Soft QCD measurements in the forward acceptance at the LHC

Michael Schmelling – MPI for Nuclear Physics
– on behalf of the LHCb collaboration –

Outline

- The LHCb experiment
- Energy flow and multiplicities
- Identified particles
- Drell-Yan production
- Summary and outlook
1. The LHCb Experiment

RICH1 & RICH2
\[\varepsilon(K \to K) \sim 95\% \]
\[\pi \to K \text{ mis-id: } \sim 5\% \]

Calorimeters
\[\text{ECAL: } \sigma_{E/E} \sim 1\% + 10\%/\sqrt{E[GeV]} \]

VELO
\[\sigma_{IP} \sim 20 \mu m \]

Tracking System
\[\Delta p/p = 0.4\%@5 \text{ GeV/c} \]
\[\text{to } 0.6\%@100 \text{ GeV/c} \]

Muon System
\[\varepsilon(\mu \to \mu) \sim 97\% \]
\[\pi \to \mu \text{ mis-id: } 1 \sim 3\% \]
Data taking history

- data taking efficiency 93%
- instantaneous luminosity up to $L = 4 \times 10^{32} \text{cm}^{-2}\text{s}^{-1}$
 - twice design value at double the nominal bunch spacing
 - luminosity leveling for LHCb by beam steering
- a total of about 2×10^{14} pp-collisions scrutinized

<table>
<thead>
<tr>
<th>year</th>
<th>int.luminosity</th>
<th>E[TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>6.8 μb$^{-1}$</td>
<td>0.9</td>
</tr>
<tr>
<td>2010</td>
<td>0.3 nb$^{-1}$</td>
<td>0.9</td>
</tr>
<tr>
<td>2010</td>
<td>37 pb$^{-1}$</td>
<td>7</td>
</tr>
<tr>
<td>2011</td>
<td>0.1 pb$^{-1}$</td>
<td>2.76</td>
</tr>
<tr>
<td>2011</td>
<td>1 fb$^{-1}$</td>
<td>7</td>
</tr>
<tr>
<td>2012</td>
<td>2 fb$^{-1}$</td>
<td>8</td>
</tr>
<tr>
<td>2013</td>
<td>1.3 nb$^{-1}$</td>
<td>5 (pA)</td>
</tr>
<tr>
<td>2013</td>
<td>0.6 nb$^{-1}$</td>
<td>5 (pA)</td>
</tr>
<tr>
<td>2013</td>
<td>3.3 pb$^{-1}$</td>
<td>2.76</td>
</tr>
</tbody>
</table>
2. **Energy Flow and Multiplicities**

→ **Energy Flow (EF): average energy per event in a given \(\eta \)-interval**

\[
EF : \quad \frac{1}{N_{\text{int}}} \frac{dE}{d\eta} = \frac{1}{\Delta \eta} \left(\frac{1}{N_{\text{int}}} \sum_{i=1}^{N_{\text{part},\eta}} E_{i,\eta} \right)
\]

→ part of underlying event
→ sensitive to multi-parton interactions & parton radiation
→ comparison to PYTHIA 6, PYTHIA 8 and cosmic ray models (generators used to model cosmic ray induced air showers)

❖ analysis for different event classes:

- inclusive minimum bias: \(\geq 1 \) tracks with \(\eta \in [1.9, 4.9] \) and \(p > 2 \text{ GeV/c} \)
- hard scattering: inclusive &\& \(\geq 1 \) tracks with \(p_T > 3 \text{ GeV/c} \)
- diffractive enriched: inclusive &\& 0 tracks with \(\eta \in [-3.5, -1.5] \)
- non-diffractive enriched: inclusive &\& \(\geq 1 \) tracks with \(\eta \in [-3.5, -1.5] \)
total \(EF = (\text{charged}+\text{neutral})EF \)

- Energy Flow increases with momentum transfer
 \(EF_{\text{diff}} < EF_{\text{incl}} < EF_{\text{ndiff}} < EF_{\text{hard}} \)
- Highest sensitivity at large \(\eta \)
- Uncertainties:
 - Dominated by systematics
 - Smallest at large \(\eta \)

PYTHIA 6: Energy Flow is
 - Overestimated at small \(\eta \)
 - Underestimated at large \(\eta \)
 PYTHIA 8.135 default:
 - Except for hard scattering, the Energy Flow is well described for all samples
models not tuned to LHC(b)

