ANALYTICAL AND NUMERICAL APPROXIMATIONS TO THE DELTA INTERACTION

R. Alzetta
CERN - Geneva
and
Dipartimento di Fisica, Università della Calabria
Cosenza, Italy

and

A.M. Pinna
Dipartimento di Fisica, Università della Calabria
Cosenza, Italy

ABSTRACT

First-order perturbative corrections to the ground state energy and Hartree-Fock equations are derived for the system of N+N identical fermions attracted by a delta-function interaction on a circle of length L. Numerical results of Monte Carlo calculations for few fermions are presented and discussed.

PACS numbers: 03.65, 05.30

CERN-TH.4534/86
August 1986
1. - INTRODUCTION

In a previous work (Alzetta et al., 1984) numerical results were presented of a simple lattice computer calculation for a one-dimensional system of few \(N+N \) identical fermions, i.e., \(N \) of them "spinning up" and \(N \) "spinning down", mutually attracted by a delta interaction. The number \(N \) was confined there between 3 and 6, the lattice was small and coarse-grained, periodic boundary conditions (pbc) were introduced, the density (\(\rho \)) of fermions and the strength (\(g \)) of the interaction were kept constantly equal to one. Here we present numerical results of the same computational technique for two different classes of applications.

1) Smaller \(N \), \(\{ N=1,2,3 \} \), different fermion densities but the same strength (\(g=1 \)) of the delta interaction and the same kind of states for the functional integral representation of the imaginary time evolution operator.

2) \(N = 5 \), same fermion density (\(\rho=1 \)) but a different kind of representation of the evolution operator and various values of the strength of the interaction. These latter applications allow for the extension to our context of the variational method suggested by Wilson in 1981 and applied, for example, by Falcioni et al., 1982, and by Berg et al., 1982, and allowed also the calculations of the lowest excited-state energies in addition to the ground-state energy of the system. Furthermore the statistical method appears more efficient in these latter applications and ready for higher-dimensional, more realistic cases.

Recent analogous Monte Carlo (MC) studies are those performed by Scalapino et al., 1984, for a fermion lattice gas and by Hirsch and Scalapino, 1984, in the framework of the Hubbard model. The numerical calculations are preceded by some elementary analytical results concerning the first-order perturbative correction to the ground-state energy and the Hartree-Fock (HF) equation for the system of \(N+N \) fermions with a two-body delta attraction among them, confined in a periodic one-dimensional interval.

2. - PERTURBATIVE CORRECTION TO THE ENERGY

The Hamiltonian of \(N+N \) particles mutually attracted by a delta-function potential in one dimension is the following:
\[H_{2N} = \sum_{k=1}^{2N} T_k - g \sum_{k=1}^{2N} \sum_{\ell=1}^{2N} \delta(x_k - x_\ell) \] \hspace{1cm} (1)

where \(T = -\frac{i}{2}(\partial^2/\partial x^2) \) is the kinetic energy of the single particle (sp) and \(g \) is the strength of the interaction \((g > 0)\). For simplicity, units are defined such that \(\hbar = m = 1 \). The binding energy of the system of \(N+N \) fermions is:

\[B(N+N) = E_o^L(N+N) - E_o^S(N+N) \] \hspace{1cm} (2)

where \(E_o^L(N+N) \) is the ground-state energy of \(N+N \) free fermions and \(E_o^S(N+N) \) is the corresponding energy of the mutually attracting fermions. The first-order perturbative correction, \(B^{(1)}(N+N) \), to the free energy \(E_o^L(N+N) \) is given by:

\[B^{(1)}(N+N) = -\left\langle \psi_0^L(x_1, x_2, ..., x_{2N}) \right| \nu \left| \psi_0^S(x_1, x_2, ..., x_{2N}) \right\rangle \] \hspace{1cm} (3)

with

\[\nu = -g \sum_{k=1}^{N} \sum_{\ell=1}^{N} \delta(x_k - x_\ell) \] \hspace{1cm} (4)

and

\[\psi_0^L(x_1, x_2, ..., x_{2N}) = \frac{1}{N!} \det[\varphi_i(x_j)]_{i,j=1}^{N} \times \det[\varphi_k(x_{N+i})]_{k,j=1}^{N} \] \hspace{1cm} (5)

where \(\det[\varphi_i(x_j)]_{i,j=1}^{N} \) is the determinant wave function built with the lowest sp wave functions of the \(N \) particles. The sp wave functions are taken to be the real orthonormalized solutions of the sp free equation, which we write below in two different notations for the sp energies and sp eigenfunctions:

\[T(x) \varphi_\ell(x) = \epsilon_\ell \varphi_\ell(x) \] \hspace{1cm} (\ell = 1, 2, 3,)

\[T(x) \mathcal{U}_m(x) = \epsilon_m \mathcal{U}_m(x) \] \hspace{1cm} (m = 0, \pm 1, \pm 2,) \hspace{1cm} (6)

with pbc in a one-dimensional interval of length \(L \):

\[\varphi_1(x) = \frac{1}{\sqrt{L}} \] \hspace{1cm} \(= \mathcal{U}_0(x) \) ; \hspace{1cm} \(\epsilon_1 = \epsilon_0 = 0 \)

