Welcome to the digital edition of the May 2013 issue of CERN Courier.

Last July, the ATLAS and CMS collaborations announced the discovery of a new particle at the LHC with a mass of 125 GeV. They referred to it as a “Higgs-like boson” because further data were needed to pin down more of its properties. Now, the collaborations have amassed enough evidence to identify the new particle as a Higgs boson, although the question remains of whether it is precisely the Higgs boson of the Standard Model of particle physics. The discovery brings the final touches to a picture that came into focus 30 years ago, when experiments at CERN first observed the W and Z bosons. The masses of these particles were just as electroweak theory predicted, based on their interactions with a hypothesized Higgs field and its boson. Meanwhile, other particle interactions continue to provide puzzles in more complex systems, from relatively simple nuclei to the hot, dense fireball created in heavy-ion collisions.

To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up.

To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe.
Vacuum Technology
Basis for Innovation and Process Optimization

Vacuum is the enabling technology for modern applications and a decisive factor for performance and manufacturing success. Oerlikon Leybold Vacuum has successfully met and exceeded all challenges with innovative vacuum components and systems solutions with extensive experience in a wide range of customer applications.

Our range of high-performance products comprises:
- Vacuum components
- System solutions
- Services

See us at the APS March Meeting in Baltimore, MD, Booth 1030

www.oerlikon.com/leyboldvacuum
Vacuum Technology
Basis for Innovation and Process Optimization

Vacuum is the enabling technology for modern applications and a decisive factor for performance and manufacturing success. Oerlikon Leybold Vacuum has successfully met and exceeded all challenges with innovative vacuum components and systems solutions with extensive experience in a wide range of customer applications.

Our range of high-performance products comprises

- Vacuum components
- System solutions
- Services

www.oerlikon.com/leyboldvacuum

See us at the APS March Meeting in Baltimore, MD, Booth 1030
Your technologically preferred supplier

Danfysik would like to talk to you about how our competence in accelerator technology could benefit your application

To hear more please contact our sales team at sales@danzysik.dk or visit our website: www.danfysik.com

News

ASTROPARTICLE PHYSICS

AMS measures antimatter excess in space

The international team running the Alpha Magnetic Spectrometer (AMS) has announced the first results in its search for dark matter. They indicate the observation of an excess of positrons in the cosmic-ray flux. The results were presented by Samuel Ting, the spokesperson of AMS, in a seminar at CERN on 3 April, the date of publication in Physical Review Letters.

The AMS results are based on an analysis of some 2.5 × 10^10 events, recorded over a year and a half. Cuts to reject protons, as well as electrons and positrons produced in the interactions of cosmic rays in the Earth’s atmosphere, reduce this to around 6.8 × 10^7 positron and electron events, including 400,000 positrons with energies between 0.5 GeV and 350 GeV. This represents the largest collection of antimatter particles detected in space.

The data reveal that the fraction of positrons increases from 10 GeV to 250 GeV, with the slope of the increase reducing by an order of magnitude over the range 20–250 GeV. The data also show no significant variation over time, or any preferred incoming direction. These results are consistent with the positrons’ origin in the annihilation of dark-matter particles in space but they are not yet sufficiently conclusive to rule out other explanations.

The AMS detector is operated by a large international collaboration led by Nobel laureate Samuel Ting. The collaboration involves some 600 researchers from China, Denmark, Finland, France, Germany, Italy, Korea, Mexico, the Netherlands, Portugal, Spain, Switzerland, Taiwan and the US. The detector was assembled at CERN, tested at ESA’s ESTEC centre in the Netherlands and launched into space on 16 May 2011 on board NASA’s Space Shuttle Endeavour (CERN Courier July/August 2011 p18). Designed to study cosmic rays before they interact with the Earth’s atmosphere, the experiment is installed on the International Space Station. It tracks incoming charged particles such as protons and electrons, as well as antimatter particles such as positrons, mapping the flux of cosmic rays with unprecedented precision.

An excess of antimatter within the cosmic-ray flux was first observed around two decades ago in experiments flown on high-altitude balloons and has since been seen by the PAMELA detector in space and the Large Area Telescope on the Fermi Gamma-ray Space Telescope (CERN Courier May 2009 p12 and June 2009 p17). The origin of the excess, however, remains unexplained.

One possibility, predicted by theories involving supersymmetry, is that positrons could be produced when two particles of dark matter collide and annihilate. Assuming an isotropic distribution of dark-matter particles, these theories predict the observations made by AMS. However, the measurement by AMS does not yet rule out the alternative explanation that the positrons originate from pulsars distributed around the galactic plane (CERN Courier May 2009 p12). Moreover, supersymmetry theories also predict a cut-off at higher energies above the mass range of dark-matter particles and this has not yet been observed.

AMS is the first experiment to measure to 1% accuracy in space – a level of precision that should allow it to discover whether the positron observation has an origin in dark matter or in pulsars. The experiment will further refine the measurement’s precision over the coming years and clarify the behaviour of the positron fraction at energies above 250 GeV.

Further reading

Sommaire en français

L’expérience AMS mesure un excès d’antimatière dans l’espace

AMS révèle un univers presque parfait

Des mesures de précision sur les mésons B0

Planck révèle un univers presque parfait

CERN Courier welcomes contributions from the international particle-physics community. These can be written in English or French, and will be published in the same language. If you have a suggestion for an article, please send proposals to the editor at cern.courier@cern.ch.
CERN on 3 April, the date of publication in

The results were presented by Samuel Ting, the spokesperson of AMS, in a seminar at

The international team running the Alpha

AMS measures antimatter excess in space

The international team running the Alpha Magnetic Spectrometer (AMS) has announced the first results in its search for dark matter. They indicate the observation of an excess of positrons in the cosmic-ray flux. The results were presented by Samuel Ting, the spokesperson of AMS, in a seminar at CERN on 3 April, the date of publication in

The AMS detector is operated by a large international collaboration led by Nobel laureate Samuel Ting. The collaboration involves some 600 researchers from China, Denmark, Finland, France, Germany, Italy, Korea, Mexico, the Netherlands, Portugal, Spain, Switzerland, Taiwan and the US. The detector was assembled at CERN, tested at ESA’s ESTEC centre in the Netherlands and launched into space on 16 May 2011 on board NASA’s Space Shuttle Endeavour (CERN Courier July/August 2011 p18). Designed to study cosmic rays before they interact with the Earth’s atmosphere, the experiment is installed on the International Space Station. It tracks incoming charged particles such as protons and electrons, as well as antimatter particles such as positrons, mapping the flux of cosmic rays with unprecedented precision.

An excess of antimatter within the cosmic-ray flux was first observed around two decades ago in experiments flown on high-altitude balloons and has since been seen by the PAMELA detector in space and the Large Area Telescope on the Fermi Gamma-ray Space Telescope (CERN Courier May 2009 p12 and June 2009 p17). The origin of the excess, however, remains unexplained.

One possibility, predicted by theories involving supersymmetry, is that positrons could be produced when two particles of dark matter collide and annihilate. Assuming an isotropic distribution of dark-matter particles, these theories predict the observations made by AMS. However, the measurement by AMS does not yet rule out the alternative explanation that the positrons originate from pulsars distributed around the galactic plane (CERN Courier September 2009 p16). Moreover, supersymmetry theories also predict a cut-off at higher energies above the mass range of dark-matter particles and this has not yet been observed. AMS is the first experiment to measure to 1% accuracy in space – a level of precision that should allow it to discover whether the positron observation has an origin in dark matter or in pulsars. The experiment will further refine the measurement’s precision over the coming years and clarify the behaviour of the positron fraction at energies above 250 GeV.

Further reading

Sommaire en français

L’expérience AMS mesure un excès d’antimatière dans l’espace

ATRAP obtient une mesure exceptionnellement précise du moment magnétique de l’antiproton

Téorèmes : de nouveaux résultats sur les phénoménons

ULTRA attrape un troisième neutrino tau

Des mesures de précision sur les mésons B0

Bien observe une mystérieuse nouvelle particule

La cristallographie sans cristaux

Planck révèle un univers presque parfait

Les physiciens des particules du monde entier sont invités à apporter leurs contributions aux CERN Courier, en français ou en anglais. Les articles retenus seront publiés dans la langue d’origine. Si vous souhaitez proposer un article, faites part de vos suggestions à la rédaction à l’adresse cern.courier@cern.ch.

