W-ie-Ne-R Plein & Baus GmbH
proudly presents

NEMBOX
Nuclear Electronics Miniature Box

NEMBOX is a multifunctional FPGA based tool intended to replace complex NIM electronics with a compact versatile box. It is available in "desk" version, with a 6V transformer, or as NIM module. The package includes USB cable, software.

ADC
- Sampling rate 100 MHz
- Resolution 14 bit
- 2 Ch. TTL_coax I/O

Discriminator
- Threshold -2.5 to 2.5 V (12 bit)
- Hysteresis 0 to 60 mV (12 bit)
- Propag. Delay 3-4 ns
- Up to 20 LEDs
- Up to 4 Ch. TTL_coax I/O

DAC for wave generation
- FIFO 1024 values

Multichannel TDC
- Multihit
- Time resolution 10 ns
- 22 bit time stamps
- FIFO 1024 values
- Time range ca. 40ms ÷ 40s

TTL I/O
- I/O Selector
- 1 to 255 ms Debouncer

NIM I/O
- I/O Selector

Boolean (LOGIC)
- NOT, AND, OR, XOR

Flip Flops (LOGIC)
- RS
- Rising Edge triggered
- D-FF

Synchronizer (LOGIC)
- Start / Pulse

Scaler (COUNTER)
- Max. rate 100 MHz
- Resolution 32 bit
- Input: leading edge trigger A & B
- Output: custom pulse train

Pulser (COUNTER)
- LE single pulse trigger
- Output: custom pulse train
- Resolution: 10 ns
- Range: 32 bit

Clock (COUNTER)
- Clock divider 32 bit
- Duty cycle 50%
- Freq. 0.02 Hz ÷ 100 MHz
- Precision: quartz

Programmable Delay
- 0.5 ÷ 63.75 ns range
- 1 ÷ 127.5 ns range
Covering current developments in high-energy physics and related fields worldwide

CERN Courier is distributed to member-state governments, institutes and laboratories affiliated with CERN, and to their personnel. It is published monthly, except for January and August. The views expressed are not necessarily those of the CERN management.

Editor Christine Sutton
CERN, 1211 Geneva 23, Switzerland
E-mail cern.courier@cern.ch
Fax +41 (0) 22 785 0247
Web cerncouri.com

Advisory board James Gillies, Rolf Landua and Maximilian Metzger

Laboratory correspondents:
Argonne National Laboratory (US) Cosmas Zachos
Brookhaven National Laboratory (US) P Yamin
Cornell University (US) D G Cassel
DESY Laboratory (Germany) Rolf Landua
EMPIRCE (Italy) Anna Cavallini
Enrico Fermi Centre (Italy) Guido Piazza
Fermi National Accelerator Laboratory (US) James Gillies
Forschungszentrum Jülich (Germany) Markus Buescher
GSI Darmstadt (Germany) I Peter
INFN (Italy) Barbara Galliotti
HEP, Beijing (China) Tenghao Xu
Jefferson Laboratory (US) Steven Cornellussen
JINR Dubna (Russia) B Starchenko
KEK National Laboratory (Japan) Hidehito Morita
Lawrence Berkeley Laboratory (US) Spencer Klein
Los Alamos National Laboratory (US) C Hoffmann
NIKHEF Laboratory (Netherlands) Rob Pouwelse
Novosibirsk Institute (Russia) S Eidelman
NSCL (US) Geoff Knop
Osayi Laboratory (France) Anne Marie Lutz
PARK (UK) Peter Barratt
PSI Laboratory (Switzerland) P R Kettle
Rutherford Appleton Laboratory (UK) Rafe J. Beining
Saclay Laboratory (France) Elisabeth Locci
HEP, Serpukhov (Russia) Yu Ryabov
Stanford Linear Accelerator Center (US) Neil Calder
TRIUMF Laboratory (Canada) Marcello Pavan

Produced for CERN by IOP Publishing Ltd
IOP Publishing Ltd, Dirac House, Temple Back, Bristol BS1 6BE, UK
Tel +44 (0117) 929 7481; e-mail jo.nicholas@iop.org; web iop.org

Publisher Joe Tennant
Senior product manager Claire Webber
Advertisement production and Kathryn Zerboni
Recruitment and classified sales Adam Hylands, Jayne Orsborn

Display sales North America Ed Jost
Display sales Europe Tom Houlden
Technical illustrator Jonathan Cailes
Production editor Joe Tennant
Art director Andrew Glazquino

© 2007 CERN ISSN 0304-288X

CONTENTS

Cover

Pyramids contain concrete p9
The EEE Project expands p15
New uses for pixel detectors p29

News

J-PARC linac accelerates hydrogen ions up to 181 MeV design value.
ALICE’s TPC arrives at experiment cavern. …while ATLAS toroid takes a steady trip. U70 proton synchrotron goes ahead with stochastic extraction.

Sciencewatch

CMS: a super solenoid is ready for business
The powerful superconducting magnet passes commissioning tests.

CMS collaboration takes on a cosmic challenge
Cosmic rays test the performance of the CMS detector systems.

LUMI’06 takes strides towards LHC upgrade
Experts review scenarios for increasing the LHC’s luminosity.

String theory meets heavy ions in Shanghai
QM2006 saw first attempts to link heavy-ion data with string theory.

Viewpoint

OM2006 saw first attempts to link heavy-ion data with string theory.

Advertisement

Tel +44 (0117) 930 1026 (for UK/Europe display advertising), +1 213 627 0880 (for North American display advertising), or +44 (0117) 930 1196 (for recruitment advertising), e-mail sales@cerncourier.com; fax +44 (0) 117 930 1178

General distribution Courier Adressage, CERN, 1211 Geneva 23, Switzerland. E-mail courrier-adressage@cern.ch

Published

By European Organization for Nuclear Research, CERN, 1211 Geneva 23, Switzerland. Tel +41 (0) 22 787 61 11
Fax +41 (0) 22 787 78 55

Printed by Warners (Midlands) plc, Bourne, Lincolnshire, UK
© 2007 CERN ISSN 0304-288X
AEROTECH
Positioning and Motion Solutions for Science & Research
Aerotech is a world leader in innovative precision motion control systems for scientific and research institutions around the world. Our product lines include patented and award winning direct-drive linear and rotary nano-positioners; airbearings; linear motor gantry systems, linear motor stages and systems, multi-axis motion controllers and drives. Aerotech also specialises in cleanroom and vacuum systems.

Our ability to customise automation solutions specifically designed for our customer’s applications is unmatched.

Next generation scintillators now available in sizes 3"x3" and larger ...

Our new BrillanCe®380 [LaBr₃:Ce] crystal has phenomenal properties such as:

- PHR of <3% for ¹³¹Cs
- Decay time of 16ns
- Light yield of 63 photons/keV
- Exceptional temperature stability

Request or download a copy of our Whitepaper "Performance Summary: BrillanCe® Scintillators"

Traditional scintillators (sodium iodide, plastic, plastic fibers) and gas-filled detectors are also available.

Web site: www.detectors.saint-gobain.com
E-mail: scintillation@saint-gobain.com
Phn: In the U.S.: +1 440 564 2251
In Europe: +31 (0) 35 60 29 700
J-PARC linac accelerates hydrogen ions up to 181 MeV design value

On 24 January the linac for the Japan Proton Accelerator Research Complex (J-PARC) successfully accelerated a beam of negative hydrogen ions up to 181 MeV, the design energy for Phase I of the project. The acceleration to the full energy is three months earlier than scheduled.

J-PARC, which is a joint project between the High Energy Accelerator Research Organization (KEK) and the Japan Atomic Energy Agency (JAEA), is being built at Tokai, approximately 120 km north of Tokyo. The accelerator system will comprise a 400 MeV proton linac (181 MeV at the first stage of Phase I), a 3 GeV, 25 Hz Rapid-Cycling Synchrotron (RCS), and a 50 GeV Main Ring Synchrotron. The RCS provides the Materials and Life Science Experimental Facility with a 1 MW beam to generate pulsed muons and pulsed spallation neutrons. Every 3 s, the beam from the RCS is injected to the Main Ring, where it is ramped up to 50 GeV (40 GeV at Phase I). Fast extraction then provides a beam for neutrino production and slow extraction sends the beam to the Hadron Experimental Facility (HDF). The neutrinos travel to the Super-Kamiokande detector located 295 km to the west, while the slowly extracted beam will produce secondary beams for hyper-nuclei experiments, rare-decay experiments with kaons, hadron-spectroscopy experiments and so on, or will serve primary beam experiments in the HDF.

Construction of J-PARC started in April 2001, and beam commissioning began some five years later. The radio-frequency quadrupole (RFQ) linac accelerated beam up to 3 MeV on 20 November 2006, the very day that the beam commissioning started. A month later, on 19 December, the team accelerated the beam up to 20 MeV using the first tank of the drift-tube linac (DTL), and up to 50 MeV using the second and third tanks the next day. Then at midnight on 19 January all of the 30 separated-type DTL (SDTL) cavities, which are driven by 15 klystrons, were ready for acceleration up to 181 MeV. First, the commissioning team performed a phase scan with each pair of the SDTL cavities driven by one klystron before finally completing the scan through 15 pairs on 24 January.

In each scan the team measured the beam energy by the time-of-flight method. For the initial beam study, the peak current, the beam pulse length and the repetition rate were set at 5 mA, 20 μs and 2.5 Hz, respectively, to avoid possible damage in accelerator components should something go wrong at high beam power. During the commissioning, both the RF power source and cavity system proved to be very stable. This stability together with a very accurate alignment of all the magnets, especially in the drift-tube linac, were the two major elements that allowed a rapid tuning of the linac, three months before schedule.

Klystrons drive the J-PARC DTL, but it also has quadrupole electromagnets, which are variable-focusing elements. To meet the conflicting requirements of these two systems, the researchers chose an RF acceleration frequency of 324 MHz rather than the widely used 350 MHz; the compact quadrupole electromagnets were developed with the full use of electroforming and wire-cutting techniques; and industry developed the 324 MHz klystrons with a pulsed power of 3 MW (500 μs and 50 Hz) in close collaboration with the J-PARC linac team.

The combination of the 3 MeV RFQ linac and the 324 MHz RF source is now being considered as a best choice for the front end of the proton linac by many future projects at Fermilab, the ISIS spallation neutron source in the UK, the Facility for Antiproton and Ion Research at GSI and the Chinese Spallation Neutron Source. This is partly because 324 or 325 MHz, 3 MW pulsed klystrons are now available, and partly because the frequency is a quarter of L-band frequency, which would be used in a future superconducting International Linear Collider.

The RCS beam commissioning will start in autumn 2007, while the beam commissioning of the Main Ring and the muon and neutron production targets together with their beam transports will start in May 2008. By the end of 2008, the complex will be ready for the J-PARC users. The success of the linac beam commissioning earlier than scheduled is encouraging news.
NEWS

The first End-Cap Toroid (ECT) for the ATLAS experiment at the LHC has begun the last stage of its journey to the underground cavern. Now that the assembly of the cold mass, integration in the vacuum vessel and connection to the vacuum pumps, cryogenic lines and current leads are all complete, the toroid will undergo a cooling test on the surface before being lowered into the cavern.

The 5 m wide, 11 m diameter, 240 t structure is one of two similar ECTs, the last large magnets to be installed inside ATLAS. Moving at about 1 km/h on a special transport trailer, it left the assembly hall on the Meyrin site in preparation for cold-testing at a nearby outdoor location. The transport operation was extremely delicate: the slightest wrong turn or movement could have caused the tall structure to sway at an angle that would cause serious damage to the fragile parts inside. The toroid cold mass is suspended inside the vacuum vessel by four gravity rods and tipping the ECT at too large an angle could have damaged these rods.

During the surface test, the ECT is being cooled to 80 K using the cryogenic plant in a nearby building. Tests will check for cold leaks in the cooling circuits and verify the electrical insulation of the coils under thermal stress. During the 300–80–300 K thermal cycling, all of the crucial components as well as the magnet’s instrumentation will be thoroughly checked to make sure that it will function properly once installed underground.

The test will last until mid-March. The toroid will then be lowered into the ATLAS cavern in early June for final commissioning, when it will be cooled to 4.5 K using the ATLAS cryogenic plant and charged up to the nominal current of 20.5 kA. The second ECT is scheduled for lowering in early July, just in time for closure of the LHC beam pipe in August.

LHC NEWS

ALICE’s TPC arrives at experiment cavern...

In early January ALICE’s time projection chamber (TPC) moved 300 m from the assembly hall to the experiment cavern, taking four days to complete the journey. This 5 m wide, 5 m diameter cylinder weighs 8 tonnes and is extremely fragile.

The first steps included lifting the TPC with an overhead crane from the cleanroom in the assembly hall and positioning it onto four hydraulic jacks, which raised the TPC to 80 cm. Then a flatbed truck gently slid under the structure and carefully carried it to the entrance of the cavern, making sure not to tilt it more than 2°. The next step was to lower the cylinder 50 m into the ALICE cavern. This proved challenging, with just 10 cm of leeway between the delicate TPC and the shaft walls. Finally, a gantry crane moved the TPC close to its final position within the solenoid magnet, where work will begin on installing the internal tracking system.

The TPC consists of very light, fragile carbon-fibre. The surface structure, or field cage, is covered with 30 000 mylar strips secured with the utmost precision. The two endcaps carry electronic read-out channels. These are connected by several thousand flat cables to two service support wheels, which provide support for the electrical, electronic and gas-supply systems. In May, the TPC will be tested in its underground location using cosmic rays.

...while ATLAS toroid takes a steady trip

The first End-Cap Toroid (ECT) for the ATLAS experiment at the LHC has begun the last stage of its journey to the underground cavern. Now that the assembly of the cold mass, integration in the vacuum vessel and connection to the vacuum pumps, cryogenic lines and current leads are all complete, the toroid will undergo a cooling test on the surface before being lowered into the cavern.

The 5 m wide, 11 m diameter, 240 t structure is one of two similar ECTs, the last large magnets to be installed inside ATLAS. Moving at about 1 km/h on a special transport trailer, it left the assembly hall on the Meyrin site in preparation for cold-testing at a nearby outdoor location. The transport operation was extremely delicate: the slightest wrong turn or movement could have caused the tall structure to sway at an angle that would cause serious damage to the fragile parts inside. The toroid cold mass is suspended inside the vacuum vessel by four gravity rods and tipping the ECT at too large an angle could have damaged these rods.

During the surface test, the ECT is being cooled to 80 K using the cryogenic plant in a nearby building. Tests will check for cold leaks in the cooling circuits and verify the electrical insulation of the coils under thermal stress. During the 300–80–300 K thermal cycling, all of the crucial components as well as the magnet’s instrumentation will be thoroughly checked to make sure that it will function properly once installed underground.

The test will last until mid-March. The toroid will then be lowered into the ATLAS cavern in early June for final commissioning, when it will be cooled to 4.5 K using the ATLAS cryogenic plant and charged up to the nominal current of 20.5 kA. The second ECT is scheduled for lowering in early July, just in time for closure of the LHC beam pipe in August.

Les physiciens des particules du monde entier sont invités à apporter leurs contributions aux CERN Courier, en français ou en anglais. Les articles retenus seront publiés dans la langue d’origine. Si vous souhaitez proposer un article, faites part de vos suggestions à la rédaction à l’adresse cern.courier@cern.ch.

CERN Courier welcomes contributions from the international particle-physics community. These can be written in English or French, and will be published in the same language. If you have a suggestion for an article, please send your proposal to the editor at cern.courier@cern.ch.
The new advanced slow stochastic extraction (SSE) system at the U0, the 0 GeV proton synchrotron at the Institute for High Energy Physics (IHEP) in Protvino, has operated successfully during normal running in 2006. The aim is to use the technique to produce longer, more uniform spills than can be achieved with the standard extraction, which uses magnetic optics to move particles to the transverse resonance.

The first feasibility tests for SSE at the U0 took place in late 2004 (CERN Courier March 2005 p10). These tests yielded natural stochastic spills, which were superimposed by radiofrequency noise with power spectra kept invariant through the extraction time. Such spills inherently had no flat-top in their DC content, however, and so were not useful for users. Since then, the beam physicists and engineers at IHEP have continued their efforts towards an operational SSE scheme and have developed some sophisticated dedicated circuitry, which they beam-tested during runs in 2005–2006.

The core of the new system consists of a feedback loop that modulates the amplitude of the operational noise in response to the spill current signal, which is monitored by a beam-loss monitor located downstream of the electrostatic septum deflector. Being a DC-coupled feedback system with a finite base-band bandwidth, it is designed both to flatten and to smooth the stochastic spills. The team has now used this system at the U0. The figures show that it has achieved the primary design goal of obtaining low-ripple flat-topped spills lasting 2–3 s, with noticeable progress in the quality of slow spills. The persistent AC ripple observed in the past in the extracted current now shows up as a random signal. It turns out that it cannot be suppressed via the feedback control used owing to the limited base-band bandwidth of the 3rd-order transverse resonance transfer-function involved in the overall closed-loop gain product.

The new SSE scheme routinely serviced the U0 during the entire run of 2006 yielding slow spills 1.1 s long, and exhibited a relatively robust and reliable behaviour consistent with the design aims. Further improvements of the SSE set-up promise a better functioning of the U0 for external fixed-target experiments in the near future.
Hamamatsu
"Bialkali Climbing Party"
Has Now Reached
"45% QE"!