\[\varphi_2(x) = \sqrt{\frac{2}{L}} \cos(k_L x) = \mathcal{U}_1(x) \] \hspace{1cm} \(\epsilon_2 = \epsilon_1 = \frac{2\pi^2}{L^2} \)
\[\psi_3(x) = \sqrt{\frac{2}{L}} \sin k_x x = U_{-1}(x) \quad \eta_3 = \varepsilon_{-1} = \varepsilon_1 \]
\[\psi_4(x) = \sqrt{\frac{2}{L}} \cos 2k_x x = U_2(x) \quad \eta_4 = \varepsilon_2 = 4 \frac{2\pi^2}{L^2} \]
\[\psi_5(x) = \sqrt{\frac{2}{L}} \sin 2k_x x = U_{-2}(x) \quad \eta_5 = \varepsilon_{-2} = \varepsilon_2 \]
\[\psi_6(x) = \sqrt{\frac{2}{L}} \cos 3k_x x = U_3(x) \quad \eta_6 = \varepsilon_3 = 9 \frac{2\pi^2}{L^2} \]
\[k_L = \frac{2\pi n}{L} \]
\[\varepsilon_n = n^2 \frac{2\pi^2}{L^2} \quad (n=0, \pm 1, \pm 2, \ldots) \]

where \(k_L \) is the wave-number quantum and the \(n \)th free sp energy in pbc, respectively. The relation between \(\eta_x \) and \(\varepsilon_n \) is the following:
\[\eta_x = \varepsilon_{\frac{x^2}{2}} \quad \text{if } x \text{ is even} \]
\[\eta_x = \varepsilon_{\frac{x^2}{2}} \quad \text{if } x \text{ is odd} \]

Thus we have:
\[E^L_0(N+N) = \frac{\pi^2}{3L^2} (N^2-1) N \]
\[E^L_0(N+N) = \frac{\pi^2}{3L^2} (N^2+2) N \]

for \(N \) odd and \(N \) even respectively, for the ground-state energy of the \(N \) free particles with pbc. For odd \(N \) the calculation of Eq. (3) is straightforward and gives:
\[B^{(1)}(N+N) = \frac{N^2}{L} \sum_{k=1}^{N} \sum_{\ell=1}^{N} \int dx \psi^2_k(x) \psi^2_\ell(x) = \frac{N^2}{L} \]

For even \(N \) the ground-state energy of the unperturbed system is four times degenerate, therefore the solution of the secular equation gives four different values for \(B^{(1)}(N+N) \). However, their average is the same as in (11) for odd \(N \).

In conclusion, the binding energy to first order is proportional to \(N^2 \), which is the number of all possible pairs of interacting particles (no saturation to this order), and is inversely proportional to the size \(L \) of the system.
3. - THE HARTREE-FOCK EQUATION

If we calculate the expectation value $\langle \mathcal{H}_{2N} \rangle$ of the Hamiltonian (1) in the state described by the determinant wave function of type (5):

$$
\psi_{N+N}(x_1, x_2, \ldots, x_{2N}) = \frac{1}{N!} \det \left[\phi_i(x_j) \right]_{i,j=1}^{N} \times \det \left[\phi_k(x_{N+j}) \right]_{k,j=1}^{N}
$$

(12)

where $\{ \phi_i(x) \}$ is any orthonormalized set of sp wave functions satisfying pbc but not necessarily solutions of Eq. (6), we find:

$$
\langle \psi_{N+N} \left| \mathcal{H}_{2N} \right| \psi_{N+N} \rangle = 2 \sum_{\ell=1}^{N} \langle \phi_\ell \left| T \right| \phi_\ell \rangle +
$$

$$
- g \sum_{\ell=1}^{N} \sum_{k=1}^{N} \langle \phi_\ell \phi_k \left| S \right| \phi_\ell \phi_k \rangle
$$

(13)

where

$$
\langle \phi_\ell \left| T \right| \phi_\ell \rangle = -\frac{1}{2} \int_{0}^{L} dx \phi_\ell(x) \frac{d^2}{dx^2} \phi_\ell(x)
$$

(14)

and

$$
\langle \phi_\ell \phi_k \left| S \right| \phi_\ell \phi_k \rangle = \int_{0}^{L} dx \int_{0}^{L} dx' \phi_\ell(x) \phi_k(x') \delta(x-x') \phi_\ell(x) \phi_k(x) =
$$

$$
= \int_{0}^{L} dx \phi_\ell^2(x) \phi_k^2(x)
$$

(15)

Stationary-state conditions

$$
\frac{\delta \langle \mathcal{H}_{2N} \rangle}{\delta \phi_\ell} = 0 \quad (\ell = 1, 2, \ldots, N)
$$

together with the normalization constraint on the varied sp wave functions then imply the following HF equation for the sp wave function of the system:

$$
-\frac{1}{2} \frac{d^2}{dx^2} \phi_\ell(x) - g \sum_{k=1}^{N} \phi_k^2(x) \phi_\ell(x) = \varepsilon_\ell \phi_\ell(x)
$$