CERN Courier welcomes contributions from the international particle-physics community. These can be written in English or French, and will be published in the same language. If you have a suggestion for an article, please send proposals to the editor at cern.courier@cern.ch.
ATRAP makes world’s most precise measurement of antiproton magnetic moment

The Antihydrogen TRAP (ATRAP) experiment at CERN’s Antiproton Decelerator has reported a new measurement of the antiproton’s magnetic moment. Last month made in the analysis, the new measurement reduces the uncertainty of 4.4 parts per million (ppm) – a result that is 680 times more precise than previous measurements. The unusual increase in precision results from the experiment’s ability to trap individual protons and antiprotons, as well as form using a large magnetic gradient to gain sensitivity to the tiny magnetic moment. By applying its single particle approach to the study of antiprotons, the ATRAP experiment has been able make precise measurements of the charge, mass and magnetic moment of the antiproton. Using a Penning trap, the antiproton is suspended at the centre of an iron ring-electrode that is sandwiched between copper electrodes. Thermal contact with liquid helium keeps the electrodes at 4.2 K, providing a nearly perfect vacuum that eliminates stray matter atoms that could otherwise annihilate the antiproton. Static and oscillating voltages applied to the electrodes allow the antiproton to be manipulated and its properties to be measured. The result is part of an attempt to understand the matter–antimatter imbalance of the universe. In particular, a comparison of the antiproton’s magnetic moment with that of the proton, tests the Standard Model and its CPT theorem at high precision. The ATRAP team found that the magnetic moments of the antiproton and proton are “exactly opposite”: equal in strength but opposite in direction with respect to the particle spins and consistent with the prediction of the Standard Model and the CPT theorem to 5 parts per million. However, the potential for much greater measurement precision puts ATRAP in position to test the Standard Model prediction much more strongly. Combining the single particle methods with new quantum methods that make it possible to observe individual antiproton spin flips should make it feasible to compare an antiproton and a proton to 1 part per billion or better.

Further reading

Precision measurements of B0 mesons put the squeeze on new physics

The “winter” conferences earlier this year saw the LHCb collaboration present three important results from its increasingly precise search for new physics. One fascinating area of study is the quantum-mechanical process in which neutral mesons such as the D0, B0 and Bs can oscillate between their particle and antiparticle states. The B0s mesons oscillate with by far the highest frequency of about 3×10^{12} times per second, on average about nine times during their lifetime. In an updated study, the collaboration looked at the decays of B0 mesons into D*π with D mesons constructed in five different channels. While the B0s’ oscillation frequency λ_{B0s} has been measured before, the measurements themselves had been previously seen only by folding the decay-time distribution onto itself at the period of the measured oscillation. In this updated analysis the oscillation pattern is spectacularly visible over the full decay-time distribution, as figure 1 shows. The measured value of the oscillation frequency is $\lambda_{B0s} = 17,768 \pm 0.02 \pm 0.006$ ps$^{-1}$, which is the most precise in the world (LHCb collaboration 2013a).

CP violation can occur in the B0 sector – in the interference between the oscillation and decay of the meson – but it is expected to be a small effect in the Standard Model. Knowledge of such CP-violating parameters is important because they set the scale of the difference between properties of matter and antimatter; they may also reveal effects of physics beyond the Standard Model. LHCb has previously reported on a study of B0 decays into D0π and D0ππ final states, but now the analysis has been finalized. One important improvement is in the flavour tagging, which determines whether the initial state was produced as a B0 or an anti-B0 meson. This decision was previously based on “opposite-side” tagging, i.e. from measuring the particle/antiparticle nature of the other b-quark produced in conjunction with the B0. The collaboration has now achieved improved sensitivity by including “same-side” tagging, from the charge of a kaon produced close to the B0, as a result of the anti-s-quark produced in conjunction with the B0. This increases the statistical power of the tagging by about 40%. The values of the CP-violating parameter ρ, together with the difference in width of the heavy and light B0 mass states, Δm, are shown in figure 2, which also indicates the small allowed region for these two parameters, corresponding to $\rho \approx 0.99(1)$ and $\Delta m = 0.106 \pm 0.011 \pm 0.007$ ps$^{-1}$ (LHCb collaboration 2013b).

Last, the collaboration has opened a door for important future measurements with a first study of the time-dependent CP-violating asymmetry in hadronic B0 meson decays into a ϕϕ pair, a process that is mediated by a so-called penguin diagram in the Standard Model. Both ϕ mesons decay in turn into a K′K′ pair. The invariant mass spectrum of the four-kaon final state shows a clean signal of about 880 ϕϕ ϕϕ decays. A first measurement of the CP-violating phase ϕ for this decay indicates that it lies in the interval of $\phi = -0.46 \pm 0.36$ at 68% confidence level. This is consistent with the small value expected in the Standard Model at the level of 16% probability. Although the current precision is limited, this will become a very interesting measurement with the increased statistics from further data taking (LHCb collaboration 2013c).

These results represent the most precise measurements to date, based on data corresponding to the 1 fb$^{-1}$ of integrated luminosity that LHCb collected in 2011. They are in agreement with the Standard Model Predictions and significantly reduce the parameter region in which the signs of new physics can still hold.

Further reading

ATRAP makes world’s most precise measurement of antiproton magnetic moment

The Antihydrogen TRAP (ATRAP) experiment at CERN's Paul Scherrer Institute has reported a new measurement of the antiproton's magnetic moment. The result is part of an attempt to understand the matter–antimatter imbalance of the universe. In particular, a comparison of the antiproton's magnetic moment with that of the proton, tests the Standard Model and its CPT theorem at high precision. The ATRAP team found that the magnetic moments of the antiproton and proton are "exactly opposite": equal in strength but opposite in direction with respect to the particle spins and consistent with the prediction of the Standard Model and the CPT theorem to 5 parts per million.

The ATRAP experiment has been able to make precise measurements of the charge, mass and magnetic moment of the antiproton. Using a Penning trap, the antiproton is suspended at the centre of an iron ring–electrode that is sandwiched between copper electrodes. Thermal contact with liquid helium keeps the electrodes at 4.2 K, providing a nearly perfect vacuum that eliminates stray matter atoms that could otherwise annihilate the antiproton. Static and oscillating voltages applied to the electrodes allow the antiproton to be manipulated and its properties to be measured.

The result is part of an attempt to understand the matter–antimatter imbalance of the universe. In particular, a comparison of the antiproton's magnetic moment with that of the proton, tests the Standard Model and its CPT theorem at high precision. The ATRAP team found that the magnetic moments of the antiproton and proton are "exactly opposite": equal in strength but opposite in direction with respect to the particle spins and consistent with the prediction of the Standard Model and the CPT theorem to 5 parts per million.

However, the potential for much greater measurement precision puts ATRAP in position to test the Standard Model prediction much more strongly. Combining the single particle methods with new quantum methods that make it possible to observe individual antiproton spin flips should make it feasible to compare an antiproton and a proton to 1 part per billion or better.

Further reading:

The "winter" conferences earlier this year saw the LHCb collaboration present three important results from its increasingly precise search for new physics.

One fascinating area of study is the quantum-mechanical process in which neutral mesons such as the D0 and B0 can oscillate between their particle and antiparticle states. The B0 mesons oscillate with by far the highest frequency of about 3 × 10^13 times per second, on average about nine times during their lifetime. In an updated study, the collaboration looked at the decays of B0 mesons into Dπ̄ and Dπω bosons in five different channels. While the B0 oscillation frequency Am has been measured before, the frequency of the transitions themselves had been previously seen only by folding the decay-time distribution onto itself in the interference between the oscillation and decay of the meson – but it is expected to be a small effect in the Standard Model. Knowledge of such CP-violating parameters is important because they set the scale of the difference between properties of matter and antimatter; they may also reveal effects of physics beyond the Standard Model. The LHCb collaboration has previously reported on a study of B0 decays into ηc and Dπ̄ω final states, but now the analysis has been finalized. The new results are in agreement with the Standard Model predictions, which suggests that the B0 mesons oscillate just as expected.

Further reading:

Precision measurements of B0 mesons put the squeeze on new physics

The LHCb collaboration has now achieved improved sensitivity by including "same-side" tagging, from the charge of a kaon produced close to the B0, as a result of the anti-s–quark produced in combination with the B0. This increases the statistical power of the tagging by about 40%. The values of the CP-violating parameter ηC, together with the difference in width of the heavy and light B0 mass states, ΔΓ00, are shown in figure 2, which also indicates the small allowed region for these two parameters, corresponding to a 95% confidence level. Two-dimensional profile likelihood in the (ΔΓ00, ηC) plane showing the small allowed region for the two parameters. The result is part of an attempt to understand the matter–antimatter imbalance of the universe. In particular, a comparison of the antiproton's magnetic moment with that of the proton, tests the Standard Model and its CPT theorem at high precision. The ATRAP team found that the magnetic moments of the antiproton and proton are "exactly opposite": equal in strength but opposite in direction with respect to the particle spins and consistent with the prediction of the Standard Model and the CPT theorem to 5 parts per million.