Always been a leader in Photonic Device performance, Hamamatsu has now developed a PMT with a quantum efficiency (QE) of 45%. In all kinds of high-precision light measurements, high sensitivity and high QE are absolutely essential elements in extending detection limits and unlocking new knowledge. For Hamamatsu, however, this 45% QE is just one more step along the road. Aiming for the peak of PMT performance will open up all kinds of new possibilities.
Silicon creates ball lightning

Ball lightning has long been mysterious and difficult to study owing to a lack of ways to produce it in the laboratory. Now it looks as though Antonia Pavão and colleagues at the Federal University of Pernambuco and the Instituto Nacional de Pesquisas Espaciais in Brazil may have tamed this elusive phenomenon. The team passed 100–140 A through layers of silicon 0.35 mm thick to create an arc, which tossed out blobs of molten silicon, but occasionally also produced glowing spheres the size of table-tennis balls. The balls lasted up to 8 s and their colour – blue-white or orange-white – suggests that their temperature was around 2000 K.

The researchers found that the luminous balls they generated exhibited some of the behaviour reported in eye-witness accounts of ball lightning. For example, they recorded one ball as it passed through a gap smaller than its apparent diameter (see figure), and observed balls bounce from the ground.

Earlier laboratory models of ball lightning needed to be sustained by an external source of microwaves and winked out in a few milliseconds, so this research represents a huge leap in lifetime for something that could be ball lightning in the laboratory.

Further reading
See also www.espacociencia.pe.gov.br/multimidia/multimidia_video.php.

Egyptians may have invented concrete

Some of the stone that went into making the great pyramids at Giza may not be natural limestone, but rather some sort of ancient concrete. This controversial idea proposed in the mid-1980s has recently gained support from the work of Michel Barsoum and Adrish Ganguly from Drexel University in Philadelphia, and Gilles Hug of the Laboratoire d’Etudes des Microstructures, LEM ONERA-CNRS.

Barsoum and colleagues used scanning and tunnelling electron microscopy to look at 15 samples of stone and six different limestones from the area. They found ratios of magnesium and calcium that are not consistent with the value for the limestone samples. They also found evidence of particles of minerals that appear to have been artificially hydrated in a strongly basic solution. In other words, the Egyptians may have used a form of concrete to build the only survivor of the seven wonders of the ancient world, some 2500 years before the Romans introduced their own brand of concrete.

Further reading

Atom interferometry helps measure G

Newton’s constant, G, is notorious for being poorly measured and any new technique to pin it down is welcome. The surprise now is that a quantum technique offers a new handle on it with completely different systematics. JB Fixler of Stanford University and colleagues have used an interferometer based on laser-cooled caesium atoms.

Depending on the placement of a 540 kg lead weight, they measured G to be $6.697 \pm 0.027 \pm 0.021 \times 10^{-11} \text{Nm}^2/\text{kg}^2$, which is consistent with existing measurements.

The current best value for G has an uncertainty some 30 times smaller, but this new technique could, in principle, yield much more precise values in the future. It also offers a direct measurement of the effects of gravity on a quantum-mechanical system.

Further reading
JB Fixler et al. 2007 Science 315 74.

Nuclear-waste storage takes a blow

A material that was looking good as a matrix in which to hold radioactive waste may not be up to the job. With worries that glasses might not be stable enough, attention has focused on ceramics and minerals such as zircon. Now Ian Farnan of the University of Cambridge and colleagues have shown that damage from alpha particles can produce defects that cause swelling and dramatically weaken the crystal structure.

For example, crystalline zircon with 10% plutonium in it by weight will become amorphous (glass-like) after 1400 years. This is a far cry from the 250 000 years that experts hoped zircon’s crystalline structure would trap and immobilize plutonium. Even worse, leakage due to partial damage of the crystalline structure could start in just 210 years. This could be yet another good argument for Carlo Rubbia’s energy amplifier.

Further reading
X-Ray Detector

XR-100CR at 149 eV FWHM Resolution

- **No Liquid Nitrogen**
- **Solid State Design**
- **Easy to Use**
- **Low Cost**

APPLICATIONS
- Nuclear Physics
- Synchrotron Radiation
- High Energy Physics
- Neutron Experiments
- Astrophysics
- Research & Teaching
- Nuclear Medicine
- X-Ray Fluorescence

XR100CR

- X-Ray Detector with PX4 Digital Pulse Processor,
 Power Supply, Shaping Amplifier & MCA

Visit Us Now

www.amptek.com

Complete X-Ray Spectrometer

INCLUDES
- 1 X-Ray Detector and Preamplifier
- 2 Digital Pulse Processor and MCA
- 3 Power Supply

XR-123

- The X-123 is a complete X-Ray Detector System in one small box that fits in your hand.

Features of the X-123:
- Simple to Operate
- Low Power (1.2 Watts)
- Small Size
- USB and RS232 Communication
- Accommodates all Amptek Detectors

XR-100CR at 149 eV FWHM Resolution

- **Visit Us Now**
 - **www.amptek.com**

Flanges or fittings customized, modified and supplied in only two weeks.

Caburn-MDC Europe is pleased to offer any standard flange or fitting from *Section 1.1 and 1.2 of our new catalogue*, customized and modified to your own specifications.

Supplied in just two weeks!

Visit our new website for details.

www.caburn.co.uk

new photomultiplier accessories brochure

Products include:
- photomultiplier housings
- amplifier / discriminators
- sockets
- voltage dividers
- magnetic shields

You may download a PDF copy from our Website

http://www.electron tubes.com or request a brochure to be sent direct to you via

United Kingdom

Caburn-MDC Europe Ltd
12 Horsted Place
Belbroughton Business Park
Blighthall
East Sussex TN22 1QG
Tel: +44 (0)870 4287646
Fax: +44 (0)870 4287647
sales@caburn.co.uk

France

Caburn-MDC Europe Sarl
38 Place des Pavillons
69007 LYON
Tel: +33 (0)437 65 17 50
Fax: +33 (0)437 65 17 55
info@caburn.fr
Gravitational waves could probe inflation

"In the beginning was the Word," opens the gospel of John, and this finds some resonance in the possibility of detecting gravitational waves from the Big Bang itself at frequencies typical of sound waves. Careful listening to this background signal would probe the inflation phase of the very early universe.

Astronomy is a science based on photons. First limited to visible light and then broadening to include radio waves, the field of investigation has exploded during recent decades. Windows on the sky at new wavelengths have opened one by one thanks to the use of satellites to avoid absorption by the Earth's atmosphere. However, at any wavelength, the quest towards the beginning of time stops abruptly 380,000 years after the Big Bang, when the emission of the cosmic microwave background (CMB) occurred. This is when the universe became transparent and there is no hope of looking further back in time via electromagnetic radiation. Although earlier events like inflation may leave some imprint in the map of the CMB (CERN Courier May 2006 p12), a direct messenger from the very early universe must be of a different nature.

Primordial neutrinos from the time of Big Bang nucleosynthesis would be a good candidate for such a messenger, but their very low energy and interaction cross-section makes them currently undetectable. Gravitational waves are another candidate attracting a great deal of interest as a possible witness of the very early universe.

Einstein's general theory of relativity predicts that these distortions of space–time propagate with the speed of light. Although studying the change of period of tight double-pulsar systems has demonstrated their existence (CERN Courier March 2004 p12), direct detection is still to be achieved despite the great effort invested to detect these subtle disturbances of space–time.

A theoretical study by Juan Garcia-Bellido and Daniel Figueroa from the Universidad Autonoma de Madrid, Spain, sheds a new light on the expected amplitude and spectral property of primordial gravitational waves. The study focuses on the violent reheating of the universe after hybrid inflation. According to the researchers, many extensions of the Standard Model of particle physics expect this process, both in string and supersymmetric theories.

They suggest that such a process would lead to the formation of high-energy bubble-like structures, which would collide and generate a stochastic background of gravitational waves. Taking into account the expected downshift of this radiation by 24 orders of magnitude due to the cosmic expansion since that time, their calculation predicts a maximum intensity of gravitational waves at frequencies from about 1 Hz for a low-scale inflation model up to about 10 MHz for a high-scale model.

This frequency range is too high to be accessible to the future Laser Interferometer Space Antenna (LISA), a joint mission of ESA and NASA, but there is hope to detect the expected signal with other projects, on the ground with the Advanced Laser Interferometer Gravitational Wave Observatory or in space with NASA's proposed Big Bang Observer. There is no doubt that the detection of gravitational waves from the first 10^{-34} s of the universe would be a new milestone in science, allowing physicists to confront their models with observations.

Further reading

Picture of the month
This beautiful false-colour infrared view of the Eagle Nebula (Messier 16) located 7000 light-years away in the Serpens constellation was taken by NASA's Spitzer Space Telescope (CERN Courier January/February 2004 p19). The famous "Pillars of Creation" captured by the Hubble Space Telescope in 1995 are overlaid and their location is shown on the background image. The other dust column observed by Hubble 10 years later is also visible to the left of the image (CERN Courier June 2005 p12). Careful analysis of the reddish central area reveals an excess of heat thought to be due to a supernova explosion, which could have been seen to explode 1000–2000 years ago and would destroy the majestic pillars, from our point of view, 1000 years from now. (Courtesy NASA/JPL-Caltech/N Flagey [IAS/SSC] and A Noriega-Crespo [SSC/Caltech].)
Accelerating Technology

DANFYSIK
danfysik.com

Thermometry Solutions from 20 mK to 1500 K

LakeShore
Lake Shore Cryotronics, Inc. 575 McCorkle Blvd. Westerville, OH 43082 Tel 614-891-2244 Fax 614-818-1600 marketing@lakeshore.com

Offering a range of specialized components, devices and complete systems to the accelerator community:
- photoinjectors
- electromagnets
- diagnostics
- thz components
- and more...

www.radiabeam.com

Photo: P. Freytag, Clauser & Radiance, Buttermilk budslee near Bishop
On the brink of a breakthrough

For most of the year at CERN, work goes on normally and the fact that one or other of the experimental groups is discovering something new goes relatively unnoticed. In February, however, a number of events combined to provide the kind of excitement that more than makes up for the long periods of monotony.

Clues had, in fact, been available in the library for a week or two, in “preprints” of two theoretical papers, one by M Gell-Mann, of the California Institute of Technology, US, and the other by G Zweig, of the same institute but at present a visiting scientist at CERN. Produced independently, both papers put forward a new way of looking at the theory of “unitary symmetry” known as SU3, part of a set of algebras developed by Norwegian mathematician Sophus Lie nearly a hundred years ago.

Application of this theory, notably in the form known as the “eightfold way”, has brought a considerable amount of order into the chaos created by the discovery of so many new, supposedly “fundamental”, particles during the past few years. Specific properties of particles can be represented by quantum numbers which can take only certain values, and applying the algebraic rules to these number groups all strongly interacting particles in a definite way.

Unfortunately, the parallel between physically observed particles and mathematical theory is not exact. In SU3 all positions in the groups arise from a set of three fundamental entities; in physics the proton and neutron belong to a set of eight particles. Both Gell-Mann and Zweig suggested that strongly interacting particles could be made from combinations of just three basic units, similar to the proton, neutron and lambda particle but with electric charges of 2/3, –1/3 and –1/3 respectively. It was this property that caused the stir.

From the time of Millikan’s classic experiments in 1911 it has been accepted that the charge of the electron is the smallest one possible. The idea of fractionally charged particles seemed quite preposterous. Even those who suggested it seemed to share the doubts; Gell-Mann called his new particles “quarks” with a reference to Finnegans Wake, Zweig turned to card games for inspiration and called his particles “aces”. One anonymous versifier, finding the whole situation too much, posted the following on CERN’s Theory Division notice board:

Think of the words that our subject is fraught with, Words that old Webster would never be caught with, Ladders and tadpoles and majorization, Bootstraps and buddhas and peratization, Haffmans, paffians, some think it’s drollish, Why, half of the world speaks Regge Polish! Things are so bad that I must protest it, From Joycean footnotes, please give us some respite!

Oh, horrible thought if in nature ’ts observed, That the quarks and the aces, Keep changing their places, And charge seems never conserved!

For experimentalists, the excitement lay in the prediction that at least one of the new particles would be stable. This quark, or ace, if produced with one-third the charge of a proton, would have an ionizing power (and therefore bubbles per centimetre along its track in a bubble chamber) of one-ninth for the same apparent momentum. Of course, the mass of aces (which could not be predicted theoretically) might be too high for them to be produced with present-day accelerators. Nonetheless, the Electronics Experiments Committee, on 11 February, decided that the particles should be taken seriously. That same afternoon G Zweig explained his theory at the weekly Experimental Physics Discussion and two proposals for experiments, from groups led by G Cocconi and A Zichichi, were described.

Some people felt that if aces existed they ought to have been seen in at least one of the millions of bubble-chamber pictures already scanned, though they could have been missed if the scanners were not specifically looking for them. In any case, it quickly became clear that the combination of a bubble chamber and the 02 beam in the PS East hall provided the quickest way of looking for them. Some time in March the 02 beam will be set to accept high-energy negative particles (mostly pions) from the internal target and direct them into the 81 cm Saclay/Ecole Polytechnique bubble chamber.

While working on this proposal, D R O Morrison realized that the same kind of bubble-chamber exposure had in fact been carried out with the CERN 32 cm chamber in 1960. The photographs were got out and a team of physicists and scanners looked through 10 000 of them in one night. No aces were found. The group working with the Ecole Polytechnique heavy-liquid bubble chamber scanned 100 000 photographs. Again the result was negative. The possibility was raised that aces might be formed in weak interactions rather than in the strong ones investigated in these two searches. Accordingly, photographs of about 300 neutrino events in the CERN heavy-liquid bubble chamber were looked at again, but no tracks with too few bubbles could be found.

Adding point to the discussion was the news from Brookhaven in the middle of the month that two examples of the omega-minus particle had been discovered in their new 80 inch (200 cm) bubble chamber. This particle, predicted by the “eightfold-way”, was the last one needed to complete a group of 10 particles. At CERN, the satisfaction of knowing that the omega really existed was tempered with a certain disappointment, not to say envy, as two bubble-chamber runs last year and another in January had been carried out here to look for the particle, but several hundred thousand pictures had so far provided no trace of it.

Zweig’s aces and Gell-Mann’s quarks may or may not be found, but their ideas have triggered off a new series of moves in this search for an explanation of the occurrence of the so-called fundamental particles.

● Compiled from Last Month at CERN pp26–27.
Benefit from reprints of articles featuring your company

Reprints are invaluable sales tools

They can be ordered before or after publication and can be customized to your exact needs. For more information and prices, contact the sales team now.

Tel: +44 (0)117 930 1026
E-mail: edward.jost@iop.org
In May 2004, a major webcast linked CERN and high schools all over Italy to inaugurate the Extreme Energy Events (EEE) Project. Launched on the occasion of the visit to CERN of the Italian Minister of Education, University and Research, the project is the initiative of Antonino Zichichi from Bologna University and CERN.

What is the main idea behind the project?
This project is meant to be the most extensive experiment to detect muon showers induced by extremely energetic primary cosmic rays (protons or nuclei) interacting in the atmosphere. Ultimately, it will cover a million square kilometres of Italian and Swiss territory. It would have been very expensive to implement such a large project without involving existing structures, namely schools all over Italy and part of Switzerland. This “economic” strategy also has the advantage of bringing advanced physics research to the heart of the new generation of students.

How will the experiment detect cosmic-ray showers?
The EEE telescopes, distributed over an immense area, will be tracking devices, capable of reconstructing the trajectories of the charged particles traversing them. These particles are the secondary cosmic rays produced in the showers, and are mostly muons at sea level. The project is based on a very advanced detector unit: the multigap resistive plate chamber (MRPC) (Cerron-Zeballos et al. 1996). An EEE telescope comprises three layers of MRPCs. We have developed these chambers for the ALICE time-of-flight detector at CERN’s LHC (Akindinov et al. 2004). Their performance in terms of detection efficiency and time resolution is outstanding.

However, the EEE Project also aims to bring science into high schools (Zichichi 2004). This is why the plan was for all of the MRPCs to be built by teams of school pupils supervised by their teachers at CERN or in the nearest laboratory (located in the closest university or research institute). After the MRPC construction phase, school pupils participate in the installation, testing and start-up of the EEE telescope in their school, then in its maintenance and data-acquisition, and later in the analysis of the data. Of course the scientific and technical staff of the universities and research institutes collaborating in the project coordinate and guide everything.

The telescopes will be coupled to GPS units and interconnected via a network. A dedicated PC will locally acquire the MRPC signals produced by each telescope and will then transfer them to the largest Italian computer centre in Bologna for analysis using Grid middleware.
The direct involvement of young pupils in the project is the most efficient way to contribute to their learning while doing advanced research in physics. The pupils will be personally involved in advanced research and will acquire a deeper knowledge of particle and astroparticle physics, experimental tools, data-acquisition systems, software, networks, etc. They will gain direct access to the data and to the working methods typical of modern research work.

How does EEE differ from schools projects in other countries? When I started to speak about the project I knew of no other proposals. Now some educational cosmic-ray projects have been proposed in other countries. The detectors are groups of scintillation counters, typically on the school's roof, and not in the building as with the EEE telescopes. These projects don’t use tracking devices.