- EPOS & SIBYLL: good description of EF for inclusive and non-diffractive events
- QGSJET models: overestimated EF for inclusive and non-diffractive events; good description of hard scattering
- best description by SIBYLL
- all models underestimate the EF of diffractive events
Charged particle multiplicities

- **Multiplicity measurement with momentum information**
 - Kinematics: $p_T > 0.2$ GeV/c, $p > 2$ GeV/c, $2.0 < \eta < 4.8$
 - Low-pileup ($< 4\%$) minimum-bias pp sample at $\sqrt{s} = 7$ TeV
 - Systematic uncertainties 1-10\% - dominant contribution from dead material

- Charged particle density per event vs η

 ![Graphs showing charged particle density per event vs η](image)

 - PYTHIA 6 and PHOJET (not tuned to LHC) underestimate densities
 - Satisfactory description by PYTHIA 8.180 (LHC tune) and HERWIG++
 - Best models underestimate density at low η and overestimate at large η
charged particle density per event vs p_T

kinematics: $p > 2 \text{ GeV/c}$, $2.0 < \eta < 4.8$

→ most PYTHIA 6 models and PHOJET too low, but shape OK
→ too soft distribution for PYTHIA 6 LHCb-tune
→ reasonable description by PYTHIA 8.180
→ normalization OK but too soft spectrum for HERWIG++
:: kinematics: $p > 2 \text{GeV/c}, \ p_T > 0.2 \text{GeV/c}, \ 2.0 < \eta < 4.8$

- too few charged particles in PHOJET and PYTHIA 6 tunes
- PYTHIA 8.180 and HERWIG++ (tuned to central LHC data) do best
- none of the models studied is fully able to describe all distributions
3. IDENTIFIED PARTICLES

→ particle production ratios as a function of y and p_T

- antiparticle/particle ratios and ratios of different particle species

\[
\frac{\pi^-}{\pi^+}, \frac{K^-}{K^+}, \frac{\bar{p}}{p}, \frac{\bar{\Lambda}}{\Lambda} \quad \text{and} \quad \frac{K^+ + K^-}{\pi^+ + \pi^-}, \frac{p + \bar{p}}{\pi^+ + \pi^-}, \frac{p + \bar{p}}{K^+ + K^-}, \frac{\bar{\Lambda}}{K^0_S}
\]

- many systematic uncertainties cancel
- mainly information about the hadronization process:
 → baryon number transport from \bar{p}/p and $\bar{\Lambda}/\Lambda$
 → baryon suppression from baryon/meson ratios
 → strangeness suppression from kaon/pion ratios

❖ experimental aspects:

➢ results based on 0.3 nb^{-1} at $\sqrt{s} = 0.9 \text{ TeV}$ and 1.8 nb^{-1} at $\sqrt{s} = 7 \text{ TeV}$
➢ PID efficiencies from $K^0_S \rightarrow \pi^+ \pi^-$, $\Lambda \rightarrow p\pi^-$, $\bar{\Lambda} \rightarrow \bar{p}\pi^+$ and $\phi \rightarrow K^+ K^-$
➢ dominant uncertainties from PID due to limited size of calibration sample
Antiparticle/particle ratios

$\sqrt{s} = 0.9 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$ $\sqrt{s} = 0.9 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$

→ charge ratio drops towards larger rapidities (proton beam)
→ effect more pronounced at higher p_T
→ general behavior reproduced by all PYTHIA 6 tunes
\[\frac{(K^+ + K^-)}{(\pi^+ + \pi^-)} \quad \sqrt{s} = 0.9 \text{ TeV} \]
\[\frac{(\bar{p} + p)}{(\pi^+ + \pi^-)} \quad \sqrt{s} = 7 \text{ TeV} \]

- strangeness suppression very similar to baryon suppression
- less suppression at larger \(p_T \)
- reasonable description only by LHCb-tune of PYTHIA 6
\(\sqrt{s} = 0.9 \text{ TeV} \) \hspace{1cm} \(\sqrt{s} = 7 \text{ TeV} \)

\(\Lambda/K_S \) significantly reduced baryon suppression at large \(p_T \)