(16)

namely:
\[
\left\{ T + \sqrt{V^{HF}}[\ell] \right\} \psi_{\ell}(x) = \varepsilon_{\ell} \psi_{\ell}(x)
\]

where:
\[
\sqrt{V^{HF}}[\ell] = -g \sum_{k=1}^{N} f_{k}^2(x)
\]

is the HF potential and \(\varepsilon_{\ell}^{HF} \) are the sp HF energies. The HF energy of the system of \(N+N \) fermions will be
\[
E_{0}^{HF}(N+N) = 2 \sum_{\ell=1}^{N} \varepsilon_{\ell}^{HF} + g \sum_{\ell=1}^{N} \sum_{k=1}^{N} \int_{0}^{L} d\chi \frac{f_{\ell}^2(x)}{f_{k}^2(x)} f_{k}^2(x)
\]

The above formulae were already obtained by Lieb and de Llano, 1978.

4. - NUMERICAL RESULTS. FIRST PART

We present now the numerical results for ground-state and binding energies for the cases \(N = 1,2,3 \), obtained by the same procedure used by Alzetta et al., 1984, for the cases \(N = 3,4,5,6 \). Eigenstates of the position operator are chosen as initial and final states of the matrix elements of the imaginary time evolution operator, to obtain the functional integral representation of the few-particle propagator. For the free case:
\[
E_{0}^{L}(N) = -\lim_{t \to \infty} \frac{1}{t} \ln \mathcal{G}_{N}^{L}(\vec{f}, \vec{f}; t)
\]
\[
E_{0}^{L}(N+N) = -\lim_{t \to \infty} \frac{1}{t} \ln \mathcal{G}_{N+N}^{L}(\vec{f}, \vec{f}; t)
\]

where
\[
\mathcal{G}_{N}^{L}(\vec{f}, \vec{f}; t) = \det \left[\mathcal{G}_{1}^{L}(f_{a}, f_{b}; t) \right]_{a,b=1}^{N}
\]
\[G_{n+n}^L(y_f, y_i; t) = \left\{ \det \left[G_1^L(y_a^f, y_b^i; t) \right] \right\}_{a, b = 1}^N \right\}^2 \] (20b)

and

\[G_1^L(y_a^f, y_b^i; t) = \left\langle y_a^f \left| \exp(-tT) \right| y_b^i \right\rangle \] (21)

is the sp propagator, solution of the following free equation of motion:

\[\frac{\partial}{\partial t} G_1^L(x, y; t) = \frac{1}{2} \frac{\partial^2}{\partial x^2} G_1^L(x, y; t) \] (22)

For the interacting case:

\[E_o^S(N) = -\lim_{t \to \infty} \frac{1}{t} \ln G_N^S(y_f^i, y_i^i; t) \] (23a)

\[E_o^S(N+n) = -\lim_{t \to \infty} \frac{1}{t} \ln G_{n+n}^S(y_f^i, y_i^i; t) \] (23b)

where

\[G_N^S(y_f^i, y_i^i; t) = \left\{ \int [A] p_b[A] \det \left[G_1^S(y_a^f, y_b^i; t | A) \right] \right\}_{a, b = 1}^N \] (24a)

\[G_{n+n}^S(y_f^i, y_i^i; t) = \left\{ \int [A] p_b[A] \det \left[G_1^S(y_a^f, y_b^i; t | A) \right] \right\}_{a, b = 1}^{N+n} \] (24b)

are the functional integral representations of the N particles and the N+N interacting particle propagator, respectively. The sp propagator \(G_1^S \) is the solution of the following equation of time evolution:

\[\frac{\partial}{\partial t} G_1^S(x, y; t | A) = \left[\frac{1}{2} \frac{\partial^2}{\partial x^2} - A(x, t) \right] G_1^S(x, y; t | A) \]

\[G_1^S(x, y; 0 | A) = \delta(x-y) \] (25)
and $A(x,t)$ is the common random field with white-noise-type Gaussian distribution $p_0[A]$:
\[p_0[A] = \exp \left[-\frac{1}{2} \int_0^t d\tau \int dx \, \bar{A}(x,\tau) A(x,\tau) \right] \]
\[\int d[A] p_0[A] = 1 \] (26)

We will verify that:
\[G_N^S(t) \approx G_N^L(t) \quad ; \quad E_0^S(N) \approx E_0^L(N) \] (27)

as a consequence of the Pauli exclusion principle, i.e., the determinant structure of the propagator.

The $\ell\times j\ell$ space-time lattice for the MC calculations was taken fixed as far as the time spacing ($\varepsilon=0.25$) and the spatial spacing ($a=1$) were concerned. Different values for ε ($\varepsilon=0.125$, $\varepsilon=0.5$) were tested and found uninteresting or inconvenient: the $\varepsilon=0.125$ case uselessly removed further the time asymptotic region, whereas the $\varepsilon=0.5$ case augmented the intensity of the random fluctuations of the results in the step concerning the numerical solution of the differential equation (25).

Different values for the length L, i.e., the number of space sites, were systematically taken in order to check the variation of the results with particle density $\rho = 2N/L$. A unit strength ($g=1$) for the delta interaction has been introduced everywhere in this first part of our numerical calculations.