What will the project contribute to research? There are short- and long-range time coincidences between close (within the same city) and distant telescopes, and the tracking capabilities of the telescopes will determine with good precision the direction of the incoming primary cosmic ray. Therefore, the EEE Project can study not only large showers of muons originating from a common vertex, but also correlations between separated showers that might be produced by bundles of primaries. The project thus allows a large variety of studies, from measuring the local muon flux in a single telescope, to detecting extensive air showers producing time correlations in the same metropolitan area, to searching for large-scale correlations between showers detected in telescopes tens, hundreds or thousands of kilometres apart. When complete – that is, equipped with at least 100 telescopes – the EEE Project will compete strongly with other high-energy cosmic-ray experiments searching for extreme-energy extended air showers.

Further reading

Résumé
Projet EEE: la Mégascience à l’école

Bob Swarup interviewed Antonino Zichichi for Physics World (October 2006 p8).
Advertorials in CERN Courier offer you a powerful marketing opportunity. You can boost your company or brand presence ahead of your competition with a professionally designed advertorial in the magazine, which will deliver your marketing message to your target prospects.

Previous clients who have placed advertorials in CERN Courier include:

- ProCurve Networking by Hewlett Packard
- SAES Getters
- Instrumentation Technologies

“We found the advertorial to be an excellent marketing tool as it allowed us to get across more detailed information to potential customers about our successful contract supplying power converters to Diamond.”

Miguel Pretelli, division manager, OCEM

For more information on advertorials in CERN Courier, contact Ed Jost now:
Tel: +44 (0)117 930 1026 E-mail: edward.jost@iop.org
New Journal of Physics
The open-access journal for physics

Publishing across all of physics, New Journal of Physics is a free-to-read publication, so there’s no limit to where your paper will go.

Visit www.njp.org for your pass to the world
Axions create excitement and doubt at Princeton

A workshop at the Institute for Advanced Study paid much attention to a small-scale experiment that might have found the first direct indication of a new particle.

The lightweight axion is one of the major candidates for dark matter in the universe, along with weakly interacting massive particles. It originally arrived on the scene about 30 years ago to explain CP conservation in QCD, but there has never been as much theoretical and experimental activity in axion physics as there is today. Last year, the PVLAS collaboration at INFN Legnaro reported an intriguing result, which might indicate the detection of an axion-like particle (ALP) and which has triggered many further theoretical and experimental activities worldwide. The international workshop Axions at the Institute for Advanced Study, held at Princeton on 20–22 October 2006, brought together theorists and experimentalists to discuss current understanding and plans for future experiments. The well organized workshop and the unique atmosphere at Princeton provided ideal conditions for fruitful discussions.

In 2006, the PVLAS collaboration reported a small rotation of the polarization plane of laser light passing through a strong rotating magnetic dipole field. Though small, the detected rotation was around four orders of magnitude larger than predicted by QED (Zavattini et al. 2006). One possible interpretation involves ALPs produced via the coupling of photons to the magnetic field.

Combining the PVLAS result with upper limits achieved 13 years earlier by the BFRT experiment at Brookhaven National Laboratory (Cameron et al. 1993) yields values of the ALP’s mass and its coupling strength to photons of roughly 1 meV and 2×10^{-6} GeV$^{-1}$, respectively (Ahlers et al. 2006). If the PVLAS result is verified, these two values challenge theory because a standard QCD-motivated axion with a mass of 1 meV should have a coupling constant seven orders of magnitude smaller. Another challenge to the particle interpretation of the PVLAS result comes from the upper limit measured recently at CERN with the axion solar helioscope CAST, which should have clearly seen such ALPs. However, this apparent contradiction holds true only if such particles are produced in the Sun and can escape to reach the Earth.

So far there is no direct experimental evidence for conventional axions. The first sensitive limits were derived about two decades ago from astrophysics data (mainly from the evolution of stars, where axions produced via the Primakoff effect would open a new energy-loss channel so stars would appear older than they are), and also from experiments searching for axions of astrophysical origin (cavity experiments and CAST for example) and accelerator-based experiments. The conclusions were that QCD-motivated axions with masses in the micro-electron-volt to milli-electron-volt range seem to be most likely – if they exist at all.

The combined PVLAS–BFRT result would fit well into these expectations if the coupling constant were not too large by orders of magnitude. Theoreticians have tried to deal with this problem and develop models in line with the ALP interpretation of the PVLAS data and astrophysical observations. There may be some possibilities involving “specifically designed” ALP properties. However, to the authors’ understanding, such attempts fail if the conclusion announced at the workshop persists: according to preliminary new PVLAS results, the new particle is a scalar, whereas conventional axions are pseudoscalars. Consequently either the interpretation of the data or the experimental results must be reconsidered.

Although the PVLAS collaboration has measured the Coutton–Mouton effect – birefringence of a gas in a dipole magnetic
In search of ALPs

One clear conclusion is the need for more experimental data. A “smoking gun” proof of the PVLAS particle interpretation would be the production and detection of ALPs in the laboratory. In principle the BFRT collaboration has already attempted this in an approach called “light shining through a wall”. In the first part of such an experiment, light passes through a magnetic dipole field in which ALPs would be generated; a “wall” then blocks the light. Only the ALPs can pass this barrier to enter a second identical dipole magnet, in which some of them would convert back into photons (figure 1). Detection of these reconverted photons would then give the impression of light shining through a wall. The intensity of the light would depend on the fourth power of the magnetic field strength and the orientation of the light polarization plane with respect to the magnetic dipole field.

The PVLAS collaboration and other groups are planning a direct experimental verification of the ALP hypothesis. Table 1 provides an overview of some of the approaches presented at the workshop. Besides PVLAS the ALPS, BMV and LIPSS experiments should take data in 2007. BMV and OSQAR (as well as the Taiwanese experiment Q&A) will confirm directly the rotation of the light polarization plane that PVLAS claims. The BMV collaboration aims for such a measurement in late 2007.

Research during the coming year should therefore clarify the PVLAS claim in much greater detail. The measurement of a new axion-like particle would be revolutionary for particle physics and probably also for our understanding of the constituents of the universe. However, considering the theoretical difficulties described above, a different scenario might emerge. Within a year from now we might be confronted both with an independent confirmation of the PVLAS result on the rotation of the light polarization plane, and simultaneously with only upper limits on ALP production by the light shining through a wall approaches. This situation would require new theoretical models.

The planned experiments listed in Table 1 do not have the sensitivity to probe conventional QCD-inspired axions. In the near future, CAST will be the only set-up to touch the predictions for solar-axion production. The workshop in Princeton, however, heard about other promising experimental efforts to search directly for axions or other unknown bosons with similar properties. These studies use state-of-the-art microwave cavities – for example, as in ADMX in the US, which is looking for dark-matter axions – or pendulums to search for macroscopic forces mediated by ALPs.

On the theoretical side, as we mentioned above, attempts to interpret the PVLAS result have generated some doubts on the existence of a new ALP. Perhaps micro-charged particles inspired by string theory might provide a more natural explanation of the PVLAS result. Researchers are thus discussing novel ideas of how to turn experimental test benches for accelerator cavity development into sensitive set-ups to test for micro-charged particles.

Table 1. Planned “light shining through a wall” experiments to detect axion-like particles (ALPs), indicating the most important characteristics for the magnet and laser. PVLAS and later OSQAR will use optical cavities to generate more ALPs. \(P_{\text{PVLAS}} \) denotes the probability of photon–ALP–photon conversion for the different experimental set-ups and the coupling constant derived from the PVLAS measurement and BFRT limits. The last column gives the expected signal rate of reconverted photons.

<table>
<thead>
<tr>
<th>name</th>
<th>place</th>
<th>magnet (field length)</th>
<th>laser wavelength power</th>
<th>(P_{\text{PVLAS}})</th>
<th>photon flux at detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPS</td>
<td>DESY</td>
<td>5 T 4.21 m</td>
<td>1064 nm 200 W cw</td>
<td>(\approx 10^{-19})</td>
<td>10/s</td>
</tr>
<tr>
<td>BMV</td>
<td>LULI</td>
<td>11 T 0.25 m</td>
<td>1053 nm 500 W 4 pulses/day</td>
<td>(\approx 10^{-21})</td>
<td>10/pulse</td>
</tr>
<tr>
<td>LIPSS</td>
<td>Jefferson Laboratory</td>
<td>1.7T 1.0 m</td>
<td>900 nm 10 kW cw</td>
<td>(\approx 10^{-23.5})</td>
<td>0.1/s</td>
</tr>
<tr>
<td>OSQAR (preliminary phase)</td>
<td>CERN</td>
<td>9.5T 1.0 m 9.5T 3.3 m</td>
<td>540 nm 1 kW cw</td>
<td>(\approx 10^{-20})</td>
<td>10/s</td>
</tr>
<tr>
<td>PVLAS (regeneration)</td>
<td>INFN Legnaro</td>
<td>5T 1.0 m 2.2T 0.5 m</td>
<td>1064 nm 0.8 W cw (N_{\text{pass}} = 5 \times 10^5)</td>
<td>(\approx 10^{-23})</td>
<td>10/s</td>
</tr>
</tbody>
</table>
ever, as Ed Witten explained in the workshop summary talk, string theories also predict many ALPs, so perhaps we are on the cusp of discovering an entire new sector of pseudoscalar particles.

In summary, it is clear that small-scale non-accelerator-based particle-physics experiments can have a remarkable input to particle physics. Stay tuned for further developments.

The authors wish to thank the Princeton Institute for Advanced Study for the warm hospitality, and especially Raul Rabadan and Kris Sigurdson for their perfect organization of the workshop.

Further reading
For more about the workshop see www.sns.ias.edu/~axions/axions.shtml.
For an overview on production and detection of very light bosons see www.desy.de/~ringwald/axions/axions.html.

R Cameron et al. (BFRT collaboration) 1993 Phys. Rev. D 47 3707.

Résumé
Physique des axions: espoirs et doutes à Princeton
Les axions, très légers, sont, tout comme les particules massives interagissant faiblement, des candidats très sérieux pour la matière noire de l’Univers. L’an dernier, la collaboration PVLAS du laboratoire Legnaro de l’INFN a communiqué un résultat surprenant, compatible avec la détection d’une particule ressemblant à l’axion, encourageant aussitôt de nombreuses activités théoriques et expérimentales dans le monde entier. L’atelier international sur les axions à l’Institute for Advanced Study, qui s’est tenu à Princeton du 20 au 22 octobre 2006, a rassemblé des théoriciens et des expérimentateurs pour faire l’état de l’art et envisager de futures expériences. La bonne organisation de l’atelier et l’atmosphère unique de Princeton offraient un cadre rêvé pour des discussions fécondes.

Axel Lindner, DESY, and Konstantin Zioutas, University of Patras.
CMS: a super solenoid is ready for business

The powerful superconducting solenoid for the CMS experiment has passed its commissioning tests with flying colours and is now ready for routine operation.

For seven years, Point 5 on the LHC has been the site of intense activity, as the CMS detector has taken shape above ground at the same time as excavation of the experimental cavern below. Last year saw an important step in the preparations on the surface, as the huge CMS superconducting solenoid – the S in CMS – was cooled down, turned on and tested.

The CMS coil is the largest thin solenoid, in terms of stored energy, ever constructed. With a length of 12.5 m and an inner diameter of 6 m, it weighs 220 tonnes and delivers a maximum magnetic field of 4 T. A segmented 12,500 t iron yoke provides the path for the magnetic flux return. Such a complex device necessarily requires extensive tests to bring it into stable operation – a major goal of the CMS Magnet Test and Cosmic Challenge (MTCC) that took place in two phases between July and November in 2006.

From the start, the idea was to assemble and test the CMS magnet – and the whole detector structure – on the surface prior to lowering it 90 m below ground to its final position. The solenoid consists of five modules that make up a single cylinder (figure 1), while the yoke comprises 11 large pieces that form a barrel with two endcaps. There are six endcap disks and five barrel wheels, and their weight varies from 400 t for the lightest to 1920 t for the central wheel, which includes the coil and its cryostat.

The CMS solenoid has several innovative features compared with previous magnets used in particle-physics experiments. These are necessary to cope with the high ampere turns needed to generate the 4 T field – 46.5 MA around a 6 m diameter. The most distinctive feature is the four-layer coil winding, reinforced to withstand the huge forces at play. The niobium titanium conductor is in the form of Rutherford cable co-extruded with pure aluminium and mechanically reinforced with aluminium alloy (figure 2). The layers of this self-supporting conductor bear 70% of the magnetic stress of 130 MPa while the cylindrical support structure, or mandrel, takes the remaining 30%.

Constructing the coil has been a tour de force in international collaboration involving suppliers in several countries. The basic element, the superconducting wire, originated with Luvata in Finland, and passed to Switzerland, where Brugg Kabelwerk made the Rutherford cable, and Nexans co-extruded it with pure aluminium. The cable then went to Techmeta in France for electron-beam welding onto two sections of high-strength aluminium alloy to allow the conductor to support the high magnetic stress. Finally ASG Superconductors in Italy wound the coils for the five sections of the solenoid, which travelled individually by sea, river and land to Point 5 for assembly into a single coil. The division into sections, and the chosen outer diameter of 7.2 m, ensured that transport could be by road without widening or rebuilding.

By August 2005 the solenoid was ready to be inserted into the cryostat that keeps it at its operating temperature of 4.5 K (figure 3). Cooling requires a helium refrigeration plant with a capacity of 800 W at 4.5 K and 4500 W in the range 60–80 K. The cryoplant was first commissioned with a temporary heat load to simulate the coil and its cryostat, and then early in 2006 the real
coil was ready for cool-down. In an exceptionally smooth operation the temperature of the 220 t cold mass was lowered to 4.5 K over 28 days (figure 4).

The next stage was to close the magnet yoke in preparation for the MTCC. The massive elements of the yoke move on heavy-duty air pads with grease pads for the final 100 mm of approach. Once an element touches the appropriate stop it is pre-stressed with 80 t to the adjacent element to ensure a good contact before switching on the magnet. To assure good alignment, a precise reference network of some 70 points was set up in the assembly hall, with the result that all elements could be aligned to within 1 mm of the ideal coil axis. The first closure of the whole yoke took some 30 days, and was completed on 24 July (CERN Courier September 2006 cover and p7). The MTCC could now begin.

Testing the magnet took place in two phases, with the initial tests in August 2006 and further tests and field mapping in October. The cosmic challenge, to test detectors and data-acquisition systems with cosmic rays, took place simultaneously (p26). Figure 5 (p24) shows the cycles in which the magnet reached increasing current levels during Phase I, remaining for longer periods of high current, and hence high magnetic field, during Phase II. Each step in current ended with a fast discharge into external dump-resistor banks. Depending on the current level at the time of the fast discharge, it could take up to three days to re-cool the coil.

A key feature with any superconducting magnet system is to protect against high thermal gradients occurring in the coil if the system switches suddenly from being superconducting to normally (resistively) conducting with a sudden loss of magnetic field and release of stored energy – a quench. The aim is to dissipate the energy into as large a part of the cold mass as possible. For this reason the CMS solenoid is coupled inductively to its external mandrel, so that in the case of a quench eddy currents in the mandrel heat up the whole coil, dissipating the energy throughout the whole cold mass.

The tests showed that when the magnet discharges the dump resistance warms up by as much as 240°. At the same time the internal electrical resistance of the coil increases, up to as much as 0.1 Ω after a fast discharge at 19 kA. Figure 6 (p24) shows the effect of the magnet’s increasing resistance with current on the time constant for the discharge.

The tests also showed that after a fast discharge at 19 kA the average temperature of the whole cold mass rises to 70 K, with a maximum temperature difference of 32.3° measured between the warmest part, on the inside of the central section of the coil, and the coldest part, on the outside of the mandrel. It then takes about two hours for the temperature to equalize across the whole coil. About half of the total energy (1250 MJ) dissipates as heat in the external dump resistor, which takes less than two hours to return to its normal temperature.

Monitoring the magnet’s mechanical parameters was also
an important feature of the tests, to check for example the coil shrinkage and the stresses on the coil-supporting tie rods during cool-down. The measured values proved to be in excellent agreement with calculations. Powering the cold mass step-by-step allowed also for measurements of any misalignment of the coil. This showed that the axial displacement of the coil’s geometric centre is less than 0.4 mm, indicating a magnetic misalignment of less than 2 mm in the positive z direction.

A major goal of Phase II of the MTCC was to map and reconstruct the central field volume with 5×10^{-4} precision. The measurements took place in three zones, with flux-loop measurements in the steel yoke, check-point measurements near the yoke elements, and a detailed scan of the entire central volume of the detector – essentially the whole space inside the hadron calorimeter.

Measuring the average magnetic flux density in key regions of the yoke by an integration technique involved 22 flux loops of 405 turns installed around selected plates. The flux loops enclosed areas of $0.3-1.58\text{ m}^2$ on the barrel wheels and $0.48-1.1\text{ m}^2$ on the endcap disks. The flux loops measure the variations of the magnetic flux induced in the steel when the field in the solenoid is changed during the fast (190 s time constant) discharge. A system of 76 3D B-sensors developed at NIKHEF measured the field on the steel–air interface of the disks and wheels to adjust the 3D magnetic model and reconstruct the field inside the iron yoke elements, which are part of the muon absorbers.

A special R&D programme with sample disks made of the CMS yoke steel from different melts investigated if the measurements of the average magnetic flux density in the yoke plates could be done with accuracy of a few per cent using flux loops. These studies showed that the contribution of eddy currents to the voltages induced in the test flux loop is negligible.