→ all considered PYTHIA 6 tunes fail to describe the strangeness-data
Baryon number transport

\[\sqrt{s} = 0.9 \, \text{TeV} \]

\[\sqrt{s} = 7 \, \text{TeV} \]

- all considered PYTHIA 6 tunes fail to describe observed \(y \)-dependence
- behavior as a function of \(\Delta y \) is independent of \(\sqrt{s} \) for \(\bar{\Lambda}/\Lambda \) and \(\bar{p}/p \)

Soft QCD measurements at LHCb - Identified particles
M. Schmelling, QCD14
ϕ-meson production

- **higher sensitivity to direct strangeness production**

- clean experimental signature $\phi \rightarrow K^+ K^-$

- cross-section underestimated by PYTHIA 6 tunes
- shapes in y and p_T not reproduced by the models
- LHCb-tune of PYTHIA 6 describes K/π ratio but not ϕ cross-section
4. **Drell-Yan Production**

→ *LHCb physics reach*

- **kinematics**

 \[x_1 x_2 = \frac{m^2}{s} \text{ and } \frac{x_1}{x_2} = e^{2y} \]

- small masses test small \(x \)
- forward rapidity means large asymmetries in \(x \) and thus sensitivity to even smaller values

- **LHCb allows to probe PDFs in a completely unexplored regime!**
Drell-Yan results

Drell-Yan di-muon cross-section vs invariant mass (LHCb-CONF-2012-013)

- $q\bar{q} \rightarrow \gamma^* \rightarrow \mu^+\mu^-$
- 37 pb^{-1} recorded in 2010
- $5 < M_{\mu\mu} < 120 \text{ GeV}/c^2$
- isolated high-p_T muons

- template-fits to isolation distribution of signal and background
- leading order predictions systematically too low
- NLO predictions in good agreement with the data
5. SUMMARY AND OUTLOOK

→ **LHCb has a wide QCD-related physics program.**

- studies of global event properties
 - energy flow and multiplicities not well described by PYTHA 6 tunes
 - cosmic ray models not tuned to HEP data do surprisingly well
 - better overall description by PYTHIA 8 and Herwig++

- production measurements for identified particles
 - antiparticle/particle ratios generally well described
 - strangeness and baryon suppression too strong in PYTHIA 6 tunes
 - baryon number transport not described by PYTHIA 6 tunes
 - baryon number transport with rapidity difference independent of \sqrt{s}

- Drell-Yan production
 - measurements to masses as low as 5 GeV/c^2 and $x \sim 10^{-5}$
 - good agreement with NLO predictions

❖ **many results with valuable input for model tuning!**

and more . . .
Selected results on forward production

- **global event properties of pp collisions**
 - EPJC73(2013)2421 Measurement of the forward energy flow at $\sqrt{s} = 7$ TeV
 - EPJC74(2014)2888 Measurement of charged particle multiplicities at $\sqrt{s} = 7$ TeV

- **light quarks and strangeness in pp collisions**
 - PLB693(2010)69 Prompt K_0^S production in pp collisions at $\sqrt{s} = 0.9$ TeV
 - PLB703(2011)267 Measurement of the inclusive ϕ cross-section at $\sqrt{s} = 7$ TeV
 - JHEP08(2011)034 Measurement of V^0 production ratios at $\sqrt{s} = 0.9$ and 7 TeV
 - EPJC72(2012)2168 Prompt hadron production ratios at $\sqrt{s} = 0.9$ and 7 TeV

- **proton-lead collisions at $\sqrt{s_{NN}} = 5$ TeV**
 - JHEP02(2014)072 Study of J/ψ production and cold nuclear matter effects

- **open charm and charmonium in pp collisions**
 - NPB871(2013)1 Prompt charm production in pp collisions at $\sqrt{s} = 7$ TeV
 - EPJC71(2011)1645 J/ψ production in pp collisions at $\sqrt{s} = 7$ TeV
 - EPJC72(2012)2100 $\psi(2S)$ meson production in pp collisions at $\sqrt{s} = 7$ TeV
 - JHEP02(2013)041 J/ψ production in pp collisions at $\sqrt{s} = 2.76$ TeV
 - JHEP06(2013)064 Production of J/ψ and Υ mesons in at $\sqrt{s} = 8$ TeV
 - JPG40(2013)045001 Exclusive J/ψ and $\psi(2S)$ production at 7 TeV