However, the potential for much greater measurement precision puts ATRAP in position to test the Standard Model prediction much more strongly. Combining the single particle methods with new quantum methods that make it possible to observe individual antiproton spin flips should make it feasible to compare an antiproton and a proton to 1 part per billion or better.

Further reading:

Some progress has been made recently in using lattice QCD to account for the existence of the Y(4260) as a state of hybrid charm–anticharm hadrons. However, the hybrid picture cannot explain the newly discovered Z(3900), which decays into a charged pion plus a neutral ηc. To decay in this way, the Z(3900) must contain a charmed quark and an anticharmed quark (to form the ηc) together with something that is charged, so therefore cannot be a gluon. To have nonzero charge, the Z(3900) cannot be a hybrid, but must also contain lighter quarks. Different theoretical models have been proposed that attempt to explain how this could come about. The positively charged Z(3900) particle could be a tightly bound four-quark composite of a charmed and...
anticharmed quark pair plus an additional up quark and antiquark quark. Or, perhaps, the $Z_2(3900)$ is a molecule-like structure comprising two mesons, each of which contain a charmed quark (or anticharmed quark) bound to a lighter antiquark (or quark). Another scenario is that the $Z_2(3900)$ is an artefact of the interaction between these two mesons.

Whatever the explanation, the appearance of such an exotic state in the decay of another exotic state was not anticipated by most researchers. Now, the ball is clearly in the experimenters’ courts and there is much hope – by theorists and experimenters alike – that with more data, the veil that continues to shroud these mysterious particles can be lifted.

News

Borexino has new results on geoneutrinos

The international Borexino collaboration has released results from a new measurement of geoneutrinos corresponding to 1352.60 live days and about 187 tonnes of liquid scintillator after all selection criteria have been applied (3.7×10^{12} proton \cdot year). This corresponds to a 2.4 times higher exposure with respect to the measurement made in 2010 (CERN Courier June 2009 p13). However, because of its high level of radiopurity – unmatched elsewhere in the world – it can also detect rare events such as the interactions of geoneutrinos. These are electron-antineutrinos that are produced in the decays of long lived radioactive elements (232Th and 238U) in the Earth’s interior.

From the data collected, 46 electron-antineutrino candidates have been found, about 30% of them geoneutrinos. Borexino has also detected electron-antineutrinos from nuclear power plants around the world. These latter antineutrinos give a signal of about 31 events, which is in good agreement with the number expected from the 446 nuclear cores operating during the period of interest (December 2007 to August 2012) and from current knowledge of the parameters of neutrino oscillations. The total expected background for electron-antineutrinos in Borexino is determined to be about 0.7 events. The small background is a result of the high level of radiopurity of the liquid scintillator. For the current measurement, the null geoneutrino hypothesis has a probability of 6.3×10^{-5}.

The detection of geoneutrinos offers a unique tool to probe uranium and thorium abundances within the mantle (CERN Courier April 2011 p19). By considering the contribution from the local crust (around the Gran Sasso region) and the rest of the crust to the geoneutrino signal, the signal from the radioactive decay of uranium and thorium in the mantle can be extracted. The latest results from Borexino, together with the measurement by the KamiLAND experiment in Japan, indicate a signal from the mantle of 14.1 TNU (1 TNU = 1 event/year/10^{12} protons).

These new results mark a breakthrough in the comprehension of the origin and thermal evolution of the Earth. The good agreement between the ratios of thorium to uranium determined from geoneutrino signals and the value obtained from chondritic meteorites has fundamental implications for cosmochemical models and the processes of planetary formation in the early Solar System.

By measuring the geoneutrino flux at the surface, the contribution of radioactive elements to the Earth’s heat budget can be explored. The radiogenic heat of is of great interest for understanding a number of geophysical processes, such as mantle convection and plate tectonics. For the first time two independent geoneutrino-detectors – Borexino and KamiLAND, which are placed in different sites around the planet – are providing the same constraints on the radiogenic heat power of the Earth set by the decay of uranium and thorium. With these latest results, the Borexino collaboration finds that the data fit to a possible georeactor with an upper limit on the output power of 4.5 TW at 95% confidence level.

Solutions:

Beam loss monitors

Diamond spectrometers

Beam position monitors

FOR:

• Charged particles

• Neutrons

• Photons

See you at IPAC 2013 in Shanghai

 Booth #74

World Leader in Diamond Detectors

We are a pioneering R&D company, born from the cutting-edge technology of CERN. We focus on radiation monitors based on CVD diamond detectors and on low-noise high-speed electronics that fully exploit the intrinsic properties of the diamond material.

CIVIDEC Instrumentation GmbH | Vienna

Schottengasse 3A/1/41 | A-1010 Vienna, Austria | phone: +43 1 9229307 | contact: erich.griesmayer@cividec.at | www.cividec.at
Borexino has new results on geoneutrinos

The international Borexino collaboration has released results from a new measurement of geoneutrinos corresponding to 1352.60 live days and about 187 tonnes of liquid scintillator after all selection criteria have been applied (3.7×10^{10} proton \cdot year). This corresponds to a 2.4 times higher exposure with respect to the measurement made in 2010 (CERN Courier June 2009 p13). However, because of its high level of radio-purity – unmatched elsewhere in the world – it can also detect rare events such as the interactions of geoneutrinos. These are electron-antineutrinos that are produced in the decays of long-lived radioactive elements (40K, 238U, and 232Th) in the Earth’s interior. From the data collected, 46 electron-antineutrino candidates have been found, about 30% of them geoneutrinos. Borexino has also detected electron-antineutrinos from nuclear power plants around the world. These latter antineutrinos give a signal of about 33 events, which is in good agreement with the number expected from the 446 nuclear cores operating during the period of interest (December 2007 to August 2012) and from current knowledge of the parameters of neutrino oscillations. The total expected background for electron-antineutrinos in Borexino is determined to be about 0.7 events. The small background is a result of the high level of radio-purity of the liquid scintillator. For the current measurement, the null geoneutrino hypothesis has a probability of 6×10^{-8}. The detection of geoneutrinos offers a unique tool to probe uranium and thorium abundances within the mantle (CERN Courier April 2011 p19). By considering the contribution from the local crust (around the Gran Sasso region) and the rest of the crust to the geoneutrino signal, the signal from the radioactivity of uranium and thorium in the mantle can be extracted. The latest results from Borexino, together with the measurement by the KamiLAND experiment in Japan, indicate a signal from the mantle of 14 ± 1 TNU (1 TNU = 1 event/year/1010 protons).

Further reading
Crystallography without crystals

X-ray single-crystal diffraction, or SCXRD, is a powerful tool for determining molecular structure but it requires crystals that are often difficult to grow and can require more material than is readily available for exotic compounds. Now, Makoto Fujita of the University of Tokyo and colleagues have found a clever way round these problems. They have used networked porous-metal complexes as a kind of “crystalline sponge” that can hold molecules in an ordered array without their having to form a real stand-alone crystal.

Crystallographic information of such a filled structure can then reveal both the host framework and the guest molecules.

Hydrogen from plants

While hydrogen might be a fuel of the future, it still has to come from somewhere – in splitting water, for example – and that requires energy. Now, Y-H Percival Zhang of Virginia Tech and colleagues have recently made a breakthrough in getting hydrogen from plant material. They take a variety of enzymes collected from micro-organisms that enjoy high temperatures and mix them with polyphosphate to convert xylose – a sugar that makes up 20–30% of plant matter by weight – into hydrogen with high yields. The reaction is entropy-driven and runs at a modest 50 °C, which could be provided by waste heat from other processes. So not only does the technique release the energy in the xylose, it also recovers energy from the host framework and the guest molecules.

Caffeine and bees

While many of us are glad that some plants make caffeine, it is an interesting question to ask why these plants bother. The answer may at least partly be to help bees to remember better. Geraldine Wright of Newcastle University and colleagues have found that honeybees rewarded with caffeine, which occurs in the nectar of Coffea and Citrus species, were three times as likely to remember a learnt floral scent as bees that were given only sugar. The caffeine levels in nectar are low enough not to be repellently bitter but apparently high enough to be psychoactive and keep the bees coming back for more.