The precise measurement of the magnetic field in the tracking volume inside the CMS coil used a field-mapper designed and produced at Fermilab. This incorporated 10 more 3D B-sensors, developed at NIKHEF and calibrated at CERN to 5×10^{-4} precision for a nominal field of 4 T. To map a cylindrical volume inside the coil, this instrument moved along the rails installed inside the hadronic barrel calorimeter, stopping in 5 cm steps at points where the sensor arms could be rotated through 360°, and at predefined angles with azimuth steps of 7.5°. Figure 7 shows the final position of the mapper before closure of the positive endcap. It mapped a cylindrical volume 1.724 m in radius and 7 m long.

The CMS magnet has six NMR probes near the inner wall of the superconducting coil cryostat to monitor the magnetic field. These were also used in the field-mapping to measure the field on the coil axis and on the cylindrical surface of the measured volume.

The actual field-mapping in October involved a series of measurements at 0T, 2T, 3T, 3.8T (twice to study systematics), 3.5T and 4T. The flux-loop measurements were made during fast-discharges of the coil at various current values. While the detailed
LHC FOCUS

The analysis of the data is still ongoing, preliminary studies are very encouraging. The field distribution behaves very much as the simulation predicted – though more detailed simulation of the extra iron in the feet of CMS is necessary to account for it fully.

Figure 8 represents the magnetic field measured by sensors on the negative z arms of the mapper. The longitudinal component varies, as predicted, from 4 T at the point (0, 0, 0) to 3.75 T close to the endcap region of the electromagnetic calorimeter. The two arms of the mapper were at different z values, hence one maps from the most negative z step (0), and the other reaches the most positive z step (121). As a natural consequence of the flux return in the iron, the radial component is zero at (0, 0, 0) rising to about 40 mT near the nose region of the endcap.

The azimuthal component of the field is nominally zero, but as the plot shows it takes on small values with a sinusoidal dependence on the rotation angle. This is now fully understood as coming from small tilts of the plane in which the mapper moves with respect to the nominal z axis of the magnetic field; this couples the magnetic field components and also gives rise to the small variations seen in the radial component. In addition, the team now understands some even smaller variations in the sinusoidal behaviour of the azimuthal field as a function of the z step following a careful survey of the tilts induced on the mapper arms as it traversed the length of the coil on its (almost) straight rails.

The electrical tests of the solenoid have demonstrated its excellent performance, as well as the functioning of its ancillary systems, and its readiness for smooth operation. The detailed mapping was equally successful and final analysis is now underway to ensure that the best possible parameterization of the field for analysis of real data in autumn 2007. As soon as the tests were over, the huge sections of yoke were pulled apart again, and the descent to the cavern (see cover) could at last begin.

Many institutes participating in CMS took part in the design, construction and procurement of the magnet, as members of the CMS Coil Collaboration, including CEA Saclay, ETH Zurich, Fermilab, INFN Genoa, ITEP Moscow, the University of Wisconsin and CERN.

Résumé

CMS: un solénoïde supraconducteur prêt à fonctionner

L’année dernière, une étape importante a été franchie dans les préparatifs de l’expérience CMS du LHC; l’immense solénoïde supraconducteur (le S de CMS) a été refroidi, mis sous tension et testé. Jamais jusqu’ici un solénoïde fin n’avait pu stocker autant d’énergie. De 12,5 m de longueur et de 6 m de diamètre intérieur, il pèse 220 tonnes et crée un champ magnétique pouvant atteindre 4 T. Une culasse en fer segmentée de 12 500 t permet le retour du flux magnétique. Ce dispositif complexe doit être soumis à des essais approfondis. C’était le but de l’épreuve de l’aimant et du défi des cosmiques» (MTCC), qui se sont déroulés en deux étapes entre juillet et novembre 2006 et ont exigé la cartographie de précision de la région centrale du champ magnétique.

Domenico Campi, CERN, and David Stickland, Princeton University, CMS would like to dedicate this article and the following one to the memory of colleagues and friends, Vitaly Kaftanov, Jean-Claude Lottin, Xavier Lagrue and Rich Smith.
The strategy for building the CMS detector is unique among the four major experiments for the LHC at CERN. The collaboration decided from the beginning that assembling the large units of the detector would take place in a surface hall before lowering complete sections into the underground cavern. At the time the main driving factor was the attempt to cope with delivery of the underground cavern late in the schedule as a result of running the previous accelerator, LEP, together with civil-engineering works that were complicated by the geology of the terrain. Another goal was to minimize the large underground assembly operations, which would inevitably take more time and be more complex and risky in the confined space of the cavern. As construction and assembly progressed above ground, however, it became clear that there would a valuable opportunity for system integration and commissioning on the surface.

The complexity of CMS and the other LHC experiments is unprecedented. For this reason, the collaboration believed that the early combined operation of the various subsystems would be an important step towards a working experiment capable of taking data as soon as the LHC provides colliding beams. Initial plans focused on testing the state-of-the-art 4T solenoid (p22). This would require closing the yoke, already substantially instrumented with muon chambers. Since final elements of other subsystems would also be available by this stage, installed in their final locations, the idea of staging a combined system test in the surface hall became an attractive possibility.

Such a test also required the presence of the full magnet control system and scaled-down versions of the detector control, data-acquisition (DAQ) and safety systems. After much brainstorming and pragmatic criticism, the idea developed into the “cosmic challenge” for which the overall benchmark of success was the recording, and ultimate reconstruction, of cosmic-muon tracks passing through all sub-detectors simultaneously. This objective alone placed a big demand on the compatibility and interoperability of the sub-detectors, the magnet, the central DAQ, the control and monitoring systems and the offline software. The groups working on the Electromagnetic Calorimeter (ECAL) and the Tracker decided to find the resources to contribute active elements, rather than passive mechanical structures. This was a major factor in the positive feedback that eventually led virtually all systems, which will be needed to operate CMS in the LHC pilot run, to participate in the Magnet Test and Cosmic Challenge (MTCC).

In more detail, the objectives of the cosmic challenge were to:

- check closure tolerances, movement under a magnetic field, and the muon alignment system;
- check the field tolerance of yoke-mounted components;
- check the installation and cabling of the ECAL, the Hadron Calorimeter (HCAL), and Tracker inside the coil;
- check the field tolerance of yoke-mounted components;
- check the installation and cabling of the ECAL, the Hadron Calorimeter (HCAL), and Tracker inside the coil;
- check the installation and cabling of the ECAL, the Hadron Calorimeter (HCAL), and Tracker inside the coil;

Left: Installing the first of the two ECAL supermodules within the HCAL. Right: preparing for the cosmic challenge. Muon chambers fill the slots in the iron magnet yoke (red), missing only in the vertical positions at left and right. Two sectors of these chambers were fully equipped and operational during the challenge. The two Electromagnetic Calorimeter (ECAL) support tube housing the tracker prototype modules, within the Hadron Calorimeter (HCAL) and the solenoid cryostat (silver ring).
Collaboration took advantage of the near-complete assembly of the detector to test combined sub-detectors in a \(20^\circ\) slice(s) of CMS with the magnet, using as near as possible final readout and auxiliary systems to check noise and interoperability; and last but not least, trigger and record cosmic muons and try out operational procedures.

In addition, the cosmic tests had to make no significant impact on progress in assembling the detector, and had to take place in the shadow of the work on commissioning and field-mapping the magnet. The tests also had to complement the trigger-system (high rate) tests taking place in the electronics-integration centre. Moreover, the aim was to use final systems as far as possible, that is with no (or very few) specific developments for the cosmic test. Another important aspect was to build a fully functional commissioning and operations team of experts from a collaboration that brings together more than 2000 people from laboratories worldwide, transcending linguistic and cultural backgrounds.

In order not to interfere with assembly work, electronics racks and control rooms for the tests were installed just outside the surface-assembly building in a large control barrack recovered from the OPAL experiment at LEP. Substantial investments were nonetheless needed in the surface hall, general and sub-system infrastructure, the triggering system, some temporary power supply systems, and in the tracker “slice” that was specially made for the cosmic challenge within a full replica of the final containment tube.

As the project progressed, the collaboration began to recognize its importance as a first test of intra-collaboration communication and remote participation, and the original scope expanded to include more substantial objectives for offline as well as online systems. A series of Run Workshops, culminating in a readiness review in June 2006, established the final objectives of the project. Weekly Run Meetings open to all CMS, eventually becoming daily, also ensured coordination. Ultimately the diligent work of hundreds of people aided by a little good fortune transformed the cosmic challenge into a cosmic success for CMS.

Four sub-detectors took part in the challenge. The silicon tracker system comprised 75 modules of the Tracker Inner Barrel in two partially populated layers, 24 modules of the Tracker Outer Barrel, and 34 modules of the Tracker Endcap system in two partially populated “petals”. By normal standards these 133 modules were a substantial system, comparable to any silicon detector used at LEP. It is worth remarking that this represents only 1% of the final CMS system, by far the largest ever built using silicon detectors. In addition, there were two barrel supermodules comprising 3400 lead tungstate crystals of the ECAL, or about 5% of the total; eight barrel sectors (22%), four endcap sectors (11%), and four sectors of the outer barrel section of the HCAL. For muon detection there were three (out of 60) muon barrel sectors.
The crowded control room in the “Green Barrack” at Point 5 during the CMS cosmic challenge (G Franzoni).

consisting of drift tube (DT) and resistive plate chambers (RPC), together with cathode strip chambers (GSCs) forming endcap muon chambers – in all, 8% of the total system.

As was the case for the sub-detectors, all common support systems were tested in close to final versions, using in most cases production hardware and software. The first priority was the definition and implementation of elements of the Detector Safety System. The teams had also to integrate sub-detectors with the central Detector Control System and a scaled-down version of the trigger system. The tests used the central DAQ with its final architecture and approximately 1% of the final computing power, and successfully operated the integrated run control, event builder, event filter, data storage and transfer to the CERN Advanced Storage manager (CASTOR). Throughout the whole exercise a fully functional event display enabled a simple and quick feedback on the status of different sub-detectors.

Other important organizational components of the operations were the consistent use of an electronic logbook, webcams, video-conferencing tools and Wiki-based documentation, as well as web-based monitoring, which was extensively tested. The challenge involved data transfers from Tier-0 (at CERN) to some Tier-1 centres (at CNAF/Bologna, PIC/Madrid and Fermilab) through the Physics Experiment Data Export (PHEDEX) protocol exercising the fast offline analysis and remote monitoring at the Meyrin CERN site as well as at the Fermilab Remote Operations Center.

There were two distinct phases of the cosmic challenge: the first phase in July and August 2006 was parasitic to the commissioning of the magnet (p22).

Less than two weeks after the end of the magnet tests, the CMS detector was fully re-opened so the major elements could begin to be lowered into the experiment cavern. Meanwhile, work on analysing the millions of cosmic-ray events recorded in the cosmic challenge continues in many of the institutes in the collaboration. Now, as attention turns to completing the remaining assembly and installation of the muon, tracking and ECAL systems, the whole collaboration is looking forward eagerly, and with confidence, to re-assembling the detector underground and repeating the exciting and successful accomplishments of 2006, but this time with tracks from collisions of LHC beams.

Résumé
La collaboration CMS relève un défi cosmique

Composé aux trois autres grandes expériences LHC, CMS a déployé une stratégie toute personnelle pour la construction de son détecteur au CERN. La collaboration a décidé dès le début d’assembler les grands éléments des détecteurs dans un hall de surface avant de descendre des sections complètes dans la caverne souterraine. En été et en automne 2006, la collaboration CMS a tiré parti de la présence en surface du détecteur presque entièrement achevé pour tester ses performances (des systèmes de support à l’acquisition des données) avec des rayons cosmiques. Quatre sous-détecteurs ont participé au «défi des cosmiques», qui a permis d’enregistrer des millions d’événements avec un champ magnétique proche de sa valeur maximale.

Austin Ball and Archana Sharma, CERN.
When the CMS experiment begins recording data at the LHC the first components to detect particles produced in the head-on proton–proton collisions will be those in the layers of silicon pixels that form the inner part of the CMS tracker (figure 1). The pixel detectors in the barrel part of the cylindrical tracker are the responsibility of a Swiss collaboration based at the Paul Scherrer Institute (PSI). These specially developed detectors have to fulfil extreme requirements. In addition, their high performance in tests has resulted in similarly designed but simpler detectors for investigations into protein crystallography at the Swiss Light Source and radiography at the Swiss Spallation Neutron Source. These detectors are already in operation and a start-up company has been formed to supply them to other synchrotron light sources.

Researchers at PSI began developing a hybrid pixel detector system 12 years ago that would be suitable for the very high rates of particle tracks expected at the LHC. Roland Horisberger, project manager of the pixel project, recalls that at the time such a pixel system appeared very futuristic and posed many questions. Nevertheless, researchers from PSI, the universities of Basel and Zurich, and the ETH Zurich gathered together and formed a pixel competence centre to develop a pixel vertex detector for CMS.

Pixels at work

This new detector is in essence a very large digital camera for recording the tracks of ionizing particles. It comprises 65 million silicon pixels, each 100 μm × 150 μm, which are micro-bump-bonded to special complementary metal-oxide semiconductor (CMOS) read-out chips. This enables researchers to record precisely the position and time of a penetrating particle track. The read-out chip detects the hit pixels and records their analogue pulse height. It is then possible, using charge division, to achieve an excellent position resolution of 10–15 μm, while limiting the data transfer to the hit pixels only. For this purpose each pixel is equipped with a fast charge-sensitive amplifier with an analogue sample-and-hold circuit and a discriminating comparator circuit to perform the hit “decision”.

The pixel barrels contain as many as 768 silicon sensor modules, each of which has a sensitive area of about 10 cm² and consists of a matrix of 160 pixels × 416 pixels. The charge produced by the 66 560 pixels is conducted through an equal number of micro-bump-bonded contacts to 16 read-out chips, each containing 4160 cells, where the charge signals are amplified and processed.

These “hybrid” pixel detectors depend on a special high-density connection technique, which was developed in co-operation...
with the Laboratory for Micro- and Nanotechnology at PSI. The contact between pixel and microchip – the bump – is a 17 μm solder ball of indium, a metal with a low melting point. The technique, known as bump-bonding, was taken from industry and miniaturized further to achieve the desired small bump ball size (figure 2). The work requires that the bump-bonding is achieved with a precision of 1–2 μm.

At CMS the pixel modules are placed close to the beam pipe at radii of 4, 7 and 11 cm. They provide the three innermost charged-particle tracking points of the experiment and should enable the reconstruction of the secondary displaced vertices arising from b-quark decays, a crucial signature for the discovery of new physics processes. At the design luminosity of the LHC the enormous particle flux of nearly 10^{10} particles per second will create 120 GB of data every second. The intensive bombardment creates an extreme radiation load on the detectors and the associated onboard electronics. Yet tests at the PSI proton accelerator have shown that this does not significantly affect the functioning of the detectors.

From the LHC to protein crystals

The detector technology developed for CERN measures particle tracks for high-energy particle physics, but at the Swiss Light Source the same technology operates as a very sensitive digital X-ray camera known as the PILATUS 6M detector (for “Pixel Apparatus for the SLS”; figure 3). It consists of 60 modules with 6 million pixels, making up an active area of 43 cm x 45 cm. Adapted to the needs of experiments at synchrotrons, the detector operates in single-photon counting mode – each incoming photon is counted and the number for each pixel is stored digitally.

The process has no electrical background interference, so it achieves an extremely high dynamic range. Very weak and very intense signals can therefore be measured at the same time in a single image, and exposure times can be selected freely between 1 ms and several hours. The CMOS chips and the sensors are radiation tolerant, and the PILATUS 6M detectors have a dynamic range of 20 bits, a highest sensitivity in the energy range of 3–30 keV and a read-out time of a few milliseconds.

When this equipment was being developed the focus was on its application for protein crystallography. Understanding the molecular structure of a crystal requires knowing the intensities of all the reflections as accurately as possible. Researchers can use this information to calculate the actual arrangement of the atoms and molecules in the protein, but the quality of data used to decode the molecular structure is crucial.

In these experiments the researchers fire a tightly bundled X-ray beam onto a protein crystal. This results in images that are patterns formed by thousands of scattered Bragg reflections. The advantage of pixel detectors is that they can deal with the incoming data in the most efficient way. The rate of more than 1 million X-ray photons per second hitting just a few pixels means that the reflections at the centre of the image are extremely intense; at large scattering angles towards the edge there are far fewer reflections from a few dozen photons. Molecular biologists are excited about the excellent data quality they have obtained so far with the PILATUS 6M detector.

The PILATUS 100K detector is a smaller system that was developed in parallel. This system consists of a matrix of approximately 500 pixels x 200 pixels and enables information to be recorded even faster and with greater precision than with comparable commercial detectors. The system is currently used for material science research at synchrotrons and improves insight in several research areas such as the surface properties of materials. To meet growing demands, a spin-off company was recently founded and the CEO, Christian Broennimann, leads a team of four. The market for these detectors lies mainly in the field of synchrotron radiation.

Meanwhile, the precision work on the individual modules for the CMS experiment continues. The barrel pixel modules are currently being fabricated at PSI at a rate of four to six a day, with a total of 720 modules to be delivered ready for service in late autumn 2007. The PSI pixels will then be on the look-out for passing particles and playing their part in the search for new physics at the LHC.
Résumé
Retombées des pixels du PSI dans les applications des rayons X

Lorsque la collaboration CMS commencera à enregistrer des données au LHC, les premiers éléments qui détecteront des particules produites par les collisions frontales proton–proton seront les couches de pixel au silicium formant la partie centrale du détecteur. Les pixels de la partie tonneau du trajectographe cylindrique relèvent de la responsabilité d’une collaboration suisse à l’Institut Paul Scherrer. Ces détecteurs spécialement conçus doivent répondre à des exigences extrêmes et leurs performances élevées lors des essais ont permis de concevoir des détecteurs plus simples mais de conception similaire, qui sont déjà utilisés pour les recherches en cristallographie des protéines menées à la source de lumière suisse (SLS) et en radiographie à la source suisse de neutrons de spallation.

