4 Mechanisms for Al₂O₃ ALD on PP, PVA, and PA-6 290
12.7 Summary 291

References 292

13 Application of ALD to Biomaterials and Biocompatible Coatings 301

Mato Knez

13.1 Application of ALD to Biomaterials 302
13.1.1 Protein-Based Nanostructures 302
13.1.1.1 Tobacco Mosaic Virus 302
13.1.1.2 Ferritin and Apoferritin 304
13.1.1.3 S-Layers 304
13.1.2 Peptide Assemblies 305
13.1.3 Natural Fibers 307
13.1.3.1 DNA 307
13.1.3.2 Collagen 308
13.1.3.3 Spider Silk 308
13.1.3.4 Cellulose Fibers from Paper 310
13.1.3.5 Cotton Fibers 310
13.1.3.6 Sea Mouse Bristles 311
13.1.4 Patterned Biomaterials 312
13.1.4.1 Butterfly Wings 312
13.1.4.2 Fly Eyes 314
13.1.4.3 Legumes 315
13.1.4.4 Water Strider Legs 315
13.1.5 Biomineralized Structures 316
13.2 Biocompatible Coatings 317
13.2.1 Biocompatibility of Alumina 317
13.2.2 Biocompatibility of Titania 318
13.2.3 Biocompatibility of Hydroxyapatite 318
13.2.4 Biocompatibility of Pt-, TiO$_2$-, or ZnO-Coated Porous Alumina 318
13.2.5 Biocompatibility of TiN-Coated Cotton Fabrics 319
13.3 Summary 320
References 321

14 Coating of Carbon Nanotubes 327
Catherine Marichy, Andrea Pucci, Marc-Georg Willinger,
and Nicola Pinna
14.1 Introduction 327
14.2 Purification and Surface Functionalization of Carbon Nanotubes 328
14.3 Decoration/Coating of Carbon Nanotubes by Solution Routes 329
14.3.1 In Situ Coating 329
14.3.2 Attachment of Preformed Nanobuilding Blocks 330
14.4 Decoration/Coating of Carbon Nanotubes by Gas-Phase
Techniques 330
14.5 Atomic Layer Deposition on Carbon Nanotubes 331
14.6 Coating of Large Quantity of CNTs by ALD 337
14.7 ALD Coating of Other sp2-Bonded Carbon Materials 338
14.8 Conclusions 340
References 340

15 Inverse Opal Photonics 345
Davy P. Gaillot and Christopher J. Summers
15.1 Introduction and Background 345
15.2 Properties of Three-Dimensional Photonic Band Structures 349
15.2.1 Synthetic Opals and Inverse Opals 349
15.3 Large-Pore and Non-Close-Packed Inverse Opals 352
15.4 Experimental Studies 353
15.4.1 Inversion of Opal Structures 353
15.4.2 Atomic Layer Deposition 357
15.4.3 Multilayer Fabrication Steps for Advanced Photonic Crystals 360
15.5 Tunable PC Structures 366
15.6 Summary 369
References 371

16 Nanolaminates 377
Adriana V. Szeghalmi and Mato Knez
16.1 Introduction 377
16.2 Optical Applications 377
16.2.1 Interference Optics 377
16.2.2 Diffractive Optical Elements 381
16.3 Thin Film Encapsulation 383
16.4 Applications in Electronics 386
16.4.1 Dielectric Properties of Inorganic Nanolaminates 387
16.4.2 Dielectric Properties of Organic–Inorganic Nanolaminates 390
16.4.3 Applications for Memories 391
16.5 Copper Electroplating Applications 392
16.6 Solid Oxide Fuel Cells 393
16.7 Complex Nanostructures 394
16.8 Summary 395
References 396

17 Challenges in Atomic Layer Deposition 401

Markku Leskelä

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1</td>
<td>Introduction 401</td>
<td></td>
</tr>
<tr>
<td>17.2</td>
<td>Metals 402</td>
<td></td>
</tr>
<tr>
<td>17.3</td>
<td>Nonmetal Elements 404</td>
<td></td>
</tr>
<tr>
<td>17.4</td>
<td>Binary Compounds 406</td>
<td></td>
</tr>
<tr>
<td>17.4.1</td>
<td>Oxides 406</td>
<td></td>
</tr>
<tr>
<td>17.4.2</td>
<td>Nitrides 408</td>
<td></td>
</tr>
<tr>
<td>17.4.3</td>
<td>Other III–V Compounds 410</td>
<td></td>
</tr>
<tr>
<td>17.4.4</td>
<td>Carbides 410</td>
<td></td>
</tr>
<tr>
<td>17.4.5</td>
<td>Silicides and Borides 412</td>
<td></td>
</tr>
<tr>
<td>17.4.6</td>
<td>Halides 412</td>
<td></td>
</tr>
<tr>
<td>17.4.7</td>
<td>Compounds with Oxoanions 413</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Ternary and Quaternary Compounds 414</td>
<td></td>
</tr>
<tr>
<td>17.6</td>
<td>Nucleation 415</td>
<td></td>
</tr>
<tr>
<td>17.7</td>
<td>Conclusions 416</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References 417</td>
<td></td>
</tr>
</tbody>
</table>

Index 423