Further reading

Nature’s topological insulator

Predicted in 2005 and first made in the laboratory in 2008, topological insulators are exotic materials that conduct only along their surfaces, thanks to a spin-momentum coupling that stops electrons moving through the bulk. Now, Pascal Gehring of the Max-Planck-Institut für Festkörperforschung in Stuttgart and colleagues have found that Kawazulite – a mineral with approximate composition Bi₂(Te,Se)₂(Se,S), discovered in the Kawazu mine in Japan – is a natural topological insulator. The samples studied came from a former gold mine in Klínove u Prahy in the Czech Republic. Remarkably, they have fewer defects than their artificial counterparts so it might be worth mining such materials rather than making them.

Further reading

3D without glasses

Three-dimensional displays ultimately have to work by getting slightly different images into the left and right eyes of a viewer. Traditional approaches use glasses with high-speed shutters or polarization, and in the old days of black and white, glasses with red and blue filters sent red images to one eye and blue to the other. But now, a new idea could eliminate glasses entirely. David Fattal and colleagues at the Hewlett-Packard Laboratories in Palo Alto have made a wide-angle, glasses-free 3D display using LEDs to produce wide-angle multiview images, which essentially show different views of a scene to the left and right eyes in a discretized analogue of how reflected light from a 3D object in real life goes differently into each eye. They are able to show animated 3D images to viewers over a zone of 90°, which could theoretically go up to 180° and seems suitable for mobile devices.

Further reading

Further reading

● http://www.nature.com/srep/2013/130405/full/srep01420.html
● http://www.nature.com/nbt/journal/v30/n10/full/nbt.2718.html
● http://www.nature.com/nbt/journal/v30/n10/full/nbt.2718.html

Caffeine in the nectar of citrus flowers like these seems to help bees remember better. (Image credit: Zafyvanistami.com.)

Unprecedented speed, resolution and channel density

The Agilent AXIe high-speed digitizer provides the ideal solution for advanced experiments in hydrodynamics, plasma fusion, and particle physics. With this module you can build a large number of synchronous acquisition channels with unprecedented measurement fidelity in the smallest footprint. Advanced IP design, state-of-the-art technology, and on-board real-time data processing are combined to achieve outstanding performance.

Discover how to simplify your high-speed multichannel acquisition system www.agilent.com/find/PhysicsAXIe

Anticipate _ Accelerate _ Achieve

Agilent Technologies

© Agilent Technologies, Inc. 2012. Photos courtesy of CERN © Copyright CERN
Crystallography without crystals

X-ray single-crystal diffraction, or SCD, is a powerful tool for determining molecular structure but it requires crystals that are often difficult to grow and can require more material than is readily available for exotic compounds. Now, Makoto Fujita of the University of Tokyo and colleagues have found a clever way around these problems. They have used networked porous-metal complexes as a kind of “crystalline sponge” that can hold molecules in an ordered array without their having to form a real stand-alone crystal.

Crystallographic information of such a filled structure can then reveal both the host framework and the guest molecules.

Hydrogen from plants

While hydrogen might be a fuel of the future, it still has to come from somewhere – in splitting water, for example – and that requires energy. Now, Y-H Percival Zhang of Virginia Tech and colleagues have recently made a breakthrough in getting hydrogen from plant material. They take a variety of enzymes collected from micro-organisms that enjoy high temperatures and mix them with polyphosphate to convert xylose – a sugar that makes up 20–30% of plant matter by weight – into hydrogen with high yields.

The reaction is enzyme-driven and runs at a modest 50°C, which could be provided by waste heat from other processes. So not only does the technique release the energy in the xylose, it also recovers energy from the heat used to drive the reaction – something that is not achieved in other processes that convert sugar into biofuels such as ethanol. This could be a breakthrough for hydrogen as a clean, renewable fuel that can be burned without producing carbon dioxide.

Nature’s topological insulator

Predicted in 2005 and first made in the laboratory in 2008, topological insulators are exotic materials that conduct only along the surface, thanks to a spin-momentum coupling that stops electrons moving through the bulk. Now, Pascal Gehring of the Max-Planck-Institut für Festkörperforschung in Stuttgart and colleagues have found that Kawazulte – a mineral with approximate composition Bi₄(Te,Se),(Se,S), – discovered in the Kawaru mine in Japan – is a natural topological insulator. The samples studied came from a former gold mine in Křivoklát, in the Czech Republic. Remarkably, they have fewer defects than their artificial counterparts so it might be worth mining such materials rather than making them.

Caffeine and bees

While many of us are glad that some plants make caffeine, it is an interesting question to ask why these plants bother. The answer may at least partly be to help bees to remember better. Geraldine Wright of Newcastle University and colleagues have found that honeybees rewarded with caffeine, which occurs in the nectar of Coffea and Citrus species, were three times as likely to remember a learnt floral scent as bees that were given only sugar. The caffeine levels in nectar are low enough not to be perceptibly bitter but apparently high enough to be psychoactive and keep the bees coming back for more.

Caffeine in the nectar of citrus flowers like these seems to help bees remember better. (Image credit: Zyljeanetimae.com.)

The method seems to work amazingly well. Just 5ug of a rare marine natural product (miyakosyne A) in a zinc-based crystalline sponge was enough for its structure to be determined. The approach should greatly speed up structural determinations for many substances.

Further reading

Further reading

Further reading

Further reading

Fattal and colleagues at the Hewlett-Packard Laboratories in Palo Alto have made a wide-angle, glasses-free 3D display using LEDs to produce wide-angle multiview images, which essentially show different views of a scene to the left and right eyes in a discretized analogue of how reflected light from a 3D object in real life goes differently into each eye. They are able to show animated 3D images to viewers over a zone of 90°, which could theoretically go up to 180° and seems suitable for mobile devices.

Further reading

Unprecedented speed, resolution and channel density

Agilent M9703A 12-bit High-Speed Digitizer

Channel 8 channels 4 channels

Sampling Rate 1.6 GS/s (with SR2) or 1 GS/s (with SR1) 3.2 GS/s (with SR2) or 2 GS/s (with SR1)

Bandwidth DC to 2 GHz (with F10) or DC to 650 MHz (with F05) DC to 1 GHz (with F10) or DC to 650 MHz (with F05)

Agilent Technologies provides the ideal solution for advanced experiments in experiments in hydrodynamics, plasma fusion, and particle physics. With this module you can build a large number of synchronous acquisition channels with unprecedented measurement fidelity in the smallest footprint. Advanced IP design, state-of-the-art technology, and on-board real-time data processing are combined to achieve outstanding performance.

Anticipate Accelerate Achieve
Planck reveals an almost perfect universe

The long awaited results from ESA’s Planck mission, based on the most detailed observations to date of the cosmic microwave background (CMB), were released on 21 March. While the new data confirm to high precision the standard model of cosmology, the detection of several anomalies could hint at new physics to be understood.

ESA’s Planck and Herschel missions were launched simultaneously by an Ariane 5 rocket on 14 May 2009 (CERN Courier July/August 2009 p9). Since then, Planck has been scanning the whole sky every six months. After the results on galactic and extragalactic foregrounds (CERN Courier April 2012 p3), the Planck collaboration has now released the CMB results, the prime scientific objective of the mission. The collaboration issued almost 30 publications simultaneously, together with the data from the first half of the mission (15.5 months).

The CMB is a snapshot of the universe when it was 380,000 years old. At that time, the young universe was filled with a hot, dense medium of interacting protons, electrons and photons at about 2700 °C. When the protons and electrons combined to form hydrogen atoms, radiation was set free. When the protons and electrons at about 2700 °C combined to form hydrogen atoms, radiation was set free. As the universe expanded, this radiation was stretched to microwave wavelengths, today equivalent to a temperature of just 2.7 °C above absolute zero. The CMB is extremely uniform all over the sky. There are only tiny temperature fluctuations (at a level of 10⁻⁵) that correspond to regions of slightly different densities at very early times.

Gravity will have acted to increase these fluctuations to form the galaxies and galaxy clusters that are seen today. The fluctuations are of different amplitude on different angular scales. This is described by the power spectrum derived from the all-sky map of the CMB. The observed shape of the power spectrum can then be fitted by a model curve, whose shape is controlled by a set of cosmological parameters. There are only six free parameters for the standard model of a flat universe with cold dark matter and a cosmological constant, ΛCDM. Possible deviations from a pure ΛCDM cosmology can be tested by freeing additional parameters of the model. All attempts to search for deviations in the Planck data have proved insignificant. The main result of Planck is thus a remarkable confirmation of the standard ΛCDM model of the universe.

