The atmosphere at the meeting was friendly and productive. For our Vietnamese colleagues it was a unique opportunity to make contact with world science after many years of isolation and of work in extremely difficult conditions. For us it meant getting to know a country which is emerging with energy and optimism after three decades of war.

Vietnam is poor and the resources for science are extremely limited. But there is a long tradition of scientific culture, as shown by the many researchers of Vietnamese origin who are active abroad, especially in France. At present the country has an obvious predominance of theoretical physicists with a rather formal orientation.

This meeting offered a good opportunity to create contacts with Western institutions which should hopefully lead to promising Vietnamese students being able to spend some time abroad. In turn this will help satisfy Vietnam’s urgent need for qualified scientists to help and accelerate the country’s technological development for a new era of prosperity.

From Monica Pepe Altarelli

UNIX at high energy physics Laboratories

With more and more high energy physics Laboratories “downsizing” from large central proprietary mainframe computers towards distributed networks, usually involving UNIX operating systems, the need was expressed at the 1991 Computers in HEP (CHEP) Conference to create a group to consider the implications of this trend and perhaps work towards some common solutions to ease the transition for HEP users worldwide.

UNIX was developed originally at the AT&T Bell Labs in the late 60s and from its early beginnings as an interesting tool in research labs, it has been developed into a general-purpose operating system for a wide range of computers from desktops to mainframes and offered by a wide range of suppliers, especially workstation manufacturers.

HEPiX was created at CHEP91 to group UNIX users and system administrators working in high energy physics Laboratories and cooperating academic institutes. After CHEP92, the group was structured along regional lines with a European and North American (USA plus Canada) chapters, with each chapter meeting approximately every six months. All meetings are open and anyone from any part of the HEP world is welcome to attend any meeting.

The most recent meeting of the European group was in October 1993 in Pisa and the minutes were published in the HEPiX newsgroup (see below) in December. The main theme which emerged was a general downsizing trend in many of the larger sites and its effect on HEP user groups and on the future directions of computing support for HEP.

A month later, the North American chapter met in SLAC (Stanford), and a report was published in January. Major topics at this meeting concentrated on a new file system (AFS) which is starting to become popular at a number of sites, and the subject of “farming” - using clusters of UNIX workstations to provide high quality batch processing.

The next events scheduled will include a meeting of worldwide HEPiX to follow the CHEP94 Conference in San Francisco in April and a meeting of the European chapter in Paris some time in October.

Between meetings, the group is active through electronic mail and Internet news. Other activities include a subgroup developing scripts to define a standard UNIX environment for use at HEP sites and another which produced a report comparing the different UNIX batch processing schemes used by HEP.

The results of these and other activities are published in the news group (HEPNET.HEPIX) and stored on an archive server. An index of information published by HEPiX is available via the World Wide Web and much of this can be viewed or accessed via the Web directly. (An article on the World Wide Web will feature in a forthcoming issue.)

There is no formal procedure to join HEPiX and all activities are published via the electronic mail list and the Usenet news group. Normally automatic procedures ensure the same information appears in both channels, so users may decide which channel they prefer.

To subscribe to the mail list, send a message to hepix-request@hepnet.hep.net (Internet) or hepnet:hepix-request (ES-DECnet) or hepix-request@hepnet (BITNET) where the first line of your message should be SUBSCRIBE. If you prefer to participate in the HEPiX discussion via netnews, subscribe to the newsgroup hepnet.hepix.

For further information, contact Alan Silverman at CERN (e-mail alan.silverman@cern.ch) or Judy Nicholls at Fermilab (NICHOLLS@FNALV.FNAL.GOV).

From Alan Silverman, HEPiX European Coordinator
The FDL 8050: the high-speed 100 Mbytes/s interconnection which instantly boosts Real-Time performance to new levels

Fast Link is:
- Fast 100 Mbytes/s bus bandwidth
- Intelligent Crate Scan, List Processor, Read-Out Lists, twin 25 MHz R3000 architecture
- Multidrop 15 nodes copper, 225 nodes fibre, full duplex bus
- Deterministic Response time guaranteed within μs
- User friendly Easy to program

Fast Link supports:
- Copper or Fibre connection
- Hot disconnection
- Local list processing for elementary and chained transactions
- Common time distribution system
- Versatile triggering of data transfers: front panel, interrupts, real-time clock triggers

The FDL 8050 (copper or fibre) is specially targeted Physics as well as for industrial applications. The Fast latency and robustness of Real-Time systems to their

The Fast Link family of interfaces provides a very to 16 (copper) / 225 (fibre) crates) at 100 Mbytes/s data transporter. A powerful dual RISC CPUs architecture allows actions within the host VME crate, such as sparse data scan and read-out control. An on-board firmware controls the processors, manages the communication area and provides user accessible entry points. Additional firmware packages include a List Processor and a C user library, available for most popular computers and CES turnkey systems.

Features
- Single slot VME module
- 80 Mbytes/s continuous data throughput
- Up to 225 nodes (fibre + copper)
- Up to 15 connections distributed over 30 meters (copper, FDL 8050)
- Fibre-optic attachment for transparent long distance connections (FOA 8051)
- VME Master/Slave interface including optimized D64 block transfer
- Interface for connection to an optional processor for local mathematical data processing
- Deterministic operation
- Global time maintenance with 1 μs resolution
- On-board list processor
- Programmable transfer conditions: External trigger, Internal timer, VME command or interrupt
- Front-panel trigger inputs
- Global time front-panel output
- Gateways to VICbus (VIC 8250/8251), HIPPI (HIPPI 8262S), SCI (SCI 8224, SCI 8225)
- Comes complete with all the software required to run the connection, as well as to perform elementary or complex sequences of local VME accesses

CES, at the leading edge in system conception

For any additional information about this product or our complete VIC, VME, CAMAC and FASTBUS line, do not hesitate to contact us.

CES Geneva, Switzerland Tel: +41-22 792 57 45 Fax: +41-22 792 57 48
CES D Germany Tel: +49-60 55 4023 Fax: +49-60 55 82 210
CES Creative Electronic Systems SA, 70 Route du Pont-Butin, P.O. Box 107
CH-1213 PETIT-LANCY 1 SWITZERLAND