Juanita Schläpfer-Miller, Paul Scherrer Institute.
Over the past two years, studies to upgrade the LHC have made great progress under the joint auspices of the European CARE accelerator network on High-Energy High-Intensity Hadron Beams (HHH) and the US LHC Accelerator Research Program (US-LARP). These efforts recently culminated in the third topical workshop of the CARE-HHH-APD network, LUMI’06, which was held in Valencia on 16–20 October 2006. About 70 members of CARE and LARP and their associated institutes attended, including 13 participants from major US laboratories and two from KEK in Japan.

LUMI’06 was devoted to the beam dynamics of the LHC luminosity upgrade and to high-intensity effects limiting the performance of both the LHC accelerator complex at CERN and the Facility for Antiproton and Ion Research (FAIR) at GSI. More specifically, the double objective of LUMI’06 was to establish a forward-looking baseline scenario for the LHC luminosity upgrade and to concur on a scientific rating of alternative scenarios for the upgrade of the CERN accelerator complex, while also assessing the performance of the GSI FAIR synchrotrons.

The workshop concluded an exciting year of intense HHH networking activity, in which several other workshops and conferences were devoted to various LHC upgrade issues, treating topics such as crystal collimation and channelling, rapid switching devices, superconducting magnet design, magnet optimisation, super-ferric storage-ring approaches and beam dynamics in high-brightness hadron beams. Throughout the year, in preparing for LUMI’06, there had also been great progress made on the development of a web repository for accelerator physics codes, code benchmarking and on the construction of a database for superconducting cables and magnets.

Accomplishing key goals
A highlight of experimental studies just before the workshop was the first successful test of crystal reflection with a 400 GeV proton beam at CERN in the SPS North Area by the H8-RD22 collaboration. The demonstration of an extremely high effective field, together with more than 95% extraction efficiency, opens up a new perspective for the upgrade of the LHC collimator system. Such an improvement is certainly welcome, in view of the known obstacles on the way to reaching the nominal LHC performance.

Several speakers at LUMI’06, including CERN’s Ralph Assmann, Rudiger Schmidt and Gianluigi Arduini, surveyed the various difficulties and limitations of the nominal LHC and of the existing CERN complex – related, for example, to collimation, machine protection and the injectors – and they pointed out the challenges that need to be overcome to reach the LHC design luminosity of 10^{34} cm^{-2}s^{-1}. Nevertheless, after five days of intense discussions,
the workshop participants displayed great optimism about the upgrade goal of boosting the LHC peak luminosity by another factor of 10 beyond nominal towards $10^{35} \text{cm}^{-2}\text{s}^{-1}$.

A key objective that LUMI’06 successfully accomplished was to select the most promising upgrade paths and, possibly, improve them or identify new ones. The workshop considerably reduced the number of alternative scenarios for the upgrade of the interaction region by arguing against all layouts with strong separation dipoles between the collision points and the low-beta quadrupoles closest to them. A primary argument in favour of the “quadrupole-first” solutions is the different level of difficulty and implied development timescale. In particular, at present nobody in the world is actively prototyping strong superconducting dipole magnets.

In considering the technology on which to base the new low-beta quadrupoles there are two alternatives – namely “pushed” NbTi and Nb3Sn – that the workshop decided to pursue in parallel until the first results become available from long Nb3Sn prototype magnets to be built in the US. This should be within the next two or three years. CERN’s Tom Taylor in particular proposed an intriguing “hybrid” solution, combining both NbTi and Nb3Sn technologies.

Two novel concepts that would greatly enhance the luminosity potential of an LHC upgrade foresee complementing the interaction-region upgrade with additional slim superconducting dipole magnets (DO) or quadrupole doublets (QO), which would be embedded deeply inside the upgraded detectors. Together with other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven, as opposed to other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven, as opposed to other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven, as opposed to other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven, as opposed to other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven, as opposed to other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven, as opposed to other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven, as opposed to other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven, as opposed to other measures, such elements may allow squeezing the beta functions at the collision point by a factor of seven.

The compensation of long-range beam–beam effects by a current-fed metre-long wire running parallel to the beam is by now almost established as a valuable and inexpensive complementary tool for enhancing performance. At LUMI’06, Fermilab’s Vladimir Shiltsev proposed the additional use at the LHC of electron lenses both for head-on beam–beam compensation and as a halo collimator. Large-angle “crab” cavities for interaction-region layouts with large crossing angles were rejected in view of numerous technical challenges, which several speakers identified, including Brookhaven’s Rama Calaga and Ramesh Gupta, and CERN’s Rogelio Tomas and Joachim Tuckmantel. Participants appreciated the high risk involved with choosing a crossing geometry that would fully rely on their functionality. In contrast, simpler small-angle crab cavities were recognized as a potentially powerful tool for realizing very small beta functions in conjunction with the detector–integrated dipole D0. KEK’s Kazuhiro Ohmi presented simulations of LHC emittance-growth with crab cavities and feedback. The results of the first-ever crab cavity operation in a collider at the KEKB electron–positron machine will be the next milestone. Expected soon, these results will have a big impact on the further pursuit of using crab cavities at hadron colliders.

Figure 1 shows two example layouts of an upgraded LHC interaction region, accommodating several of the advanced elements discussed during the workshop. Advantages of the first scheme, with a detector-integrated slim dipole located about 3 m from the interaction point, are the reduced number of long-range collisions and the absence of geometric luminosity loss. The second scheme relaxes the dipole quadrupole requirements and decreases the chromaticity. A combination of the two schemes – that is an interaction region layout containing both D0 and QO – is another possibility, which combines all the advantages.

Tackling the beam-parameter frontier

The workshop also made significant progress at the beam-parameter frontier. In the past, parameter sets suffered either from an unacceptable number of events per crossing or from an electron-cloud heat load that by far exceeded the available cooling capacity. LUMI’06 approved two compromise solutions with 25 ns and 50 ns bunch spacing, which the authors presented (table 1). For these new sets of beam parameters the number of events per crossing stays below the maximum acceptable value, while the predicted electron heat load remains safely below the projected cooling capability.

The 25 ns option is accompanied by an 8 cm β^*, which requires a D0 magnet inside the detector, Nb3Sn large-aperture quadrupoles and a low-angle crab cavity. The 50 ns option has $\beta^* = 25$ cm, for which optics solutions exist based on either technology for the quadrupoles. In addition it needs only the wire compensation of long-range beam-beam effects. Since LUMI’06, the two biggest LHC experiments, CMS and ATLAS, have indicated a preference for the scenario with 50 ns spacing. LUMI’06 rejected the original baseline upgrade scenario with 12.5 ns bunch spacing – half the nominal – since accelerator physicists, cryogenics experts and detector physicists now generally agree that this spacing will produce an insurmountable heat load. Indeed, at this bunch spacing the well-known heating from image currents in the resistive wall and from synchrotron radiation already require the entire local cooling capacity, leaving zero reserve for the electron cloud, which is predicted to be the dominant heat source.

For the LHC injector upgrade, LUMI’06 has endorsed the Linac4/ Superconducting Proton Linac upgrade, as well as PS2, a normalconducting replacement for CERN’s venerable Proton Synchrotron (PS) with twice the PS circumference. However, the workshop also made it clear that these new accelerators alone may not...
overcome existing intensity limits in the Super Proton Synchrotron (SPS) and that complementary SPS “enhancements” are likely to be required. Several participants challenged the alternative to the normal-conducting PS2, namely a fast cycling superconducting PS2+. Issues of concern here include the distributed beam losses in a cold machine, heating from the fast ramp, technological development risks, missing physics arguments and lack of human resources. In addition, preliminary simulations presented by Miguel Furman of LBNL indicate that the electron cloud could be a serious problem for new superconducting injector rings.

In summary, the LUMI’06 workshop developed novel scenarios for the upgrade of the LHC interaction regions, while eliminating a number of previous options and proposed novel sets of beam parameters better tailored to a higher-luminosity LHC. The workshop also discussed the supporting upgrades to the CERN accelerator complex, including replacement of the PS, which may be necessary for boosting the integrated LHC luminosity, as well as the peak luminosity. With a substantial participation from US-LARP, the European and US upgrade activities could successfully be re-aligned and a general consensus emerged on the future steps to be taken. According to the present schedule, the LHC interaction regions will be upgraded by around 2014. The interaction region and beam-parameter upgrades should increase the peak luminosity several times. However, harvesting the full gain in the integrated luminosity as well will almost certainly require accompanying upgrades to the CERN injector complex, improving turnaround time and removing intensity bottlenecks.

The HHH Networking Activity is supported by the European Community Research Infrastructure Activity under the European Union’s Sixth Framework Programme “Structuring the European Research Area” (CARE, contract number RII3-CT-2003-506395).

Further reading

Résumé
LUMI’06 en route pour l’augmentation de la luminosité du LHC

Walter Scandale and Frank Zimmermann, CERN. Dedicated to the memory of Francesco Ruggiero (p41).

<table>
<thead>
<tr>
<th>parameter</th>
<th>symbol</th>
<th>nominal</th>
<th>ultimate</th>
<th>25 ns, low beta*</th>
<th>50 ns, long bunches</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of bunches</td>
<td>(n_b)</td>
<td>2808</td>
<td>2808</td>
<td>5616</td>
<td>1404</td>
</tr>
<tr>
<td>protons/bunch</td>
<td>(N_b [10^{11}])</td>
<td>1.15</td>
<td>1.7</td>
<td>1.7</td>
<td>4.9</td>
</tr>
<tr>
<td>bunch spacing</td>
<td>(\Delta t_{sep} [\text{ns}])</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>average current</td>
<td>(I [\text{A}])</td>
<td>0.58</td>
<td>0.86</td>
<td>0.86</td>
<td>1.22</td>
</tr>
<tr>
<td>longitudinal profile</td>
<td></td>
<td>Gaussian</td>
<td>Gaussian</td>
<td>Gaussian</td>
<td>uniform</td>
</tr>
<tr>
<td>rms bunch length</td>
<td>(\sigma_z [\text{cm}])</td>
<td>7.55</td>
<td>7.55</td>
<td>7.55</td>
<td>11.8</td>
</tr>
<tr>
<td>beta at IP1 & IP5</td>
<td>(\beta^* [\text{m}])</td>
<td>0.55</td>
<td>0.5</td>
<td>0.08</td>
<td>0.25</td>
</tr>
<tr>
<td>crossing angle</td>
<td>(\theta_c [\mu\text{rad}])</td>
<td>285</td>
<td>315</td>
<td>0</td>
<td>381</td>
</tr>
<tr>
<td>Piwinski parameter</td>
<td>(\theta_c \sigma_z/(\alpha^2))</td>
<td>0.64</td>
<td>0.75</td>
<td>0.60</td>
<td>2.5</td>
</tr>
<tr>
<td>peak luminosity</td>
<td>(L [10^{34} \text{cm}^{-2}\text{s}^{-1}])</td>
<td>1.0</td>
<td>2.3</td>
<td>15.5</td>
<td>10.7</td>
</tr>
<tr>
<td>optimum average luminosity</td>
<td>(<L> [10^{34} \text{cm}^{-2}\text{s}^{-1}])</td>
<td>0.46</td>
<td>0.91</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>optimum run length with 10 h turnaround time</td>
<td>(\tau_{sp} [\text{h}])</td>
<td>21.2</td>
<td>17.0</td>
<td>6.6</td>
<td>9.5</td>
</tr>
<tr>
<td>total heat load on beam screen (max SEY= 1.4)</td>
<td>(dP/ds [\text{W/m}])</td>
<td>1.39</td>
<td>1.62</td>
<td>1.62</td>
<td>1.50</td>
</tr>
<tr>
<td>peak number of events/crossing</td>
<td></td>
<td>19</td>
<td>44</td>
<td>294</td>
<td>403</td>
</tr>
</tbody>
</table>

Parameters of LHC upgrade options with 25 ns and 50 ns bunch spacings compared with nominal and ultimate LHC design values.
String theory meets heavy ions in Shanghai

The latest experimental results from the heavy-ion programmes at RHIC and CERN’s SPS were the focus of attention at QM2006 in Shanghai. For the first time there were discussions about attempts to connect these data with string theory.

The field of ultra-relativistic heavy-ion collisions held its 19th international quark-matter conference, QM2006, in Shanghai on 14–20 November 2006. More than 600 physicists discussed the latest experimental and theoretical advances in the study of quantum chromodynamics (QCD) at extreme values of temperature, density and low parton fractional momentum ("low-x").

The wealth of data from the six years of operation of the RHIC collider at Brookhaven, together with that from the fixed-target programme at CERN, is leading to a developing paradigm of the matter produced in high-energy nucleus–nucleus collisions as a "perfect liquid" with negligible viscosity. Far from the ideal parton-gas limit, the lattice QCD calculations for several quantities, such as the equation of state and the quarkonia spectral functions, reveal a non-trivial structure up to temperatures three times higher than the critical QCD temperature – the region that experiments are studying. The current theoretical and experimental efforts centre on characterizing in detail the unanticipated properties of this strongly interacting medium.

Strings and the perfect fluid

One of the most important indications of the formation of thermalized collective QCD matter in heavy-ion collisions is the observation of hydrodynamic flow fields in the form of large anisotropies in the final particle yields with respect to the reaction plane. If the medium expands collectively, the pressure gradients present in non-central collisions – with an initial lens-shaped overlap area – result in momentum anisotropies in the final state. Fluid-dynamics calculations indicate that such gradients must develop very early in the collision, during the high-density partonic phase, in order to reproduce the strong "elliptic flow" seen in the data.

Two new experimental results presented at the conference supported this theoretical expectation. The PHOBOS and STAR collaborations at RHIC have observed large dynamical fluctuations of the elliptic-flow strength, which are fully compatible with those expected from event-by-event variations in the initial collision geometry alone. These results confirm that the strength of the collective flow is driven by the initial spatial anisotropy of the medium. The PHENIX collaboration presented data on the azimuthal anisotropy of electrons coming from the decay of charm and beauty mesons (figure 1). They have observed momentum anisotropies as large as 10%, indicating that charm quarks interact collectively and participate in the common flow of the medium. Both results clearly suggest a robust hydrodynamical response developing during the early partonic phase of the reaction.

On the theory side, progress was reported on hydrodynamical approaches including computationally expensive descriptions of the full three-dimensional evolution of the plasma, as well as, for the first time, viscosity corrections. These calculations indicate that the dimensionless viscosity-to-entropy-density ratio, η/s, has to be very small in order to reproduce the liquid-like properties seen in the data. If the viscosity is negligibly small then the produced medium is the most perfect fluid ever observed, in striking contrast with the ideal-gas behaviour at high temperatures that asymptotic freedom predicts. Determining the transport properties of such a medium in the region not far from the critical
temperature is, however, a difficult task: perturbative expansions break down in this region while finite-temperature lattice techniques are not well adapted for studying real-time quantities.

Techniques developed in the context of string theory, where strong coupling regimes are accessible to computation, can help to circumvent this difficulty. The meeting in Shanghai heard of new approaches that make use of the correspondence between anti-de Sitter (AdS) and conformal-field theories (CFT) to estimate the properties of strongly coupled systems in N = 4 super-symmetric Yang–Mills theory from calculations in dual weakly coupled gravity. The somewhat controversial hope is that these theories, though different from QCD, capture the relevant dynamics in the range of interest for phenomenology at RHIC. One of the first observables computed by these methods is the η/s ratio, which is conjectured to exhibit a universal lower bound of $1/4\pi$.

The conference also reviewed results on the heavy-quark diffusion coefficient, the jet-quenching parameter, and photon and dilepton emission rates. The application of AdS/CFT techniques, which the field has received with both enthusiasm and criticism, is nonetheless providing new insight into dynamical properties of strongly interacting systems that cannot be directly treated by either perturbation theory or lattice methods. At the same time this approach is opening novel directions for phenomenological studies and experimental searches.

Jet quenching

The study of hadron spectra at high-transverse momentum in heavy-ion collisions – the apparent modifications of which are generically known as jet quenching – was again one of the main conference topics. Speakers from experiments at both RHIC and CERN’s SPS presented new results on inclusive high-p_T hadron suppression and two- and three-particle correlations between a leading trigger particle and the associated hadrons. Two clear experimental facts summarize the findings: the strong suppression of the yields of leading-hadrons indicates that fast quarks and gluons lose a sizeable amount of energy when traversing dense matter; and the two- and three-particle correlations studies indicate that this energy reappears as softer particles far from the initial parton direction both in azimuth and rapidity space.

When the transverse momentum of the trigger and the associated particles are both similar and of the order of a few gigaelectron-volts, the two-particle-correlation signal around the direction opposite to the trigger particle presents a dip in central collisions, in striking contrast with the typical Gaussian-like shape observed in proton–proton and deuteron–gold collisions (figure 2). The three-particle-correlation data indicate a cone-like emission rather than a deflected jet topology. One proposal is that conical structures result from shock waves or Cherenkov radiation produced by highly energetic partons traversing the medium. Such observations could thus help to constrain the value of the speed of sound or the dielectric constant of the plasma. A more conservative explanation proposes one-gluon exclusive bremsstrahlung radiation at the origin of the enhanced "Mercedes-like" topologies that experiments observe. The differential studies of the transverse-momentum and the centrality dependencies presented at the conference further constrain the models.