Compared with NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) satellite, Planck has a much higher sensitivity, a smaller angular scale and a larger spectral coverage, with nine bands instead of five. Yet despite this, Planck has not been able to change fundamentally the view of the cosmos as derived by WMAP (CERN Courier May 2008 p2, May 2008 p8). The updated energy-density content of the present universe consists of slightly higher fractions of ordinary, baryonic matter (4.9% instead of 4.5%) and of dark matter (26.8% instead of 22.7%), compensated by a decrease in the fraction of dark energy (68.3% instead of 72.8%). Planck has also confirmed the existence of some large-scale anomalies seen by WMAP such as a lack of power in fluctuations at large angular scales, a small asymmetry on both sides of the ecliptic plane and on the cold spot (CERN Courier October 2007 p3). Planck shows that these anomalies are, indeed, of cosmic origin but they are at a level still marginally compatible (2–3σ) with statistical variations on the sky.

The main highlights of the Planck results are constraints on the number and mass of relativistic neutrinos (nν = 3.3 ± 0.27 ± 0.02) and constraints on inflaton models (mν < 0.01 eV and r < 0.11 at 95% CI). In addition to the CMB data, Planck is also releasing new catalogues of galaxy clusters and compact sources. This yields a potentially interesting tension between the amplitude of matter fluctuations derived from the CMB and that from galaxy clusters (σ8 = 0.77 ± 0.02) and from galaxy clusters (σ8 = 0.82 ± 0.02). Possibly the most unexpected result is a precise determination of the famous Hubble constant, which describes the rate of expansion of the universe, at a significantly lower value (H₀ = 67.9 ± 1.1 km/s/Mpc) than derived by other means. This was one of the prime objectives of the Hubble Space Telescope, now it is Planck that makes the most precise determination so far. The next milestone for Planck will be in 2014 with the release of the final products for the complete mission, including the polarization measurements. There is still potential for more exotic discoveries.

Further reading
Planck reveals an almost perfect universe

The long awaited results from ESA’s Planck mission, based on the most detailed observations to date of the cosmic microwave background (CMB), were released on 21 March. While the new data confirm to high precision the standard model of cosmology, the detection of several anomalies could be hints of new physics to be understood.

ESA’s Planck and Herschel missions were launched simultaneously by an Ariane 5 rocket on 14 May 2009 (CERN Courier July/August 2009 p6). Since then, Planck has been scanning the whole sky every six months. After the results on galactic and extragalactic foregrounds (CERN Courier April 2012 p3), the Planck collaboration has now released the CMB results, the prime scientific objective of the mission. The collaboration issued almost 30 publications simultaneously, together with the data from the first half of the mission (15.5 months).

The CMB is a snapshot of the universe when it was 380,000 years old. At that time, the young universe was filled with a hot, dense medium of interacting protons, electrons and photons at around 2,700°C. When the protons and electrons combined to form hydrogen atoms, radiation was set free. At the same time, the young universe was filled with a hot, dense medium of interacting protons, electrons and photons at about 2700°C. As the universe expanded, this radiation was stretched to microwave wavelengths today.

The Planck spacecraft. (Image credit: ESA/AOES Medialab.)

The CMB is a map of the universe. Colours indicate slight differences in temperature. (Image credit: Planck Collaboration.)

The Planck spacecraft. (Image credit: ESA/ AOES Medialab.)

An analysis of this all-sky map of the cosmic microwave background as measured by the Planck satellite allows the derivation of the fundamental cosmological parameters governing the history and the fate of the universe. Colours indicate slight differences in temperature. (Image credit: ESA and the Planck collaboration.)

Planck has also been scanning the whole sky every six months since its launch in May 2009. After the results on galactic and extragalactic foregrounds in April 2012 the Planck collaboration issued almost 30 publications simultaneously, together with the data from the first half of the mission (15.5 months).

The CMB is a snapshot of the universe when it was 380,000 years old. At that time, the young universe was filled with a hot, dense medium of interacting protons, electrons and photons at around 2,700°C. When the protons and electrons combined to form hydrogen atoms, radiation was set free. As the universe expanded, this radiation was stretched to microwave wavelengths today, equivalent to a temperature of just 2.7 °C above absolute zero. The CMB is extremely uniform all over the sky. There are only tiny temperature fluctuations (at a level of 10⁻⁵) that correspond to regions of slightly different densities at very early times. Gravity will have acted to increase these fluctuations to form the galaxies and galaxy clusters that are seen today.

The fluctuations are of different amplitude on different angular scales. This is described by the power spectrum derived from the all-sky map of the CMB. The observed shape of the power spectrum can then be fitted by a model curve, whose shape is controlled by a set of cosmological parameters. There are only six free parameters for the standard model of a flat universe with cold dark matter and a cosmological constant, ΛCDM. Possible deviations from a pure ΛCDM cosmology can be tested by freeing additional parameters of the model. All attempts to search for deviations in the Planck data have proved insignificant. The main result of Planck is thus a remarkable confirmation of the standard ΛCDM model of the universe. Compared with NASA’s Wilkinson Microwave Anisotropy Probe (WMAP) satellite, Planck has a much higher sensitivity, a smaller angular scale and a larger spectral coverage, with nine bands instead of five. Yet despite this, Planck has not been able to change fundamentally the view of the cosmos as derived by WMAP (CERN Courier May 2008 p2, May 2008 p8). The updated energy-density content of the present universe consists of slightly higher fractions of ordinary, baryonic matter (4.9% instead of 4.5%) and of dark matter (26.8% instead of 22.7%), compensated by a decrease in the fraction of dark energy (68.3% instead of 72.8%). Planck has also confirmed the existence of some large-scale anomalies seen by WMAP such as a lack of power in fluctuations at large angular scales, a small asymmetry on both sides of the ecliptic plane and the WMAP cold spot (CERN Courier October 2007 p3). Planck shows that these anomalies are, indeed, of cosmic origin but they are at a level still marginally compatible (2–3σ) with statistical variations on the sky.

The main highlights of the Planck results are constraints on the number and mass of relativistic neutrinos ($n_\nu = 3.00\pm 0.27$, and $2\sigma < 0.66$ eV), a strong constraint on any primordial non-Gaussianity ($f_{NL} = 2.7\pm 5.8$) and constraints on inflation models ($n_s = 0.968\pm 0.01$ and $r < 0.11$ at 95% CL). In addition to the CMB data, Planck is also releasing new catalogues of galaxy clusters and compact sources. This yields a potentially interesting tension between the amplitude of matter fluctuations derived from the CMB ($\sigma_8 = 0.82\pm 0.02$) and from galaxy clusters ($\sigma_8 = 0.73\pm 0.02$). Possibly the most unexpected result is a precise determination of the famous Hubble constant, which describes the rate of expansion of the universe, at a significantly lower value ($H_0 = 67.9\pm 1.5$ km/s/Mpc) than derived by other means. This was one of the prime objectives of the Hubble Space Telescope, now it is Planck that makes the most precise determination so far. The next milestone for Planck will be in 2014 with the release of the final products for the complete mission, including the polarization measurements. There is still potential for more exotic discoveries.

Further reading

High Voltage Solutions
a.i.e. family

Capacitor Charging: 1-50kV, 0.5-30k/µsec
Continuous DC: 1-50kV, 0.5-50kW
Turn-key systems: 30kW-1MW+
Water and Air-cooled designs
Parallel Operation for Higher Power
Full Remote and Local Controls

Visit us at
IPAC13 Booth 41
The 300 GeV project

New proposals for the 300 GeV project were announced on 18 April. Here, we recap key headings in its history.

1963 The European Committee for Future Accelerators (ECFA) urges the construction in Europe of a new proton accelerator with an energy of about 300 GeV and high beam intensity.

1964 A design study is carried out at CERN, with the major parameters: a peak energy of 300 GeV, a beam intensity of 10^11 protons per second, a main-ring diameter of 2.4 km, “combined-function” magnets with a peak field of 12 kG, several ejected magnets, design and construction time of 10 years, cost 1962 million Swiss francs (MSF) [1969 prices].

1965 At the end of the year the CERN Council approves other ECFA recommendations in connection with the installations at CERN-Meyrin. These consist of an extensive improvement programme for the PS and its facilities, and the construction of intersecting storage rings for protons.

1967 Approval is received in the US for an accelerator in the hundreds of GeV region. Design studies begin under the direction of R R Wilson for a 200 GeV machine with a potential for 500 GeV.