Results are summarized in Table I. The meaning of the various quantities present in Table I is the following: N is the number of fermions of the same species, L is the length of the space lattice, i.e., the number of space lattice sites, since $a=1$. By ε we mean time lattice spacing, $j\ell$ is the number of time lattice sites. $E_0^L(N)$ of column 5 is the ground-state energy of N free fermions of the same colour, analytically derived in three different cases:

a) the ($a=0$, $\varepsilon=0$) case is the space-time continuum case, in which spin energies are:
\[E_m\left(a=0, \varepsilon=0 \right) = \frac{2\pi^2}{L^2} m^2 \quad \left(\frac{p}{bc}, \quad m=0, \pm 1, \ldots \right) \] (28)

b) the \((a=1, \varepsilon=0)\) case is the intermediate case of discrete-space, continuous-time calculations, for which sp energies are:

\[E_m\left(a=1, \varepsilon=0 \right) = 1 - \cos \frac{2\pi n}{L} \quad \left(\frac{p}{bc}, \quad n=0, \pm 1, \pm 2, \ldots \right) \] (29)

c) the \((a=1, \varepsilon)\) case comes from the sp space-time lattice spectrum, analytically approximated by taking into account the effect of the finite size of space-time lattice spacing on sp energies in the space-time continuum:

\[E_m\left(a=1, \varepsilon \right) \approx E_m\left(a=0, \varepsilon=0 \right) + \frac{1}{2} \left(\varepsilon - \frac{1}{3} \right) E_m^2\left(a=0, \varepsilon=0 \right) \] (30)

[the above formula is valid for small values of \(n\) only; see Eq. (52) of Alzetta et al., 1984].

The values \(E_0^L(N)\) in the sixth column are numerical results of our computer calculation. The procedure which leads to them is widely explained in Section 4 of Alzetta et al., 1984. Here, we summarize the main lines of the procedure: we first introduced a \(L\times L\) space-time lattice with \(L\) spatial sites of length \(a = 1\) and \(L\) time sites of length \(\varepsilon = 0.25\), imposed periodicity on the space component and solved numerically Eq. (22) for the free particle. Then we calculated, for \(L\) different values of time, the Green's function for \(N\) free indistinguishable fermions, i.e., the determinant of Eq. (20a). The final results appeared independent of the choice of the initial state configuration \(\gamma_i\); as far as final states are concerned, we did not chose any particular state, since we calculated instead the sum of all \(G^L_N\) with different possible final states \(\gamma_f\) consistent with the Pauli principle. The advantage of such a summation was that it delocalized the final state of the system anticipating consequently, by the uncertainty principle, the time asymptotic exponential region for the Green's function, necessary to extract, by means of Eq. (19), the energy of the ground state.

The quantities \(\langle E_0^\delta(N) \rangle\) of column 7 of Table 1 are MC averages of the ground-state energies of \(N\) indistinguishable fermions among which a delta potential is present but actually ineffective, as it is manifest in the results
showing only negligible discrepancies with the free case $E_0^\delta(N)$. The terms μ in column 8 indicate the standard errors of the preceding averages $\langle E_0^\delta(N) \rangle$ listed in column 7. Columns 7 and 8 contain the first significant results of our numerical experiment and should be used as a check of our statistical accuracy.

In columns 9 to 12 the corresponding values for the $N+N$ system are presented. In order to obtain the computer results of column 10 of Table 1, the same procedure which yields column 6 was carried out, with the only difference of squaring the Slater determinant in order to obtain, by Eq. (20b), the Green's function of $N+N$ free fermions of two species. The numerical results listed in columns 7 and 11 of Table 1 are obtained by substituting Eqs. (23)-(25) for Eqs. (19)-(22) in the numerical procedure previously explained for the free case. The random common field $A(x,t)$ of Eq. (25) was simulated by extracting from the computer a finite but large and discrete Gaussian distribution of random lattice fields $A(x_i^l,t_j)$ ($i=1,2,\ldots,L$; $j=1,2,\ldots,JT$). We have called NC, and listed in column 14 of Table 1 as a number of NC sweeps, the number of such random fields which have been constructed by assigning each point of the space-time lattice NC random numbers in a numerically approximated Gaussian distribution with zero mean and unit standard deviation.

The last three (13,14,15) columns indicate the binding energy

$$ B(N+N) = E_0^L(N+N) - \langle E_0^\delta(N+N) \rangle, \tag{31} $$

the number NC of MC sweeps and finally the CPU time spent on a VAX 11/780.

We postpone to Section 6 the comments and discussion on the above results and their comparison with those results on the same problem already present in the literature. We want here to comment on one single point only: the result listed in row 13 of Table 1 ($N=3$, $L=6$, $\epsilon=0.25$, $JT=50$), if compared with the corresponding result previously obtained by Alzetta et al., 1984, shows a considerable discrepancy in the most interesting values $E_0^\delta (3+3)$ and $B(3+3)$: 1.68 and 0.46, respectively, against 1.85 and 0.29 of that paper. These discrepancies, which are beyond statistical errors μ (0.05 and 0.06, respectively), are probably due to the previous too poor statistics (only 3000 MC sweeps) used in the first work.
5. **NUMERICAL RESULTS. SECOND PART**