Interesting intrajet correlations also appear in the near side, that is at angles in the trigger particle hemisphere. Owing to the trigger bias the near-side signal is sensitive to interactions that originate close to the surface of the hot dense fireball, while the opposite-side particle production reflects the most probable longer path through this medium. The data from the STAR collaboration (up to $p_{T}^{\text{jet}} = 9 \text{ GeV/c}$) show that, although the near-side azimuthal correlations remain basically unchanged from proton–proton to central gold–gold collisions, the pseudo-rapidity distribution is substantially broadened in the gold–gold case and presents a ridge structure above which an almost unaffected Gaussian shape appears. The dynamical origin of this effect is not yet understood but, interestingly, it indicates a coupling of the longitudinally expanding underlying event with the jet development.

With increased integrated luminosities, heavy-quark probes are becoming more and more important at RHIC. The latest PHENIX data indicate a large suppression of decay electrons from high-p_T charm and beauty mesons. The amount of suppression is very
similar to that of the light-quark mesons, which is difficult to accommodate in most jet-quenching models since QCD distinctly predicts a lower gluon radiation probability for heavy-quarks compared with massless quarks or gluons.

There are also new results for direct photon production in gold–gold collisions up to transverse momenta of 20 GeV/c. Comparison of the gold–gold and proton–proton yields indicates that the QCD factorization theorem also holds for hard scatterings with heavy ions. The quality of the data is such that small deviations from the proton–proton reference can be traced back to isospin corrections and nuclear modifications of the parton distribution function in the nucleus. With improved statistics it will certainly be possible to use such data in global-fit analyses to constrain the nuclear parton distributions.

Last but not least, the conference saw the first measurements of direct photons emitted back-to-back with high-p_T hadrons. With reduced uncertainties such correlations will provide an important calibrated measure of the energy lost by the original parton.

J/ψ melting and lattice QCD

The suppression of charmonium bound states, in particular the J/ψ, was proposed 20 years ago as a smoking-gun signature for quark–gluon plasma formation, and this is still the experimental observable that offers the most direct connection with lattice QCD. The first high-statistics results from RHIC were presented in Shanghai. Surprisingly, they show that the amount of suppression is almost identical to that found at the SPS (figure 3). The medium created at RHIC is expected to be much denser and hotter than that at the SPS and most models predicted a stronger depletion.

A natural explanation of the similarity of the suppression at the two energies (√snn = 17 and 200 GeV) is put forward by recent lattice data that indicate that the J/ψ (but not the χ_c and ψ’) survives up to temperatures twice the critical one. The increase in the temperature from the SPS to RHIC would not be enough to dissolve the J/ψ, which is then only indirectly suppressed due to the lack of feed-down contributions from the dissolved χ_c and ψ’ states. Alternative explanations point out that the recombination of charm and anticharm quarks in the thermal bath (up to 10 charm–anticharm pairs are produced in central gold–gold collisions at RHIC) could compensate almost exactly for the additional suppression. The influence of initial-state effects, those present already in proton–nucleus collisions, are not yet completely settled. More proton–nucleus (at the SPS) and deuteron–gold (at RHIC) reference data, as well as the study of different charmonium states in gold–gold, will be needed to unravel the origin of the suppressed J/ψ yields.

Towards the LHC

The emerging picture in ultra-relativistic heavy-ion collisions is that of the formation of a strongly interacting medium with negligibly small viscosity – a perfect liquid – and with energy densities as high as 30 GeV/fm^3. These characteristics emerge from the ideal hydrodynamics description of collective elliptic flow, and the large energy loss suffered by energetic quarks and gluons traversing the system respectively. The detailed study of the transport properties of this medium and the potential observation of the anticipated weakly interacting quark–gluon plasma will require key measurements in lead–lead collisions at 5.5 TeV at the LHC. The higher initial temperatures, the greater duration of the quark–gluon plasma phase and the much more abundant production of hard probes expected at the LHC are likely to result in indisputable probes of the deconfined medium that depend much less on details of the later hadronic phase.

A whole morning session at the conference looked at “Heavy-Ion Physics in the Next 10 Years”. The imminence of the LHC startup – with an active nucleus–nucleus programme being developed by the ALICE, CMS and ATLAS collaborations – guarantees an exciting future for the physics of high-density QCD.

Further reading

More information about the conference, as well as the talks presented, is available at www.sinap.ac.cn/qm2006/.

Résumé

La théorie de cordes rencontre des ions lourds à Shanghai

Les collisions d’ions lourds ultrarelativistes étaient à l’ordre du jour de la 19e conférence internationale sur la matière quarkonique, QM2006, à Shanghai en novembre 2006. Plus de 600 physiciens y ont discuté des toutes dernières avancées expérimentales et théoriques des études de chromodynamique quantique aux valeurs extrêmes de température, de densité et des faibles fractions de l’impulsion du parton (petit x). Les tout derniers résultats expérimentaux des programmes d’ions lourds du RHIC et du SPS ont été au centre des débats et, pour la première fois, les tentatives de lier ces données à la théorie des cordes ont fait l’objet de discussions animées. La réunion s’est aussi tournée vers l’avenir et les attentes à l’égard du LHC.

David d’Enterria and Karel Safarik, CERN, and Carlos A Salgado, University of Rome La Sapienza.
CERN opens its doors to its first collaborators from Saudi Arabia

With its physics programmes carried out with the help of the world’s largest accelerator complex, CERN has become a magnet for high-energy particle physicists, currently hosting some 7500 scientists from more than 60 countries worldwide. In addition to co-operation with its 20 European member states, the organization has signed formal co-operation agreements with the governments of more than 40 non-member states, as well as memoranda of understanding with a large number of funding agencies that provide support to CERN’s user community.

More recently, and in response to the rising interest of a new generation of young scientists from North African and Middle Eastern countries to work in fundamental science, CERN has established formal ties with governments of countries such as Egypt, Iran, Jordan, Morocco, Pakistan, Saudi Arabia and the United Arab Emirates. Saudi Arabia, for example, increasingly realizes the importance of higher education as a long-term investment, not only to develop its growing agriculture and industry, but also to allow its own population to participate in fundamental science and research at an international level.

A number of young Saudis have already participated in CERN’s Summer Student programme, but more recently CERN’s director-general welcomed two of the first long-term visitors from Saudi Arabia, Ibtesam S Badhrees and Nader S Alharbi, who was Saudi Arabia’s first visitor to CERN. Both Badhrees and Alharbi are preparing a PhD thesis, under the supervision of the Université de Genève and the Technische Universität in Vienna, respectively (CERN does not award academic degrees). Badhrees works on silicon detectors as a member of the ATLAS Collaboration, while Alharbi is in the study team for a superconducting proton linac, which would serve as the new injector as required for a luminosity upgrade of the Large Hadron Collider (p32).

More recently, CERN has agreed with HRH Turki Al-Saud, vice-president of the King Abdulaziz City for Science and Technology (KACST) in Riyadh, that Alharbi (also from KACST) will design a model of the drift-tube linac structure at CERN, and then have it manufactured in Saudi Arabia. Later, KACST will provide a full-scale section of the linac structure – a key element of the SPL – as Saudi Arabia’s participation in CERN. KACST is a governmental organization that promotes scientific and technological research, in particular in national resources and environment, space science, astronomy and geophysics, information technology, petro-chemistry, atomic energy, mathematics and physics (including particle physics). This development, only a few months after Saudi Arabia and CERN signed a Co-operation Agreement in Riyadh, opens the prospect of a mutually beneficial participation between Saudi Arabia and CERN, providing valuable opportunities for young Saudi scientists to participate in a cutting-edge fundamental-research endeavour of the international science community hosted by CERN. Moreover, a successful collaboration between Saudi Arabia and CERN will help to build new bridges between the West and the Arab world.
FACES AND PLACES

APPOINTMENTS

Dylla leave Jefferson Lab to take the reins at the AIP

Frederick Dylla will be the next executive director and CEO of the American Institute of Physics (AIP). On 1 April he will succeed Marc Brodsky, who will retire after more than 13 years at AIP’s helm.

Dylla has worked at Jefferson Lab in Newport News, Virginia, since 1990. He concurrently held an adjunct professorship at the College of William and Mary in Virginia. While at Jefferson Lab he served as the chief technology officer and associate director for the Free-Electron Laser (FEL) programme funded by the US Office of Naval Research. He was responsible for initiating, building and operating the FEL, which generates high-power light in many regions of the electromagnetic spectrum. Before moving to Jefferson Lab, he held various research and management positions from 1975 to 1990 at Princeton University’s Plasma Physics Laboratory, where he helped to develop technology for nuclear-fusion reactors, particle accelerators and materials processing.

Dylla is a past president of the American Vacuum Society: Science & Technology of Materials, Interfaces and Processing, where he was elected a fellow in 1998 and is currently a distinguished lecturer. He is also a fellow of the American Physical Society and founding member of its Forum on Industrial and Applied Physics. He has served on many advisory committees for US agencies such as the Department of Energy, the Department of Defense, and the National Science Foundation.

Dylla leave Jefferson Lab to take the reins at the AIP.

Awards

Bogoliubov prize goes to Barrau for black-hole research

Aurélien Barrau from the Laboratory for Subatomic Physics and Cosmology, and Joseph Fourier University, Grenoble, has won the 2006 Bogoliubov Prize for young scientists, established by the Joint Institute for Nuclear Research (JINR) in 1999. He receives the prize for a series of papers on astrophysics and cosmology.

Barrau studies quantum physics in the vicinity of black holes, one of the most fascinating fields of physics (CERN Courier November 2004 p27). He visited Dubna to receive his prize and gave a seminar on Black holes and quantum fields: from paradox to paradigm at the Bogoliubov Laboratory of Theoretical Physics, JINR. Barrau received the prize from JINR director Alexei Sissakin on 15 December at the meeting of the JINR Directorate with the CNRS delegation.

Khriplovich hits 70

Iosif Khriplovich, a prominent theorist from the Budker Institute of Nuclear Physics (BINP), was 70 on 23 January. His career has been closely related to the institute, which he joined in 1959. He is known for his contributions to the gauge field theory of fundamental interactions, violation of fundamental symmetries in atoms and nuclei, and the physics of black holes and general relativity.

In 1968 Khriplovich performed the first correct calculation of the charge renormalization in Yang–Mills theory and clearly explained an unusual sign of the effect. In 1974 he suggested an experiment to search for the optical activity of atomic bismuth vapours, which L Barkov and M Zolotorev carried out at BINP. This resulted in the first observation of macroscopic parity violation and the discovery of the weak interaction of electrons with nucleons via neutral currents.

In the 1980s, together with his students, Khriplovich predicted that atomic parity violation depending on nuclear spin was in the main due not to neutral currents, but rather to the electromagnetic interaction of electrons with a so-called anapole nuclear moment arising from parity-violating nuclear forces. These calculations were later confirmed by the discovery of the anapole moment by Carl Wieman’s group at JILA, University of Colorado, Boulder.

Working closely with experimentalists, during recent years Khriplovich has been actively involved in preparing a deuteron EDM experiment. For many years he has also taught at Novosibirsk State University, giving lectures on quantum mechanics, general relativity and the history of physics.

Khriplovich hits 70

Frederick Dylla, who will take over at the AIP.

Alexei Sissakin, left, presents the 2006 Bogoliubov prize to Aurélien Barrau.
It is with great sadness that we say adieu to our colleague Aaldert Wapstra, “grand inquisitor of the atomic masses”, who passed away at home in Amsterdam on 4 December 2006.

Aaldert Wapstra’s career in nuclear physics spanned five decades from 1953 when he received his doctorate from the University of Amsterdam and became professor at Delft Technical University in 1955. In 1963, he joined the executive board of the Institute of Nuclear Physics Research (IKO), which later became the premier subatomic physics institute of the Netherlands: NIKHEF. Succeeding Godfried Van Lieshout in 1971, he was director of NIKHEF until 1982. Though he retired in 1987, his active contribution to the “Atomic Mass Evaluation” (AME) continued through 2005.

The mass of an atom, when measured accurately enough, yields the nuclear binding energy, which in turn has important implications in subatomic physics. Because masses can be determined via the different techniques of decay spectroscopy, reactions or mass spectrometry, the production of a mass table requires a meticulous and rigorous evaluation procedure. Aaldert first provided such an evaluation at the first international conference dedicated to atomic masses. With F Everling, L A König and J H E Mattauch, he established the procedure for producing – and testing the consistency of – the different results.

Since that time, the AME has been updated at regular intervals with the 2003 evaluation, the most recently published, comprising reliable masses for some 3000 nuclides. It is the most cited reference in nuclear physics and forms a unique, common benchmark for nuclear theory. The evaluation requires great fluency in the technical methods of measuring masses. In this regard, Aaldert was extremely interested in various breeds of mass spectrometers, and offered such pearls of wisdom as: “My experience, in the course of 55 years in evaluating data, has been that precision measurements with non-focusing instruments should be considered with a healthy distrust.”

Aaldert also helped to formulate the definition of the mass unit, designated as u for “unified” unit, equal to a twelfth the mass of 12C. He liked to joke about its singular name: “Let us be firm in retaining the u, let us even make it a double-u!”, as a reference to the initial letter of his last name.

At the 2004 conference of Exotic Nuclei and Atomic Masses – 44 years after attending the original conference on masses – Aaldert received the SUNAMCO medal of the Symbols, Units, Nomenclature, Atomic Masses and fundamental Constants commission of the International Union of Pure and Applied Physics, in recognition of his long commitment and numerous achievements in the field. It was fitting that he received an award that he himself had presented to others on previous occasions.

In addition to his technical and scientific skills, Aaldert loved culture. An accomplished pianist, he was particularly fond of music and had very modern taste, with the work of Messiaen figuring prominently. He was also a dedicated family man, composing poems for his grandchildren for the feast of St Nicholas each year.

Aaldert’s fine blend of culture and scientific acumen made it a pleasure to receive him in Orsay, where he visited regularly for discussions concerning the evaluation. His experience and authority were less impressive only than his profound modesty. It will be difficult to carry on without him.

Georges Audi and David Lunney, CSNSM-Orsay.

Geoff Manning 1929–2006

Geoff Manning, director of the Rutherford Appleton Laboratory between 1979 and 1986, died on 21 December 2006, aged 77.

Geoff was born on 31 August 1929 in Hackney, London. His father Jack Schwartz, a Russian Jewish émigré, was a gambler and his mother Ruby had little formal education. When Schwartz abandoned the family less than a year after Geoff’s birth, Ruby struggled to raise her children alone. Despite this unpromising start, Geoff gained places first at Tottenham Grammar School and then (following a brief stint in the RAF) at Imperial College London. He read physics at Imperial and went on to study for a PhD in nuclear physics under Sam Devons. Geoff married his schoolgirl sweetheart Anita in 1951 and after his PhD emigrated with his young family in 1956 to work for the Canadian Atomic Energy Co in Chalk River, later moving to the California Institute of Technology, where he worked with many leading physicists, including Dick Feynman.

Returning to the UK in 1960, Geoff joined the Atomic Energy Research Establishment at Harwell. He moved into the exciting new field of particle physics in 1965, joining the Rutherford Laboratory as group leader. Over
the next two decades he took on successively the roles of head of High Energy and Atlas Divisions, deputy-director and finally director in 1979, the year in which the laboratory merged with the Appleton Laboratory to form the Rutherford Appleton Laboratory (RAL). A distinguished experimental physicist, he continued to take an active interest in the laboratory’s scientific output throughout the administrative phase of his career.

While director of RAL he ushered in a new era of wider research, attracting Japanese, German and Indian funding, and overseeing the design and construction of a world-class neutron source, ISIS, opened by Prime Minister Margaret Thatcher in October 1985. The following year he received a CBE, and the Glazebrook Medal and Prize from the Institute of Physics for services to science. That RAL’s future remains bright is in no small part a result of Geoff’s carefully considered broadening of research and expertise.

Always happiest with a new project or interest in hand, after more than 20 years at RAL he left to pursue a career in industry, as chair of Active Memory Technology Ltd from 1986 to 1992. He never fully retired, however, spending his last years making software, building furniture, inventing a novel DIY product and teaching his eight grandchildren DIY and business skills.

Single-minded determination and a belief in the power of will to overcome obstacles made Geoff successful at almost everything he undertook, in work, in leisure and in play. Fiercely rational and intellectually powerful, he could be uncompromising in argument and impatient with those slower or less sure than himself. But it was perhaps the difficulty of his early years that underpinned the other great driving force of his life; devoted to his children and grandchildren, he took immense pride in their achievements.

He will be missed by his extended family and wide group of friends, and in particular by his wife Anita, their three children Howard, Ian and Karen, and their spouses and children.

Francesco Ruggiero 1957–2007

Francesco Ruggiero, a brilliant accelerator physicist, an inventive researcher, a great collaborator, an excellent mentor and a true gentleman, passed away on 17 January.

Of Neapolitan origin and following diploma studies on gravitational waves, Francesco received his PhD in accelerator physics from the Scuola Normale Superiore di Pisa in 1985. After participating in the commissioning of LEP at CERN, he made numerous invaluable contributions to the design of the LHC, in particular on collective effects, machine impedance and beam–beam interaction. In 1997, he recognized the potential danger from an electron cloud in the LHC and he launched an important remedial crash programme.