1968 In June the UK government announces that it will not join the 300 GeV project. The project is revised to bring the cost down to 1431 MSF. Six countries declare their willingness to participate—Austria, Belgium, Federal Republic of Germany, France, Italy and Switzerland—thereby assuring sufficient funding.

1969 The CERN Council accepts the development of the 300 GeV Laboratory in stages, beginning with an energy not less than 200 GeV and a construction period of eight years.

1970 J B Adams, Director of the 300 GeV project, initiates a rethink that leads to a “missing magnet” design and a main-ring beginning with a 250 GeV machine, within the same budget, with conventional magnets taking up half of the circumference of a 3 km diameter ring. Filling up the circumference would later transform into colliders, to exploit the huge gain in centre-of-mass energy when particle beams crash head-on.

CERN’s 300 GeV project, the Super Proton Synchrotron (SPS), did indeed start operation in 1976 and was 400 GeV. By 1981 it had become a collider, providing proton–antiproton collisions at 540 GeV and by 1983 the W and Z vector bosons of the weak force had been discovered (p27).

The exciting thing about this modification of Project B is that it opens up the possibility of physics at higher energies by the beginning of 1976 (if the project can go ahead in 1971) rather than several years later.

The discussion was continuing but already much has crystallized out. It is recognized that it is of supreme importance to move quickly if particle physics in Europe is to retain in the coming decades the excellent standing it has now.

The Director of the 300 GeV project, J B Adams, visited several US Laboratories in April. Here he is seen boarding a helicopter for an aerial view of the progress of construction of the 200–500 GeV accelerator at Batavia. With him, on the right, is FT Cole, Assistant Director for Technical Affairs. (Photo NAL)

This proposal, Project A, could be built on any of the five sites offered by States ready to participate (Dobberto-Salpy, Drenstenfurs-Federal Republic of Germany, Focant-Belgium, Gopfritz-Austria, Le Luc-France). The problem of site selection, however, brought the project to a standstill at the end of the year, and in this situation, during the first months of 1970, Project B was born.

Project B attempted to come more into line with the finance which might reasonably be anticipated in the future, where past growth rates of expenditure on high-energy physics are unlikely to be sustained. It features a main ring about 2 km in diameter and a missing magnet design giving 300 GeV energy, with all magnets at a peak field of 18 kG. The cost of a 150 GeV stage, with half of the magnets, would be 1100 MSF with a construction time of eight years. A significant aspect is that such a machine could be built not only on any of the five sites offered but also adjoining the existing Laboratory at CERN-Meyrin with further savings in cost and manpower. With the new accelerator next door, the existing CERN PS could, at least initially, serve as injector, eliminating the Booster from the construction programme, and the first experimental area for physics could be the existing PS West Hall. By the time of first high-energy beams this Hall will be exceptionally well equipped, including the 3.7 m European hydrogen bubble chamber and the “Omega project” for counter physics.

The discussion was continuing but already much has crystallized out. It is recognized that it is of supreme importance to move quickly if particle physics in Europe is to retain in the coming decades the excellent standing it has now.

Compiled from texts on pp146–147.
The 300 GeV project

New proposals for the 300 GeV project were announced on 18 April. Here, we recap key headlines in its history.

1963 The European Committee for Future Accelerators (ECFA) urges the construction in Europe of a new proton accelerator with an energy of about 300 GeV and high beam intensity.

1964 A design study is carried out at CERN, with the major parameters: a peak energy of 300 GeV, a beam intensity of 10^13 protons per second, a main-ring diameter of 2.4 km, “combined-function” magnets with a peak field of 12 kG, several ejected magnets, design and construction time of 10 years, cost 1962 million Swiss francs (MSF) [1969 prices].

1965 At the end of the year the CERN Council approves other ECFA recommendations in connection with the installations at CERN-Meyrin. These consist of an extensive improvement programme for the PS and its facilities, and the construction of intersecting storage rings for protons.

1967 Approval is received in the US for an accelerator in the hundreds of GeV region. Design studies begin under the direction of R R Wilson for a 200 GeV machine with a potential for 500 GeV.

1968 In June the UK government announces that it will not join the 300 GeV project. The project is revised to bring the cost down to 1431 MSF. Six countries declare their willingness to participate – Austria, Belgium, Federal Republic of Germany, France, Italy and Switzerland – thereby assuring sufficient funding.

1969 The CERN Council accepts the development of the 300 GeV Laboratory in stages, beginning with an energy not less than 200 GeV and a construction period of eight years.

1970 John Adams, Director of the 300 GeV project, begins work on the design of the PS and the experimental hall. The first beam is delivered in 1972.

1971 The PS begins to deliver beams to the experimenters in 1972. The first experiment to be performed is the discovery of the W and Z vector bosons of the weak force had been discovered (p27).

1972 The CERN Council accepts the development of the 300 GeV Laboratory in stages, beginning with an energy not less than 200 GeV and a construction period of eight years.

1973 The first high-energy beams are delivered to the experimenters. The PS becomes a collider, providing proton–antiproton collisions at 5.4 GeV by 1973 and 18 GeV by 1977. Revamped into the Tevatron, proton–antiproton collisions at 540 GeV and by 1983 indeed start operation in 1976 and at 400 GeV. But by 1981 it had become clear that it was not going to achieve the designed energy when particle beams crash head-on.

1974 The CERN PS could, at least initially, serve as injector, eliminating the Booster from the construction programme, and the first experimental area for physics could be the existing PS West Hall. By the time of first high-energy beams this Hall will be exceptionally well equipped, including the 3.7 m European hydrogen bubble chamber and the “Omega project” for counter physics.

1975 The exciting thing about this modification of Project B is that it opens up the possibility of physics at higher energies by the beginning of 1976 (if the project can go ahead in 1971) rather than several years later.

1976 The discussion is continuing but already much has crystallized out. It is recognized that it is of supreme importance to move quickly if particle physics in Europe is to retain in the coming decades the excellent standing it has now.

1977 Project A is abandoned. Project B is adopted as basis of new project. The Director of the 300 GeV project, J B Adams, visited several US Laboratories in April. Here he is seen boarding a helicopter for an aerial view of the progress of construction of the 200–500 GeV accelerator at Batavia. With him, on the right, is FT Cole, Assistant Director for Technical Affairs. (Photo NAL.)

This proposal, Project A, could be built on any of the five sites offered by States ready to participate (Dobberdo-Ijda, Drenstenfurs-Federal Republic of Germany, Fondt-Belgium, Goprufz-Austria, Le Luc-France). The problem of site selection, however, brought the project to a standstill at the end of the year, and in this situation, during the first months of 1970, Project B was born. Project B attempted to come more into line with the finance which might reasonably be anticipated in the future, where past growth rates of expenditure on high-energy physics are unlikely to be sustained. It features a main ring about 2 km in diameter and a missing magnet design giving 300 GeV energy, with all magnets in place at a peak field of 184 kG. The cost of a 150 GeV stage, with half of the magnets, would be 1100 MSF with a construction time of eight years.

A significant aspect is that such a machine could be built not only on any of the five sites offered but also adjoining the existing Laboratory at CERN-Meyrin with further savings in cost and manpower. With the new accelerator next door, the existing CERN PS could, at least initially, serve as injector, eliminating the Booster from the construction programme, and the first experimental area for physics could be the existing PS West Hall. By the time of first high-energy beams this Hall will be exceptionally well equipped, including the 3.7 m European hydrogen bubble chamber and the “Omega project” for counter physics.

The exciting thing about this modification of Project B is that it opens up the possibility of physics at higher energies by the beginning of 1976 (if the project can go ahead in 1971) rather than several years later.

The discussion is continuing but already much has crystallized out. It is recognized that it is of supreme importance to move quickly if particle physics in Europe is to retain in the coming decades the excellent standing it has now.

Compiled from texts on pp146–147.

The machines being designed in 1970 to deliver external beams were later transformed into colliders, to exploit the huge gain in centre-of-mass energy when particle beams crash head-on.

CERN’s 300 GeV project, the Super Proton Synchrotron (SPS), did indeed start operation in 1976 and at 400 GeV. But in 1981 it had become a collider, providing proton–antiproton collisions at 5.4 GeV by 1983 and 18 GeV by 1987. The W and Z vector bosons of the weak force had been discovered (p27).

The Main Ring in what became Fermilab, Batavia, had already delivered 400 GeV protons by the end of 1971 and the bottom quark was discovered there in 1977. Revamped into the Tevatron, proton–antiproton collisions were produced at 1.6 TeV in 1983 and 1.7 TeV in 1986, and the discovery of the most massive quark, the top, was announced in 1995.