In the second part of our numerical experiment on delta-function interaction, we changed the states of the representation of the time-evolution operator: instead of looking for the functional integral representation of the \(N \) and \(N+N \) particle propagator, we built up the representation of the imaginary time evolution operator into the space of eigenstates of the energy of \(N \) and \(N+N \) free particles. The following quantity:

\[
R_{\beta \alpha}(t) = \langle \beta | \exp(-tH_N) | \alpha \rangle
\]

(32)

represents the matrix element of the imaginary time evolution operator of \(N \) fermions calculated between two eigenstates of the energy of \(N \) free indistinguishable fermions, i.e., between two Slater determinants built with \(N \) different eigenfunctions of type (7). We use the following notation for the main formulae:

\[
R_{\beta \alpha}(t) = \langle \beta | \exp(-tH_N) | \alpha \rangle = \langle \det \left[F_{\ell,m}(t|A) \right] \rangle_{\ell,m=1}^{N} \bigg|_{t=0} = \int d[A] p_{\delta}[A] \det \left[F_{\ell,m}(t|A) \right]_{\ell,m=1}^{N} \]

(33)

where

\[
F_{\ell,m}(t|A) = \langle \phi_{\ell} | \exp(-t h_2[A]) | \phi_m \rangle = \int dx \phi_{\ell}(x) \exp \left[-th_1(x|A) \right] \phi_m(x)
\]

(34)

is the sp Green's function satisfying the following initial condition:

\[
F_{\ell,m}(0|A) = \delta_{\ell,m}
\]

(35)

The following wave function:

\[
\frac{\partial}{\partial t} \phi_m(x; t|A) = \exp \left[-t h_1(x|A) \right] \phi_m(x)
\]

is the solution of the same differential equation (25) satisfied by the sp propagator \(G_{\delta} \):
\[
\frac{\partial}{\partial t} f_m(x, t|A) = \left[\frac{1}{2} \frac{\partial^2}{\partial x^2} - A(x, t) \right] f_m(x, t|A) \tag{36}
\]

The \(\phi \)'s are defined in (7) and:

\[
h_1(x|A) = -\frac{1}{2} \frac{\partial^2}{\partial x^2} + A(x, t) \tag{37}
\]

\(A(x, t) \) is the common random field, and \(\lambda \) and \(m \) run over all sp quantum numbers present in the \(N \)-particle states \(\beta \) and \(\alpha \) respectively. For the \(N+N \) particle system we have simply to square the determinants. The matrix \(R(t) \) in (32) as well as the following matrix:

\[
RR(t) = \left\langle \left\{ \det \left[\mathcal{F}_m(t|A) \right] \right\}^N \right\rangle_{\beta \alpha} \tag{38}
\]

are \(N^N \times N^N \) matrices, where \(N \) is the dimension of the truncated space of \(N \)-fermion states, namely, the number of different \(N \)-fermion states we introduced in the calculations.

We verified that, with this second choice of initial and final states, the time asymptotic region for Eqs. (19) and (23) was immediately reached already at the second or third time step of the computer calculations, instead of nearly ten steps of the first, propagator case, with a consequent saving of computer time.

In order to correct for the effect of the truncation of the set of \(N \)-particle states, we adopted Wilson's variational procedure used by Falcioni et al., 1982, and by Berg et al., 1982. We define the following \(N^N \times N^N \) matrices:

\[
C(m) = R(t=n\varepsilon) \quad CC(m) = RR(t=n\varepsilon) \quad (n = 0, 1, 2, \ldots, JT-1) \tag{39}
\]

and then construct the following \(N^N \times N^N \) matrices:

\[
CT(m) = \left[C(m-1)^{-\frac{1}{2}} C(m) C(m-1)^{-\frac{1}{2}} \right]^{-\frac{1}{2}}
\]
\[\mathcal{CCT}(n) = \left[\mathcal{C}(n-1) \right]^{-\frac{1}{2}} \mathcal{C}(n) \left[\mathcal{C}(n-1) \right]^{-\frac{1}{2}} \quad (n = 1, 2, \ldots, \text{JT-1}) \]

and

\[\mathcal{CF}(n) = \mathcal{C}(n-1) \left[\mathcal{C}(n-2) \right]^{-1} \mathcal{C}(n-1) \]

\[\mathcal{CCF}(n) = \mathcal{C}(n-1) \left[\mathcal{C}(n-2) \right]^{-1} \mathcal{C}(n-1) \quad (n = 3, 4, \ldots, \text{JT-1}) \]

Inside a non-truncated state-space, \(\text{NS} = \infty \), we would have exactly

\[\mathcal{CT}(n) = \mathcal{C}(1) \quad \mathcal{CT}(n) = \mathcal{C}(1) \quad (n = 1, 2, 3, \ldots, \text{JT-1}) \]

and

\[\mathcal{CF}(n) = \mathcal{C}(n) \quad \mathcal{CCF}(n) = \mathcal{C}(n) \quad (n = 3, 4, \ldots, \text{JT-1}) \]

In our truncated NS-state space \(\text{NS} = 5/8 \), we will have approximately results (41), and Eq. (42) will work as a consistency check of the approach at higher times.