Later Francesco became leader of the accelerator-physics group in the former SL Division. Since 2000 he drove the LHC accelerator upgrade studies, for example, by coordinating the CARE-HHH network (p32). Under his wonderful and caring guidance many bright young accelerator physicists were trained or recruited at CERN.

A member of the EPS Accelerator Group, Francesco helped to prepare the programmes for several EPAC conferences. He contributed to PRST-AB, the refereed journal for accelerator physics and technology, as associate editor for Europe, and he was on the editorial board of the Springer series on Particle Acceleration and Detection.

His interests in physics extended beyond accelerators. In 2005, his article in La Gazzetta dello Sport explained to a general audience why boat weights measured in Valencia and Malmo differ by some 35 kg, thus addressing a mystery that arose during the weighing of boats between different races of the America’s Cup. He was especially fascinated by Einstein and by quantum-mechanical paradoxes.

Francesco was full of passion and energy, often working until dawn. We will never forget his open mind, his love for physics, his friendliness and his humour. During his long fight with cancer, he never gave up hope that he would recover and return to work. Francesco will be greatly missed by the accelerator community worldwide. His colleagues and friends.

M E E T I N G S

A workshop on Small-x and Diffractive Physics will be at Fermilab on 28–31 March to discuss experimental, phenomenological and theoretical progress in high-energy diffractive interactions. It will present results from the Tevatron, HERA and RHIC and cosmic-rays. The focus will be on measuring exclusive Higgs bosons, vector boson pairs and phenomena beyond the standard model at the LHC with forward proton spectrometers. For more information see www-d0.fnal.gov/~royon/smallx/ or contact Michael Albrow, e-mail albrow@fnal.gov.

The Second CERN–Fermilab Hadron Collider Physics Summer School will be at CERN on 6–15 June. The school will focus on the technology and physics of the LHC experiments, emphasizing the first years of data-taking and the discovery potential of the programme. In-depth discussion sessions will support the lectures. The deadline for applications is 9 March. For more information see http://cern.ch/hcps11 or e-mail cern-fnal-school-sec@cern.ch.

The next Crimean Summer School and Conference on New Trends in High-Energy Physics will be on 15–22 September in Yalta, Ukraine. Apply to Crimea-2007, BITP, Kiev-143, 03680 Ukraine, e-mail crimea@bitp.kiev.ua, or fax +38 044 5265998. For more information see http://crimea2007.bitp.kiev.ua.

Francesco Ruggiero 1957–2007

Francesco Ruggiero, a brilliant accelerator physicist, an inventive researcher, a great collaborator, an excellent mentor and a true gentleman, passed away on 17 January.

Of Neapolitan origin and following diploma studies on gravitational waves, Francesco received his PhD in accelerator physics from the Scuola Normale Superiore di Pisa in 1985. After participating in the commissioning of LEP at CERN, he made numerous invaluable contributions to the design of the LHC, in particular on collective effects, machine impedance and beam–beam interaction. In 1997, he recognized the potential danger from an electron cloud in the LHC and he launched an important remedial crash programme.

Later Francesco became leader of the accelerator-physics group in the former SL Division. Since 2000 he drove the LHC accelerator upgrade studies, for example, by coordinating the CARE-HHH network (p32). Under his wonderful and caring guidance many bright young accelerator physicists were trained or recruited at CERN.

A member of the EPS Accelerator Group, Francesco helped to prepare the programmes for several EPAC conferences. He contributed to PRST-AB, the refereed journal for accelerator physics and technology, as associate editor for Europe, and he was on the editorial board of the Springer series on Particle Acceleration and Detection.

His interests in physics extended beyond accelerators. In 2005, his article in La Gazzetta dello Sport explained to a general audience why boat weights measured in Valencia and Malmo differ by some 35 kg, thus addressing a mystery that arose during the weighing of boats between different races of the America’s Cup. He was especially fascinated by Einstein and by quantum-mechanical paradoxes.

Francesco was full of passion and energy, often working until dawn. We will never forget his open mind, his love for physics, his friendliness and his humour. During his long fight with cancer, he never gave up hope that he would recover and return to work. Francesco will be greatly missed by the accelerator community worldwide. His colleagues and friends.

M E E T I N G S

A workshop on Small-x and Diffractive Physics will be at Fermilab on 28–31 March to discuss experimental, phenomenological and theoretical progress in high-energy diffractive interactions. It will present results from the Tevatron, HERA and RHIC and cosmic-rays. The focus will be on measuring exclusive Higgs bosons, vector boson pairs and phenomena beyond the standard model at the LHC with forward proton spectrometers. For more information see www-d0.fnal.gov/~royon/smallx/ or contact Michael Albrow, e-mail albrow@fnal.gov.

The Second CERN–Fermilab Hadron Collider Physics Summer School will be at CERN on 6–15 June. The school will focus on the technology and physics of the LHC experiments, emphasizing the first years of data-taking and the discovery potential of the programme. In-depth discussion sessions will support the lectures. The deadline for applications is 9 March. For more information see http://cern.ch/hcps11 or e-mail cern-fnal-school-sec@cern.ch.

The next Crimean Summer School and Conference on New Trends in High-Energy Physics will be on 15–22 September in Yalta, Ukraine. Apply to Crimea-2007, BITP, Kiev-143, 03680 Ukraine, e-mail crimea@bitp.kiev.ua, or fax +38 044 5265998. For more information see http://crimea2007.bitp.kiev.ua.
Aerotech has announced new ALAR large aperture rotary stages with smooth cog-free brushless direct-drive motors. The stages also offer backlash-free fast and ultra-precise positioning. The range features compact space-saving apertures with sizes from 100 to 325 mm. For further information contact Cliff Jolliffe, tel +44 118 940 9400, e-mail cjoliffe@aerotech.co.uk or see www.aerotech.co.uk.

AMS Technologies are now providing the new series of high-voltage fast-pulse capacitors from General Atomics Energy Products. The range of 8–100 nF capacitors is for use at up to 100 kV and 25 kA peak current. It is for low repetition rate, fast-discharge applications. For more details contact André Geiger, tel +49 89 89 577 500, e-mail electronic@ams.de, or see www.ams.de.

Andor Technology has launched the iKon-M CCD camera range and the iDus InGaAs detector-array system. The iKon M delivers high quantum efficiency and low noise performance for light-starved imaging. The new iDus detector offers 512 or 1024 element linear photodiode arrays, with high sensitivity and resolution at 800–2200 nm. For details contact Emma McClintock, tel +44 28 9023 7126 or see www.andor.com.

Burle Electro-Optics Inc has released its low-cost CEM 4899 replacement electron multiplier for the Sciex API-2000 and API-3200 mass spectrometers. It uses cartridge technology to reduce costs and speed up replacements, features no-alignment optics and meets high dynamic-range requirements. For more information tel +1 800 648 1800 or +1 508 347 400, e-mail sales@burle-eo.com, or see www.burle.com.

CeramTec North America Corporation has announced a new family of hermetic high-voltage feedthroughs with mating air-side cable assemblies. The range includes 40 kV and 50 kV feedthroughs, each with 10 A capacity. The air-side cable assembly has a threaded connection. For further information, tel +1 864 682 3215, fax +1 864 682 1140, e-mail sales@ceramtec.com or see www2.ceramtec.com.

Narda Safety Test Solutions has developed a new portable broadband field meter, the NBM-550, to make electric and magnetic field measurements from RF to microwave wavelengths. Its features include a large graphical display, memory for logging up to 5000 results and a GPS interface for positional data. For further information, tel +49 7121/9732 777, e-mail support@narda-sts.de or see www.narda-sts.com.

CERN has signed a co-operation agreement with the government of the Republic of Korea, thereby formalizing Korea’s participation in the laboratory’s experimental-physics programme. On 25 October, the ambassador of the Republic of Korea to Switzerland, Won-Hwa Park, visited CERN to sign the agreement, witnessed by Joo-Han Kim of the Korean Ministry of Science and Technology. The agreement covers the development of scientific and technical co-operation in high-energy physics. At least 18 post-docs, supervising a large number of students and technicians from 14 Korean universities have registered at CERN and these numbers are still expected to grow.

This was one of three official Korean visits to CERN within the space of two weeks. On 23 October Won-Hwa Park accompanied Myung-Bak Lee, the former Mayor of Seoul, members of Lee’s staff and Korean journalists. The third official visit was on 3 November, when CERN welcomed a delegation of the Permanent Mission of the Republic of Korea, led by ambassadors Hyuck Choi, Tae-yul Cho and Dong-hee Chang.

Later in November it was the turn of the Algerian Minister of Higher Education and Scientific Research, Rachid Hararoubia, to visit CERN. On 14 November he toured the ATLAS experiment and the LHC tunnel, and met Algerian scientists working at CERN.

Some 15 Algerian physicists attached to European and US institutes are participating in the LHC experiments, in particular ATLAS. A formal collaboration agreement between Algeria and CERN is expected to be drawn up in the near future.
MCnet Studentships

MCnet is an EU-funded Marie Curie Research Training Network, dedicated to developing, validating and tuning the next generation of Monte Carlo event generators for high energy physics and training future event generator authors and the event generator user base.

MCnet will create two novel forms of studentship:

1. **Joint long term studentships**: two PhD positions to be held jointly: one at Karlsruhe followed by Durham; one at Durham followed by University College London. Each will begin in October 2007, move to the second university in April 2009 and be completed in September 2010. Closing date: March 31st 2007.

2. **Short term visiting studentships**: open to anyone registered for a PhD in experimental or theoretical particle physics to receive additional training in one of our research groups for three to six months during 2008. Applications should include a research proposal. Closing date: June 30th 2007.

More details and links to application forms can be obtained from www.montecarlonet.org

Studentships are subject to the usual conditions of Marie Curie fellowships. Applications are particularly encouraged from women, nationals of New Member States and residents of Less Favoured Regions.

Agilent Technologies

Agilent Technologies, global leader in test and measurement solutions, has recently acquired **Acqiris**, a leading company developing high-end digitizer and signal analyzers in PCI/ePCI and VME format. The analyzer product with FDK (firmware design kit) gives our customers the capability of developing real time analysis firmware that will be programmed into the analyzer’s FPGA.

There is an immediate opening in the R&D group located in Geneva Switzerland for a

R&D Software / Firmware Engineer

The main responsibility is to support customers using the FDK, as well as to develop firmware and/or software for new FDK products. The successful candidate will also be in charge of writing the FDK user manuals.

- **Masters in Software / Firmware engineering.**
- **English proficiency both oral and written.**
- **Proficiency in troubleshooting and debugging code.**
- **Good working knowledge of software and firmware development principles.**
- **Proficiency in C/C++/VHDL programming.**
- **Excellent teamwork and communication skills.**
- **Experience with Xilinx Virtex FPGA, the Mentor graphics FPGA design flow, and/or Visual Studio will be an advantage.**

If you believe your motivation and experience would be an asset in our challenging environment, please apply online through www.jobs.agilent.com, requisition number 2016325.

In case of problems you can send it to: human.ressources@acqiris.com

Visit us at www.agilent.com and www.acqiris.com and find out more about the company.
The LSST Corporation, which will build and operate the Large Synoptic Survey Telescope, seeks an engineer or scientist experienced in project management to join the LSST team as Associate Project Manager. In keeping with the LSST Corporation’s commitment to succession planning, the successful candidate will be expected to prepare to assume the role of Project Manager in due course.

The Associate Project Manager will help to develop and construct a World-class astronomical facility to be built in Northern Chile. The LSST project includes an 8.4-meter, 3.5 degree wide-field telescope, a 3.2 gigapixel camera and a data management system to process, archive, and distribute the 22 Terabytes of data that will be produced every night. The project is currently in its design and development phase, with both public and private sponsorship. Plans call for a close collaboration between the NSF and Department of Energy laboratories in construction. Commissioning is scheduled for 2014. The LSST Corporation includes over 20 universities, government laboratories, and private corporations.

The Associate LSST Project Manager, reporting directly to the Project Manager, will assist in managing all business and technical activity on the project. In particular, he or she will have day-to-day responsibility for directing technical tasks, monitoring contracts and awards, and will chair the change control board. The Associate Project Manager will support the Project Manager in representing and justifying all project activity to the LSST Board of Directors and funding agencies. The LSST Corporation is searching for a highly motivated, self-directed individual with experience in large construction projects, control systems, data management, and standard project management tools and methods. Experience with DOE and/or NSF projects and management processes is highly desirable. The successful candidate will be expected to relocate to Tucson.

The LSST Corporation is an Affirmative Action and Equal Employment Opportunity employer. Qualified candidates are invited to submit a resume, a letter describing experience and interests, and the names of three references to: hrnoao@noao.edu (preferred) or postal mail to: LSSTC/NOAO Human Resources, PO Box 26732, Tucson, AZ 85726-6732. Make reference to the Attn: Associate Project Manager, LSST Corporation, Job #832 when submitting materials.

All personnel services are administered by the National Optical Astronomy Observatory (NOAO) on behalf of the LSSTC, under a business service agreement.

A postdoctoral physicist (ref: SPBU029) is sought to work on the development, commissioning and calibration of the T2K 280m near detector electronics, software tools, neutrino data analysis and to participate in test beam activities. Candidates are expected to have a PhD in experimental particle physics and experience in analysis, hardware and software for particle physics experiments. Further details on this post may be found at http://www.crc.ac.uk/Activity/VNInfo;SECTION=9957; For additional information, contact Dr. Alfonso Weber (Tel: +44 (0)1235 445092, email: A.J.G.Weber@rl.ac.uk).

A physicist or physicist programmer (ref: SPBU030) is sought to work on both the MINOS and T2K projects. The post will involve developing and commissioning the data acquisition system for the T2K 280m near detector, assisting with operational support for the MINOS data acquisition and participating in the analysis of data. Applicants will have a degree or equivalent in a physical or computer science, and ideally, a PhD in experimental particle physics, with experience of data acquisition on a large-scale experiment. Details on this post may be found at http://www.crc.ac.uk/Activity/VNInfo;SECTION=9958; For additional information, contact Dr. Geoff Pearce (Tel: +44 (0)1235 445676, email: G.P.Pearce@rl.ac.uk). The starting salary for both posts is in the range £24,638 to £27,998 (pay award pending), dependent on experience. In addition we offer an index-linked, final-salary pension scheme and generous leave allowance. If suitable working patterns can be agreed between relevant parties, these roles offer an ideal opportunity for two individuals to job share.

Closing date for applications is 23 March 2007.

Interviews will be held on 10 & 11 April 2007.

CCLRC operates a no-smoking policy and is committed to Equal Opportunities.

Application forms may be obtained from Valerie Gilbert, Science Programmes, CCLRC, Chilton, Didcot, Oxfordshire OX11 0QX, telephone +44 (0)1235 445658, or e-mail recruit-spbu@rl.ac.uk

Please quote the relevant SPBU reference number. More information about CCLRC is available from http://www.crc.ac.uk
Max Planck Institute for Physics
(Werner Heisenberg Institute)

The Max Planck Institute for Physics and the Cluster of Excellence Origin and Structure of the Universe invite applications for a

Junior Research Group Leader (tenure track)
in the field of

Detector Development in Particle Physics (Experiment)

The Cluster of Excellence Origin and Structure of the Universe has recently been installed on the Garching Campus near Munich as part of the Excellence Initiative of the Federal Government of Germany. The cluster is operated jointly by the physics departments of the two Munich Universities, several Max Planck Institutes and the European Southern Observatory. It aims at a deeper understanding of the fundamental forces and dynamics that drive the expansion of our universe, the creation of the elements, and the growth of large-scale structure. As part of this effort, 10 new research groups will be created to work in key areas of the relevant science.

We are seeking candidates for a Junior Research Group (JRG) leader who will focus on the development of detector technologies for particle physics experiments. The JRG-leader will get a tenure track position (salary scale TVöD-14) at the Max-Planck-Institut für Physik for initially 5 years. The evaluation for tenure (salary scale TVöD-15) will start after three years. The JRG leader will also obtain a ‘Lecturer position’ (Lehrauftrag) from the faculty of the Technische Universität München. The Max Planck Institute for Physics has a long history of developing detectors for particle physics experiments, including silicon vertex detectors, time projection chambers, and liquid Argon calorimeters. The capabilities of the mechanical and electronics engineering departments at the Max Planck Institute for Physics and other institutes participating in the cluster would be available to the Junior Research group. The proposed area of development should match the capabilities available as well as fit into the existing programs of research in the Cluster. Active participation in the teaching program of the Cluster and the Technische Universität München is welcome.

Formal requirements for this position are a PhD and several years of experience in the field of experimental particle physics.

The Max Planck Society is an equal opportunity employer. The goal is to enhance the percentage of women in the areas where they are underrepresented. Women, therefore, are especially encouraged to apply. The Society wants to employ more disabled people. Applications of disabled persons are particularly welcome.

Applicants should complete the following web-form

Max-Planck-Institut für Physik
Prof. Dr. Allen Caldwell
Föhringer Ring 6
80805 München
caldwell@mppmu.mpg.de

Q. HOW DO YOU GET 20 000 JOB SEEKERS TO LOOK AT YOUR VACANCY?
A. POST IT ON JOBS WATCH ON CERNCOURIER.COM TODAY!

With the internet now the first choice for people searching for new jobs, you need to include Jobs Watch, the online jobs directory on cerncourier.com, in your recruitment campaign.