At CERN, the PS and the SPS are now in the injector chain of the Large Hadron Collider, where physics runs began in 2010 with two 3.5 TeV proton beams. Already a Higgs particle is in sight (p21). With spin 0, this scalar boson will be something different, neither matter nor force …
After more than three years of highly successful operation, the ALICE detector is about to undergo a major programme of consolidation and upgrade during the Long Shutdown 1 (LS1) of CERN’s accelerator complex. This follows an intense first running period characterized by the continuous record-breaking performance of the LHC. While the shutdown provides time to take stock of the wealth of data collected, the ongoing analysis, the busy programme of work in the experiment’s cavern at Point 2 and the planning for future upgrades will ensure that everyone in the collaboration is kept busy.

The ALICE detector is specially designed for heavy-ion collisions, which are foreseen as part of the LHC programme for four weeks a year. The LHC delivered an integrated lead–lead luminosity of 150 μb–1 during heavy-ion periods in 2010 and 2011, as well 30 nb–1 of proton–lead luminosity in 2013. Together with data collected during normal proton–proton running, as well as in a dedicated five-day proton–proton run in 2011 at the equivalent lead-nucleon energy, these three data sets have provided an excellent basis for an in-depth look at the physics of quark–gluon plasma. With the recent successful conclusion of the proton–lead programme in particular, where the LHC and injectors once again showed their amazing capabilities, the physics-analysis teams in ALICE are certainly not on standby but are more active and excited than ever.

Down the cavern

As soon as LHC beam operations ended on 14 February, the occupation of the car park at the ALICE experimental site began to rise sharply, indicating the start of the major shutdown activities. (Long-term observations have shown that there is good proportionality between the number of parked cars and activities in the cavern.) The first of these, as in any ALICE shutdown, concerns the removal of hundreds of tonnes of shielding blocks from the access shaft and the cavern. This is to allow the opening of the large doors of the solenoid magnet and give access to the ALICE detector. This sequence is now well established because even during the short winter stops of 2010/2011 and 2011/2012, the ALICE detector...
After more than three years of highly successful operation, the ALICE detector is about to undergo a major programme of consolidation and upgrade during the Long Shutdown 1 (LS1) of CERN’s accelerator complex. This follows an intense first running period characterized by the continuous record-breaking performance of the LHC. While the shutdown provides time to take stock of the wealth of data collected, the ongoing analysis, the busy programme of work in the experiment’s cavern at Point 2 and the planning for future upgrades will ensure that everyone in the collaboration is kept busy.

The ALICE detector is specially designed for heavy-ion collisions, which are foreseen as part of the LHC programme for four weeks a year. The LHC delivered an integrated lead–lead luminosity of 150 μb⁻¹ during heavy-ion periods in 2010 and 2011, as well as 30 nb⁻¹ of proton–lead luminosity in 2013. Together with data collected during normal proton–proton running, as well as in a dedicated five-day proton–proton run in 2011 at the equivalent lead-nucleon energy, these three data sets have provided an excellent basis for an in-depth look at the physics of quark–gluon plasma. With the recent successful conclusion of the proton–lead programme in particular, where the LHC and injectors once again showed their amazing capabilities, the physics-analysis teams in ALICE are certainly not on standby but are more active and excited than ever.

Down the cavern
As soon as LHC beam operations ended on 14 February, the occupation of the car park at the ALICE experimental site began to rise sharply, indicating the start of the major shutdown activities. (Long-term observations have shown that there is good proportionality between the number of parked cars and activities in the cavern.) The first of these, as in any ALICE shutdown, concerns the removal of hundreds of tonnes of shielding blocks from the access shaft and the cavern. This is to allow the opening of the large doors of the solenoid magnet and give access to the ALICE detector. This sequence is now well established because even during the short winter stops of 2010/2011 and 2011/2012, the ALICE detector
The consolidation of services, which includes air ducts, water ducts, high- and low-voltage power cables, optical fibres etc., will be one of the major activities during LS1. (Image credit: Antonio Saba/LICE.)

was opened for installation of the electromagnetic calorimeter (EMCAL) and modules of the transition radiation tracker (TRD).

So, what are the major plans for ALICE during LS1? The main activity on the detector will be concerned with the installation of the dijet calorimeter (DCAL), an extension of the existing EMCAL system that adds 60° of azimuthal acceptance opposite the existing 120° of the EMCAL’s acceptance. This new subdetector will be installed on the bottom of the solenoid magnet, which currently houses three modules of the photon spectrometer (PHOS). An entirely new rail system and cradle will be installed to support the three PHOS modules and eight DCAL modules, which together weigh more than 100 tonnes.

The removal of the present structures and the installation of the new services, support structures and then the DCAL and PHOS modules will take up most of this year. The installation of five modules will take up most of this year. The installation of five new services, support structures and then the DCAL and PHOS modules will take up most of this year. The installation of five new services, support structures and then the DCAL and PHOS modules, which together weigh more than 100 tonnes.

In addition to these mainstream detector activities, all of the 18 ALICE subdetectors will undergo major improvements and consolidation efforts during LS1. The computers and discs of the online systems have reached their end of life and will also have to be replaced, followed by upgrades of the operating systems and online software.

A major part – indeed, most – of the shutdown cost and human resources will go into the consolidation and upgrade of the ALICE infrastructure. The four levels of ALICE counting rooms, which house the data-acquisition, high-level trigger, detector control-system and most of the detector read-out electronics, have an electrical infrastructure that was installed during the times of the Large-Electron–Positron collider and is now outdated. The renewal of this infrastructure and the installation of a new and significantly more powerful uninterruptible power-supply system form a key element in ensuring the correct operation of ALICE after LS1.

Major safety systems will also have to be installed during LS1. An area of racks under the large dipole magnet, which is inaccessible in the event of a fire, will be equipped with a CO₂ extinguishing system and the entire volume inside the solenoid magnet will be equipped with a nitrogen extinguishing system.

The production of chilled water will also undergo a major upgrade as a result of increased demands on cooling and ventilation for ALICE and the LHC. The need for doubling the cooling airflow inside the solenoid magnet to 10,000 m³/h requires the addition of a new ventilation machine and large ventilation ducts from the surface to the cavern.

The shutdown activities have all been formulated in work packages, analysed for safety aspects and scheduled in detail. In addition, the extraction of LHC magnets through the ALICE shaft, as well as a large number of visitor groups that will come to see the experiment, will pose a big challenge to day-to-day planning for LS1.

All of these efforts will ensure that ALICE is in good shape for the three-year LHC running period after LS1, when the collaboration looks forward to heavy-ion collisions at the top LHC energy of 5.5 TeV/nucleon at luminosities in excess of 10³⁷ Hz/cm².

However, the LS1 efforts go beyond the hardware activities that are currently under way. The ALICE collaboration has plans for a major upgrade during the next long shutdown, LS2, currently scheduled for 2018. Then the entire silicon tracker will be replaced by a monolithic-pixel tracker system; the time-projection chamber will be upgraded with gaseous electron-multiplier (GEM) detectors for continuous read-out; and all of the other subdetectors and the online systems will prepare for a 100-fold increase in the number of events written to tape. With only five years to go before this major upgrade, the ALICE collaboration is also busy on this front, preparing technical design reports for submission later this year.

With a fantastic set of data already in hand, well prepared activities for LS1 underway and the prospect of a major upgrade during LS2, the ALICE collaboration is in good health and is pursuing with unwavering enthusiasm its exploration of the mysteries of the QCD phase transitions, in a scientific programme that will extend well into the next decade.

Résumé

After plus de trois ans de fonctionnement très satisfaisant, le détecteur ALICE va être soumis à tout un programme de consolidation et d’amélioration à l’occasion du premier grand arrêt du complexe d’accélérateurs du CERN. Ce programme fait suite à une première période d’exploitation, très intense, où le LHC s’est illustré en battant continuellement de nouveaux records. L’arrêt permet d’avoir du temps pour traiter l’ensemble de données recueillies. Mais entre la poursuite de l’analyse, le programme de travail chargé dans la couvercle de l’expérience et la planification de futures améliorations, les membres de la collaboration ont du pain sur la planche.

Werner Riegler, CERN.
more powerful uninterruptible power-supply system form a key
element in ensuring the correct operation of ALICE after LS1.

Major safety systems will also have to be installed during LS1.
An area of racks under the large dipole magnet, which is inaccessi-
ble in the event of a fire, will be equipped with a CO₂ extinguishing
system and the entire volume inside the solenoid magnet will be
equipped with a nitrogen extinguishing system.