Diagonalizing matrices (40) into the space of NS lowest N-particle states, one will obtain the lower part of the spectrum of the N particle and N+N particle system. Calling \(\eta t(n) \) and \(\eta \eta t(n) \), \((n=1,2,\ldots,\text{JT-1}) \) any one of the NS eigenvalues of the 2x(JT-1) matrices (40a), we will be authorized to write:

\[E^\delta(N) \approx -\frac{1}{\xi} \ln \eta t(n) \]

\[E^\delta(N+N) \approx -\frac{1}{\xi} \ln \eta \eta t(n) \quad (n = 1, 2, 3, \ldots, \text{JT-1}) \]

for the lowest energy levels of N fermions and N+N fermions, respectively.
In Table 2 we summarize the results of our numerical experiment for the system of five fermions of the same species. Each of the seven energy levels reported in columns 3, 5, 7, 9, 11, 13, 15 is the average, for a different value of g in each column, of the JT-1 energies extracted from the eigenvalues of CT(n) matrices $(n=1,2,\ldots, JT-1)$ by means of (43) and each σ-value beside it on the right side is the standard deviation from that average of those JT-1 energies. The number JT of time steps was equal to 8 or 7. The length L of the spatial periodic interval was kept constant and equal to ten ($\rho=1$). A time lattice spacing $\epsilon = 1/8$ was chosen. NS is 7; in fact, we list seven energy levels. However, results appeared insensitive to small variations (5 to 8) of NS. Different strengths g ($g=1,2,3,4,5,6$ and 10) for the delta force were taken which forced us to raise proportionally, from 1000 to 10000, the number NC of MC sweeps to keep nearly constant the fluctuations of the results, as is manifest from the ninth row of Table 2 which shows the average values $\langle \sigma \rangle$ of the standard deviations of the energies listed above them. The seven 5-fermion states were chosen as follows, in the 2-quantum number notation of Eq. (7):

\[
\begin{align*}
1\rangle = & \left(1,4,2,3,5 \right) \\
2\rangle = & \left(1,2,3,4,6 \right) \\
3\rangle = & \left(1,2,4,5,6 \right) \\
4\rangle = & \left(1,2,3,6,2 \right) \\
5\rangle = & \left(2,3,4,5,6 \right) \\
6\rangle = & \left(1,2,3,6,8 \right) \\
7\rangle = & \left(1,4,5,6,7 \right)
\end{align*}
\]

(44)

A comparison of the results obtained by MC simulation of the delta interaction reported in columns 3, 5, 7, 9, 11, 13, 15 with the results of the computer calculation for free fermions, reported in column 2 of the same Table 2, confirms the statistical accuracy of our calculations.

In Table 3 we report the corresponding results for the case of the system of 5+5 fermions. In row 9 the average values are reported of the numbers listed above them in the same column. In row 10 we list the standard deviations $\sigma(B)$ from the mean value $\langle B \rangle$ of the binding energies reported in the same column.

6. **DISCUSSION OF THE RESULTS**

(A) The average value of the binding energy for 5+5 particles with $g = 1$ reported in Table 3:
\[\langle B(5+5) \rangle = 0.35 \pm 0.03 \]

(45)

agrees with the result \(B_5 = 0.38 \) previously obtained by Alzetta et al., 1984, with the first method.

(B) For \(g \) different from one, the numbers listed in the twelfth row of Table 3 suggest that the binding energy is proportional to the coupling constant:

\[B(N+N) \propto g \]

(46)

at least for small \(g \).

(C) For \(N = 1 \) a least-squares fit has been made of the \(L \)-dependence of the binding energy \(B(1+1) \) reported in Table 1: the result is the following:

\[B(1+1, L) = \frac{d}{L} \]

(47)

with \(d = 0.274 \pm 0.012 \) \((g=1)\).

Let us recall that the energy of the bound state of a pair of identical but distinguishable particles attracted by a delta potential for open (i.e., no wall of any kind to contain the particles) boundary conditions \((\text{density } \rho = 0)\) was calculated by McGuire, 1966, and found to be:

\[E_0^S (1+1) = -\frac{1}{4} g^2 \]

(48)

Now if we apply our conjecture (46) to Eq. (47), we would have the following \(L \)- and \(g \)-dependences of \(B(1+1) \):

\[B(1+1, L, g) = \frac{d}{L} \frac{g}{g} \]

(49)

Comparison of (49) with (48) suggests that \(L \) works like \(1/g \) for large systems; scaling property, see Lieb and de Llano, (1978).

(D) In the Figure we compare our numerical results, together with those of the previous paper (Alzetta et al., 1984), with the values produced by Aguilera et al., 1982, by solving numerically the Gaudin equations which give the exact ground-state energy per particle, \(\varepsilon(\rho) = \frac{E_0^S(N+N)}{2N} \), for any value of the density \(\rho = 2N/L \) of the system. The Figure shows the numerical values \(b/g^2 \) of the binding
energy per particle, \(b \), divided by the square of the coupling constant \(g \), plotted against \(\rho/g \), namely the density \(\rho \) per unit coupling. Squared points refer to the values extracted from the results reported by Aguilera et al., 1982, while round points refer to this work and the previous one. The above comparison, however, is rather far from being significant because, while we use small numbers \(N \) of fermions in periodic boundary conditions, all their numbers as well as all other ones produced by various authors and reported by Aguilera et al., 1982, are given in the limit of the large system (Lieb and Liniger, 1963; Gudin, 1967) or in the thermodynamic limit (Overhauser, 1960; de Llano and Plastino, 1976; Döhnert et al., 1978; Gutierrez and Plastino, 1981).