Contact Jayne Orsborn:
Tel +44 (0)117 930 1228 E-mail jayne.orsborn@iop.org web cerncourier.com
cerncourier.com/jobs
RESEARCH ASSOCIATE for LHCb (SPBU031)

The Particle Physics Department at the Rutherford Appleton Laboratory (RAL) has an immediate vacancy for a three-year Research Associate position to work on the LHCb experiment at the CERN Large Hadron Collider.

The RAL LHCb group has a pivotal role in the development of the Ring-Imaging Cherenkov detectors and the software of the experiment since the initial stages of the design and construction. The group is now ramping up the physics analysis effort in preparation for the beginning of the data-taking, building on the group members’ extensive experience of CP violation studies in the B system and expert knowledge of the LHCb detector and software.

We are looking for a highly motivated individual to make leading contributions to the LHCb physics analysis programme and to take on responsibilities in the commissioning and operation of the LHCb detector. The successful candidate will have the opportunity to help shaping the group’s physics analysis strategy and to support the supervision of graduate students. Applicants should have a Ph.D. in physics and experience with the data analysis and the software of high energy physics experiments. A willingness to travel within the UK and overseas is essential. Long term attachment to CERN is a possibility.

The starting salary is in the range of £24,638 to £27,998, dependent on experience. An index-linked pension scheme and a generous leave allowance are also offered.

Further information can be found at http://hepwww.rl.ac.uk/lhc

For enquiries about this post, please contact Dr Stefania Ricciardi, Tel: +44(0)1235 445213, email: s.ricciardi@rl.ac.uk

Application forms may be obtained from Valerie Gilbert, Science Programmes, CCLRC, Chilton, Didcot, Oxfordshire OX11 0QX, telephone +44 (0)1235 445872, or e-mail recruit-spbu@rl.ac.uk

Please quote the relevant SPBU reference number.

More information about CCLRC is available from http://www.cclrc.ac.uk

Closing date for application is 16 March 2007.

Interviews will be held in the week commencing 16 April 2007.

CCLRC operates a no-smoking policy and is committed to Equal Opportunities.
The Department 08 - Physics, Mathematics, and Computer Science - of the Johannes Gutenberg-University Mainz (Germany), invites applications for the position of

University Professor of Experimental Physics
(Full Professor, Bes.Gr. W 3 BBesG)
(succession of Prof. Konrad Kleinhecht)
which is opening April 1, 2008 at the Institute of Physics.

We seek an internationally renowned researcher to take a leading role in the “Experimental Particle and Astroparticle Physics” group. A central activity of the candidate should lie in the area of LHC physics. The research group has taken on long-term responsibilities with the ATLAS experiment. In order to guarantee the breadth of research in the long run, future activities in other areas of particle or astroparticle physics are desired.

Applicants are expected to have a Ph.D. in physics, a proven first rate research record and to have interest in and aptitude for teaching. Lectures are usually given in German. The Johannes Gutenberg-University promotes a concept of intensive tutoring and requests a high rate of presence at the University. Participation in all teaching activities and academic administration duties of the Faculty is expected.

The Johannes Gutenberg-University Mainz aims at increasing the percentage of women in academic positions and strongly encourages women scientists to apply.

The University is an equal opportunity employer and particularly welcomes applications from persons with disabilities.

Qualified candidates are asked to submit their applications by April 16, 2007, including curriculum vitae, lists of publications, lists of teaching experience, and reprints of up to five of their most important publications to the

Johannes Gutenberg-Universität Mainz,
Dekan des Fachbereichs 08
- Physik, Mathematik und Informatik -
D-55099 Mainz, Germany.

WHAT’S YOUR NEXT BIG MOVE?

Graduation is just around the corner, so now’s the time to prepare for the next stage of your career.

For the best careers in physics and engineering, don’t miss the careers section in the March issue of Physics World.

It features a special focus on graduate opportunities, including:

- the latest graduate and postgraduate vacancies;
- postgraduate courses.

And don’t forget to visit PhysicsJobs at physicsweb.org/jobs, where you can:

- search for physics and engineering jobs in the UK and worldwide;
- post your CV on PhysicsJobs.

If any of your fellow students would like a free PDF version of the March careers section, they can e-mail angela.gage@iop.org.

Contact Jayne Orsborn Tel +44 (0)117 930 1228 E-mail jayne.orsborn@iop.org
Histoire de la radioactivité
par
René Bimbot, Vuibert.
Broché ISBN 9782711771943, €35.

Dans son Histoire de la radioactivité, René Bimbot s’adresse à un très large public dans un style limpide et son livre se lit aisément, cela d’autant plus que de nombreux graphiques et illustrations facilitent la compréhension. Au fil du texte, le lecteur peut aussi s’attarder sur des encadrés expliquant certaines notions simples de physique, accessibles dès la fin du secondaire, qui, au prix d’un effort minime, permettent d’approfondir la compréhension du sujet traité.

Des vignettes présentent en quelques paragraphes les chercheurs qui ont écrit les pages les plus remarquables de cette histoire ou y sont étroitement associés, c’est le cas successivement de Röntgen, Becquerel, Marie Curie, Pierre Curie, J J Thomson, Planck, Einstein, Rutherford, Bohr, de Broglie, Chadwick, Fermi, Yukawa, Frédéric et Irène Joliot, Lawrence, Gentner, Seaborg et Charpak.

Trop souvent, sous différents prétextes, les physiciens présentent de façon caricaturale le développement historique de leur sujet de prédilection; ici au contraire René Bimbot s’attache à suivre en grand détails le cheminement des idées en faisant ressortir les influences réciproques des acteurs ayant joué les premiers rôles dans les découvertes sur la radioactivité.

Curieusement ce livre semble combiner un vide; en effet, une recherche rapide montre qu’il n’existerait pas d’ouvrage dans la langue de Becquerel traitant complètement du sujet. En anglais on note le récent ouvrage de Becquerel traitant complètement du sujet de prédilection; ici au contraire caricaturale le développement historique de leurs dangers mais aussi leurs bienfaits en radiothérapie. Le chapitre final aborde des manifestations plus rares de la radioactivité, comme la capture électronique, l’émission de un ou de deux protons et aussi d’un neutron post-bêta. René Bimbot insiste par ailleurs sur le fait qu’il reste des radioactivités à découvrir après celle des ions lourds (comme le carbone-14) et que la sensibilité croissante des méthodes de détection promet la découverte de radioactivités ultrafaibles par des nucléides considérés comme stables. Ce chapitre consacre aussi la désintégration bêta au niveau des quarks, après les niveaux moins élémentaires du noyau et du proton présentés auparavant.

On peut regretter l’omission de la double désintégration bêta qui aurait particulièrement intéressé les lecteurs du CERN Courier. De plus, un index analytique des sujets traités aurait utilement complété celui des scientifiques cités dans le livre.

Le livre de René Bimbot remplit donc de façon convaincante l’objectif annoncé par le titre et il intéressera en particulier le lecteur particulièrement intéressé les lecteurs du CERN Courier. De plus, un index analytique des sujets traités aurait utilement complété celui des scientifiques cités dans le livre.

Le livre de René Bimbot remplit donc de façon convaincante l’objectif annoncé par le titre et il intéressera en particulier le lecteur recherchant une perspective historique sur un sujet qu’il connaît déjà.

François Siohan, Collex, Suisse.

Maverick Mathematician: The Life and Science of J E Moyal

Most physicists may recall the “culture shock” of their first exposure to quantum mechanics: the sensible advice to suspend temporarily their intuition, built on classical mechanics, and to plunge instead into Hilbert space and learn how to get the answers. Only after some control of the subject had mitigated that shock did they gradually return to connect to the classical limit, and, as clarity grew on hindsight, to appreciate Paul Dirac’s association of quantum commutators with Poisson brackets, and develop intuition in negotiating the semiclassical subtleties of \(h \).

But this routine unfolding of the story may well be a historical accident, predicated on the precedence and dominance of the standard Hilbert-space formulation of quantum mechanics over an intriguing alternative formulation in phase space.
This phase-space formulation merges more directly and intuitively with the classical theory, since it works with the same variables as the classical theory, with essentially the same interpretation, avoiding the traditional disorienting switch to operators.

This compelling formulation is often dubbed “deformation quantization”, or “Moyal quantization”, after Joe Moyal, the central among the four principal contributors to its development; the other three being Hermann Weyl (1927), Eugene Wigner (1932) and Hip Groenewold (1946). With Moyal’s classic 1949 paper, the formulation was firmly in place. But why did it take so long for it to become appreciated and popular (more than 1300 citations), and to spawn applications? And who was Moyal? It is hard to check a measure of curiosity, given the magnitude of the achievement.

Moyal’s widow, Ann Moyal, an eminent historian of science, has now written a brisk, absorbing biography of him. **Maverick Mathematician: the life and science of J.E. Moyal** covers the striking and thought-provoking phase-space quantization story. It outlines his exceptionally adventorous life and career, with plenty of sociocultural tidbits. It focuses on his highly original mind, intrepid spirit, wit and exuberance in living.

Born in British-mandate Palestine and educated in France and England, he worked in England, Northern Ireland, Australia and the US. His inventive innovations span engineering, applied physics, theoretical physics, and statistics. Moyal’s statistical common sense and intuition managed to cut through much of the confusion of the insiders. He effectively reorganized our understanding of the subject, all the while developing the novel mathematical structures required, such as the celebrated Moyal bracket – the true equivalent to quantum commutators, properly completing Dirac’s Poisson bracket proposal.

A possible clue to the question posed concerning the slow acceptance of the formulation emerges in the book. What comes as a revelation is Moyal’s long and doughty defence of his vision of phase-space quantization against Dirac’s dogged criticism of it, as Moyal (an inspired academic outsider) was developing, refining and striving to have it published for the better part of a decade (1940–1949), through world war and contentiousness. Appendix II contains excerpts of their invaluable 18 month correspondence. At times technical, poignant and spirited, it sheds light on how insistent reservations about the classical–quantum correspondence and the uncertainty principle prevented Dirac from accepting the essential legitimacy of phase-space quasi-probability distributions, and the formal equivalence of Hilbert space to phase space, regardless of the theory discussed.

In the end, Moyal’s paper could not be kept hidden under a bushel; it was published and asserted itself. Posterity has validated Moyal’s interpretation of the “negative probability” implicit in the Wigner distribution as a linchpin of the quantum statistical picture where it is shielded by the uncertainty principle, which restricts measurability of observables. It took all but a quarter of a century for universal uncontested acceptance of the fact, however.

What is special about Moyal’s daring vision, in some contrast to that of the other three co-founders of the formulation, is the following. More than they, beyond working out the basic formalism, he championed its conceptual autonomy from the Hilbert-space picture, even though he ultimately conceded that it was equivalent to this picture, and even, in principle, the logical possibility of supplanting that picture under suitable circumstances.

A particular treat in many biographies written by a spouse comes from the unique glimpses into the book’s subject – as well as instinctive avoidance of the inessential. With this book, the reader is doubly fortunate, on account of the author’s lifelong professional expertise in the history of science. Moyal was a committed all-out scientist, and thus fortunate to have the central thread of his life and his originality documented with insight and liveliness. **Cosmas Zachos, Argonne National Laboratory.**

Books received

Quantum computing and quantum information are two of the fastest growing and most exciting research fields in physics. This book supplies a collection of problems in quantum computing and quantum information together with their detailed solutions, which will be invaluable to students and researchers. All the important concepts and topics are here, such as quantum gates and quantum circuits, entanglement, teleportation, Bell inequality, Schmidt decomposition, von Neumann entropy, quantum cryptography, quantum error correction and squeezed states. The topics range in difficulty from elementary to advanced. Almost all of the problems are solved in detail and most are self-contained.

The contributors to this volume work at the forefront of various realizations of quantum computers. They survey the recent developments in each realization, in the context of the DiVincenzo criteria, including nuclear magnetic resonance, Josephson junctions, quantum dots and trapped ions. There are also theoretical contributions relevant to the physical realizations of a quantum computer. The book fills the gap between elementary introductions and highly specialized research papers, so allowing graduate students to understand this cutting-edge research in the shortest possible time.
Amazing particles and light

Swapan Chattopadhyay reflects on the extraordinary fundamental value of accelerators.

Five years ago, I wrote in this column when I had just made the transition to Jefferson Lab (CERN Courier October 2002 p46). Promising developments in hadronic physics, microwave superconductivity, free-electron lasers and efficient energy-recovery techniques in accelerators were beckoning me – after 25 colourful years at Berkeley, including two spent at CERN. I was also concerned about the longevity of a profession in which I had personally invested. I had seen the attrition of talents, many of whom I mentored, to other professions, driven by socio-economic realities of large particle accelerators. This inspired me to motivate accelerator-science practitioners to diversify their portfolio by developing the small and mezzo-scale engines that would drive emerging nano- and bio-sciences.

Today, on the eve of another personal transition as I prepare to take the helm at the UK’s Cockcroft Institute, new developments and challenges once again invite comment.

I observe a few key developments contributing at the frontier of “discovery”, while others attest to “innovation” and “diversification”. These include: development of electron, proton and ion beams of unprecedented precision based on normal and superconducting material technology and advanced feedback control; diversification and growth of synchrotron radiation sources worldwide; evolution of sophisticated table-top laser-plasma acceleration techniques with necessary control to produce giga-electron-volt electron beams; demonstration of self-amplified spontaneous emission for the planned X-ray free-electron lasers; demonstration of efficient energy use and recovery in superconducting linacs; and production of ultra-short femtosecond flashes of electrons, infrared light and X-rays for studies of ultra-fast phenomena – to name but a few.

I also admit to occasional sombre worries that perhaps accelerators will be just a passing moment in history. But I was always awakened by the realization that particle accelerators have been and must continue to be singularly distinctive instruments of discovery and innovation, in various measures. What we are witnessing is a mere partitioning of the balance between these values in the context of the evolving human condition. We have consolidated the “discovery” sector and diversified the “innovation” sector. The fundamental value of accelerators, articulated in my 2002 Viewpoint, remains invariant: they package and focus energy and information in patterns of space–time bursts to serve a multitude of human pursuits – hence their universal, timeless appeal. Amazing particles and light, carrying focused energy and information in special staccato-fashion, beam into matter and life, illuminating what our eyes do not see and manipulating what our hands cannot.

Throughout the 20th century, fundamental discoveries were enabled by bold conception and realization of ever-larger particle accelerators, which today must be consolidated into just a few carefully selected facilities so large that they can only be supported internationally. Hence the emergence of but a few grand future machines: the Large Hadron Collider, the X-ray free-electron lasers, a potential International Linear Collider (ILC- or CLIC-based), and neutrino/muon facilities. This consolidation is a must for mastering the global resources necessary to discover fundamentals at the core of the physical world: hidden dimensions, symmetries and structures; origins of mass, dark matter and dark energy; unification of gravity; and exotic states of matter.

In parallel with that consolidation, we continue to anticipate tremendous diversification in the innovation sector of clever techniques and merger of technologies in creating unique bursts of particles and light. These efforts will lead not only to novel affordable scientific devices (for example, energy-recovery and laser-plasma-based compact high-brightness particle and light sources), but also to an increasing set of affordable instruments and processes that more directly enrich our everyday lives (such as novel medical imaging, diagnostics, therapy and radiation oncology; micro-machined instruments for use in medicine, scientific research, information technology and space exploration; designer nano-materials; and knowledge of complex protein structures for drug discovery).

The vision is one of discovering the secrets of the hidden energy and matter in the universe’s evolution; of understanding the protein as the molecular engine of life through studying its energetics and structural folding; of innovating new eco- and bio-friendly materials for human use; and of eliminating radioactive waste and dependence on fossil fuels. Extraordinarily clever particle accelerators drive this at all scales from “small” to “mezzo” to “grand”. Is this just a dream? Inspired by US poet Carl Sandburg, I respond: “Nothing happens, unless first a dream.”

Swapan Chattopadhyay, inaugural director of the Cockcroft Institute, Sir John Cockcroft Chair of Physics, Universities of Liverpool, Manchester and Lancaster, and associate director emeritus, Jefferson Lab.
Picture this.... 2 Years of preparation. Writing a proposal, feasibility reports, getting the funds and finding that perfect spot for your field trial. Some parts are more difficult to get than others. The spectroscopy part is easy; you choose the custom configured Ocean Optics USB4000-FL for optimal sensitivity and the direct attached light source USB-LS-450. Together with the special probe you got from Ocean Optics, you have a complete mobile fluorescence measurement solution. Everything connects through USB2.0 to your laptop, storing your precious data...

Now you have performed your measurements and got terrific results!

What are you going to do?

Shout it from the rooftops, tell your friends, write your paper for the upcoming conference. And of course illustrate everything with some high-quality pictures. Then, it’s a small step to send your pictures to us and earn even more credits!

What’s next:

1. Mail your favorite application picture, together with a short description, to picturethis@oceanoptics.eu

2. Receive one of the popular Ocean Optics t-shirts or caps

3. WIN the ASUS tablet PC with Windows XP (tablet PC edition) and the latest version of SpectraSuite installed

Please note that the pictures and the description submitted will become property of Ocean Optics B.V. and can be used for marketing purposes.
Introducing CAEN VME digitizers
High resolution digital acquisition

- External and internal clock
- Multiboard synchronization capability
- External and internal trigger with time stamp
- Multi-event, up to 2,56 msec recording (expandable on request)
- One FPGA per Channel
- Optical link for high data throughput
- CAENscope software included