(E) From the Figure, one can appreciate the rather good agreement of our results for the same \(\rho/g \) but different values of \(N \), even before the thermodynamic limit.

ACKNOWLEDGEMENTS

One of us (R.A.) is greatly indebted to G. Parisi for originally suggesting this work and for useful advice. He is also grateful to C. Castellani and C. Natoli for discussions. The hospitality of the Theoretical Physics Division of CERN during the last portion of this work is gratefully acknowledged.
<table>
<thead>
<tr>
<th>H</th>
<th>L</th>
<th>E</th>
<th>aP</th>
<th>$\delta^2_n(s)$</th>
<th>$\delta^2_n(s)$</th>
<th>μ</th>
<th>$\delta^2_n(s + H)$</th>
<th>μ</th>
<th>B (s + H)</th>
<th>NC</th>
<th>CPU TIME on VAX 11/780</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1/4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$<10^{-16}$</td>
<td>0</td>
<td>0.0003</td>
<td>0</td>
<td>100'000</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1/4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$<10^{-16}$</td>
<td>0</td>
<td>0.0004</td>
<td>0</td>
<td>100'000</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1/4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$<10^{-16}$</td>
<td>0</td>
<td>0.0005</td>
<td>0</td>
<td>100'000</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1/4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$<10^{-16}$</td>
<td>0</td>
<td>0.0006</td>
<td>0</td>
<td>100'000</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1/4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$<10^{-16}$</td>
<td>0</td>
<td>0.0007</td>
<td>0</td>
<td>100'000</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>1/4</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$<10^{-16}$</td>
<td>0</td>
<td>0.0008</td>
<td>0</td>
<td>100'000</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1/4</td>
<td>50</td>
<td>2.193</td>
<td>1.500</td>
<td>1.993</td>
<td>1.660</td>
<td>1.93</td>
<td>0.02</td>
<td>4.286</td>
<td>3.000</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1/4</td>
<td>50</td>
<td>1.234</td>
<td>1.000</td>
<td>1.197</td>
<td>1.151</td>
<td>1.149</td>
<td>0.025</td>
<td>2.467</td>
<td>2.000</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1/4</td>
<td>50</td>
<td>0.548</td>
<td>0.200</td>
<td>0.316</td>
<td>0.534</td>
<td>0.539</td>
<td>0.005</td>
<td>1.097</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1/4</td>
<td>50</td>
<td>0.208</td>
<td>0.200</td>
<td>0.305</td>
<td>0.204</td>
<td>0.204</td>
<td>0.005</td>
<td>0.617</td>
<td>0.200</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1/4</td>
<td>50</td>
<td>1.387</td>
<td>3.000</td>
<td>3.986</td>
<td>3.760</td>
<td>3.756</td>
<td>0.005</td>
<td>5.713</td>
<td>6.000</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1/4</td>
<td>50</td>
<td>1.077</td>
<td>1.000</td>
<td>2.175</td>
<td>1.068</td>
<td>1.059</td>
<td>0.006</td>
<td>2.793</td>
<td>2.000</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>1/4</td>
<td>50</td>
<td>0.274</td>
<td>0.266</td>
<td>0.272</td>
<td>0.273</td>
<td>0.254</td>
<td>0.006</td>
<td>0.548</td>
<td>0.236</td>
</tr>
</tbody>
</table>

- Table 1 -
<table>
<thead>
<tr>
<th>free</th>
<th>$g=1$</th>
<th>$g=2$</th>
<th>$g=3$</th>
<th>$g=4$</th>
<th>$g=5$</th>
<th>$g=6$</th>
<th>$g=10$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=1000</td>
<td>N=2000</td>
<td>N=1000</td>
<td>N=5000</td>
<td>N=5000</td>
<td>N=5000</td>
<td>N=1000</td>
</tr>
<tr>
<td>$<q_1>$</td>
<td>4.294</td>
<td>4.135</td>
<td>0.057</td>
<td>4.132</td>
<td>0.066</td>
<td>4.342</td>
<td>0.050</td>
</tr>
<tr>
<td>$<q_2>$</td>
<td>3.007</td>
<td>3.033</td>
<td>0.047</td>
<td>3.849</td>
<td>0.057</td>
<td>1.823</td>
<td>0.057</td>
</tr>
<tr>
<td>$<q_3>$</td>
<td>3.251</td>
<td>3.300</td>
<td>0.036</td>
<td>3.287</td>
<td>0.054</td>
<td>1.288</td>
<td>0.034</td>
</tr>
<tr>
<td>$<q_4>$</td>
<td>3.246</td>
<td>3.264</td>
<td>0.059</td>
<td>3.220</td>
<td>0.029</td>
<td>1.201</td>
<td>0.043</td>
</tr>
<tr>
<td>$<q_5>$</td>
<td>3.081</td>
<td>3.088</td>
<td>0.031</td>
<td>3.062</td>
<td>0.062</td>
<td>1.065</td>
<td>0.053</td>
</tr>
<tr>
<td>$<q_6>$</td>
<td>2.539</td>
<td>2.533</td>
<td>0.048</td>
<td>2.526</td>
<td>0.043</td>
<td>2.590</td>
<td>0.062</td>
</tr>
<tr>
<td>$<q_7>$</td>
<td>1.832</td>
<td>1.830</td>
<td>0.037</td>
<td>1.837</td>
<td>0.050</td>
<td>1.834</td>
<td>0.033</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPU</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
<th>0.05</th>
<th>0.07</th>
<th>0.08</th>
<th>0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAX 11/780</td>
<td>9 sec</td>
<td>1.5 h</td>
<td>3 h</td>
<td>4.5 h</td>
<td>6 h</td>
<td>7.5 h</td>
<td>9 h</td>
</tr>
</tbody>
</table>

| J7 | 8 | 8 | 8 | 8 | 8 | 8 | 7 |

- Table 2 -
<table>
<thead>
<tr>
<th></th>
<th>free</th>
<th>g = 1</th>
<th>g = 2</th>
<th>g = 3</th>
<th>g = 4</th>
<th>g = 5</th>
<th>g = 6</th>
<th>g = 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_n</td>
<td>8.868</td>
<td>6.230</td>
<td>6.378</td>
<td>0.140</td>
<td>7.925</td>
<td>0.664</td>
<td>0.154</td>
<td>7.579</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.734</td>
<td>7.463</td>
<td>0.251</td>
<td>0.147</td>
<td>6.883</td>
<td>0.871</td>
<td>0.233</td>
<td>6.298</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.523</td>
<td>6.261</td>
<td>0.262</td>
<td>0.099</td>
<td>5.868</td>
<td>0.657</td>
<td>0.276</td>
<td>5.504</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.451</td>
<td>6.140</td>
<td>0.351</td>
<td>0.106</td>
<td>5.600</td>
<td>0.812</td>
<td>0.160</td>
<td>5.308</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.136</td>
<td>5.788</td>
<td>0.349</td>
<td>0.063</td>
<td>5.303</td>
<td>0.833</td>
<td>0.187</td>
<td>4.982</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.077</td>
<td>4.608</td>
<td>0.459</td>
<td>0.164</td>
<td>4.295</td>
<td>0.783</td>
<td>0.114</td>
<td>4.013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.664</td>
<td>3.203</td>
<td>0.379</td>
<td>0.124</td>
<td>2.968</td>
<td>0.698</td>
<td>0.178</td>
<td>2.642</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.35</td>
<td>0.76</td>
<td>0.19</td>
<td>1.13</td>
<td>0.16</td>
<td>1.50</td>
<td>0.18</td>
<td>1.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p (h)</td>
<td>0.07</td>
<td>0.08</td>
<td>0.14</td>
<td>0.15</td>
<td>0.26</td>
<td>0.17</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>1.5 h</td>
<td>3 h</td>
<td>4.5 h</td>
<td>6 h</td>
<td>7.5 h</td>
<td>9 h</td>
<td>13 h</td>
</tr>
<tr>
<td>cdX</td>
<td>0.36</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.38</td>
<td>0.36</td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>

- Table 3 -

TABLE CAPTIONS

Table 1 Ground-state energies of N and N+N free and delta-interacting fermions. Coupling constant $g = 1$ everywhere. Time lattice spacing $\varepsilon = 1/4$. Spatial spacing $a = 1$. Representation of time evolution operator in terms of the particle propagator.

Table 2 Lowest energy levels of the system of five indistinguishable fermions, free and delta interacting. $L = 10$, $\varepsilon = 1/8$, NS = 7.

$$\Sigma^2_N = \frac{1}{N} \sum_{i=1}^{N} \left[E_{k}^{(i)}(5) - \langle E_k(5) \rangle \right]^2, \quad (k = 1, 2, \ldots, 7)$$

Seven 5-fermion states in notation of Eq. (7):

$|1\rangle = (1,2,3,4,5)$; $|2\rangle = (1,2,3,4,6)$; $|3\rangle = (1,2,4,5,6)$;

$|4\rangle = (1,2,3,6,7)$; $|5\rangle = (2,3,4,5,6)$; $|6\rangle = (3,4,5,6,8)$;

$|7\rangle = (4,5,6,7)$.

Representation of the time-evolution operator into the space of NS 5-free-particle energy eigenstates.

Table 3 Lowest energy levels of 5+5 free and delta-interacting fermions. $L = 10$, $\varepsilon = 1/8$, NS = 7, $\rho = 1$.
REFERENCES

FIGURE CAPTION

Binding energy per particle divided by the square of the strength of the delta force, b/g^2, versus density per unit coupling, ρ/g; ρ = 2N/L. Squared points refer to values from Aguilera-Navarro et al. (1982), while round points refer to the present work and to a previous one by Alzetta et al. (1984). Small numbers near round points indicate the total number of fermions 2N. b = 8(N+1)/2N.
b / g^2

- Aguilera-Navarro et al 1982
- Present work and Alzetta et al 1984