The production of chilled water will also undergo a major
upgrade as a result of increased demands on cooling and ventila-
tion for ALICE and the LHC. The need for doubling the cooling
air-flow inside the solenoid magnet to 10,000 m³/h requires the
addition of a new ventilation machine and large ventilation ducts
directly from the surface to the cavern.

The shutdown activities have all been formulated in work pack-
ages, analysed for safety aspects and scheduled in detail. In addition,
the extraction of LHC magnets through the ALICE shaft, as well as a
large number of visitor groups that will come to see the experiment,
will pose a big challenge to day-to-day planning for LS1.

All of these efforts will ensure that ALICE is in good shape for
the three-year LHC running period after LS1, when the collabora-
tion looks forward to heavy-ion collisions at the top LHC energy of
5.5 TeV/nucleon at luminosities in excess of 10³⁷ Hz/cm².

However, the LS1 efforts go beyond the hardware activities that
are currently under way. The ALICE collaboration has plans for
a major upgrade during the next long shutdown, LS2, currently
scheduled for 2018. Then the entire silicon tracker will be replaced
by a monolithic-pixel tracker system; the time-projection chamber
will be upgraded with gaseous electron-multiplier (GEM) detect-
tors for continuous read-out; and all of the other subdetectors and
the online systems will prepare for a 100-fold increase in the num-
ber of events written to tape. With only five years to go before this
major upgrade, the ALICE collaboration is also busy on this front,
preparing technical design reports for submission later this year.

With a fantastic set of data already in hand, well prepared activi-
ties for LS1 underway and the prospect of a major upgrade during
LS2, the ALICE collaboration is in good health and is pursuing
with unwavering enthusiasm its exploration of the mysteries of the
QCD phase transitions, in a scientific programme that will extend
well into the next decade.

Résumé

ALICE regarde vers le futur

Après plus de trois ans de fonctionnement très satisfaisant,
de l'expérience a besoin d'un programme de consolidation et d'amélioration à l'occasion du premier grand
arrêt du complexe d'accélérateurs du CERN. Ce programme fait
suite à une première période d'exploitation, très intense, où le
LHC s'est illustré en battant continuellement de nouveaux records.
L'arrêt permet d'avoir du temps pour traiter l'ensemble de données
recueillies. Mais entre la poursuite de l'analyse, le programme de
traitement sera intensif dans la caverne de l'expérience et la planification de futures améliorations, les membres de la collaboration ont du pain sur la planche.

Werner Riegler, CERN.

The consolidation of services, which includes air ducts, water
ducts, high- and low-voltage power cables, optical fibres etc.,
will be one of the major activities during LS1. (Image credit: Antonio Saba/ALICE.)

was opened for installation of the electromagnetic calorimeter
(EMCAL) and modules of the transition radiation tracker (TRD).

So what are the major plans for ALICE during LS1? The main
activity on the detector will be concerned with the installation of
the dijet calorimeter (DCAL), which is being installed
during LS1, an extension to the electromagnetic calorimeter
(EMCAL) that will increase azimuthal acceptance.

In addition to these mainstream detector activities, all of the
18 ALICE subdetectors will undergo major improvements and
consolidation efforts during LS1. The computers and discs of the
online systems have reached their end of life and will also have to
be replaced, followed by upgrades of the operating systems
and online software.

A major part – indeed, most – of the shutdown cost and human
resources will go into the consolidation and upgrade of the ALICE
infrastructure. The four levels of ALICE counting rooms, which
house the data-acquisition, high-level trigger, detector control sys-
tem and most of the detector read-out electronics, have an electrical
infrastructure that was installed during the times of the Large-
Electron–Positron collider and is now outdated. The renewal of
this infrastructure and the installation of a new and significantly

Schematic view of the ALICE subdetectors inside the solenoid
magnet. The dijet calorimeter (DCAL), which is being installed
during LS1, is an extension to the electromagnetic calorimeter
(EMCAL) that will increase azimuthal acceptance.
Birth of a Higgs boson

Results from ATLAS and CMS now provide enough evidence to identify the new particle of 2012 as ‘a Higgs boson’.

In the history of particle physics, July 2012 will feature prominently as the date when the ATLAS and CMS collaborations announced that they had discovered a new particle with a mass near 125 GeV in studies of proton–proton collisions at the LHC. The discovery followed just over a year of dedicated searches for the Higgs boson, the particle linked to the Brout-Englert-Higgs mechanism that endows elementary particles with mass. At this early stage, the phrase ‘Higgs-like boson’ was the recognized shorthand for a boson whose properties were yet to be fully investigated (CERN Courier September 2012 p43 and p49). The outstanding performance of the LHC in the second half of 2012 delivered four times as much data at 8 TeV in the centre of mass as were used in the ‘discovery’ analyses. Thus equipped, the experiments were able to present new results at the 2013 Rencontres de Moriond in March, giving the particle-physics community enough evidence to name this new boson ‘a Higgs boson’.

At the Moriond meeting, in addition to a suite of final results from the experiments at Fermilab’s Tevatron on the same subject, the ATLAS and CMS collaborations presented preliminary new results that further elucidate the nature of the particle discovered just eight months earlier. The collaborations find that the new particle is looking more and more like a Higgs boson. However, it remains an open question whether this is the Higgs boson of the Standard Model of particle physics, or one of several such bosons predicted in theories that go beyond the Standard Model. Finding the answer to this question will require more time and data.

This brief summary provides an update of the measurements of the properties of the newly discovered boson using, in most cases, the full proton–proton collision data sample recorded by the ATLAS and CMS experiments in 2011 and 2012 for the H→γγ, H→ZZ→4l, H→WW(*)→lvνν, H→ττ(*)→τ+τ− and H→bb channels, corresponding to integrated luminosities of up to 5.0 fb−1 at √s=7 TeV and up to 21 fb−1 at √s=8 TeV. In the intervening time, CMS and ATLAS have also developed searches for rarer decays – such as H→Zγ or H→γγ* – and for invisible or undetectable decays expected in theories beyond the Standard Model.

Whether or not the new particle is a Higgs boson is demonstrated by how it interacts with other particles, as well as by its own quantum properties. For example, a Higgs boson is postulated to have no spin and in the Standard Model its parity – a measure of how its mirror image behaves – should be positive. ATLAS and CMS have compared a number of alternative spin-parity (P) assignments for this particle and, in pairwise hypothesis tests, the hypothesis of zero spin and positive parity (P=0+) is disfavoured using the CLs ratio of probabilities that takes into account how the observation relates to both the Standard Model and the alternative hypotheses.

Table 1. Summary of preliminary results of the hypothesis tests compared with the Standard Model hypothesis of zero spin, positive parity (P=0+). All alternatives are disfavoured using the CLs ratio of probabilities that takes into account how the observation relates to both the Standard Model and the alternative hypotheses.

<table>
<thead>
<tr>
<th>Process</th>
<th>Observed CLs</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZZ(*)</td>
<td>ATLAS 2.2%</td>
<td>0.1%</td>
<td>1.7%</td>
</tr>
<tr>
<td>WW(*)</td>
<td>ATLAS 0.1%</td>
<td>1.5%</td>
<td><0.1%</td>
</tr>
<tr>
<td>ZZ(*)</td>
<td>CMS 14%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>WW(*)</td>
<td>CMS –</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Fig. 1. Distribution of the four-lepton events selected in the CMS analysis of H→ZZ→4l. A clear accumulation of events is responsible for the excess 6.7σ above the background-only expectation at 125.8 GeV. Despite the large significance, the signal is 0.91 times the expected amount for the Standard Model Higgs boson. The bottom panel provides further information on the individual events entering the analysis, including the final-state type and the per-event estimate of the mass and mass resolution.

Expertise of a century
Highest quality, reliability and best performance

Ampegon is a new brand to merge the former Thomson Broadcast activities of Switzerland, Germany and China under one powerful group of companies.
Birth of a Higgs boson

Results from ATLAS and CMS now provide enough evidence to identify the new particle of 2012 as ‘a Higgs boson’.

In the history of particle physics, July 2012 will feature prominently as the date when the ATLAS and CMS collaborations announced that they had discovered a new particle with a mass near 125 GeV in studies of proton–proton collisions at the LHC. The discovery followed just over a year of dedicated searches for the Higgs boson, the particle linked to the Brout-Englert-Higgs mechanism that endows elementary particles with mass. At this early stage, the phrase “Higgs-like boson” was the recognized shorthand for a boson whose properties were yet to be fully investigated (CERN Courier September 2012 p43 and p49). The outstanding performance of the LHC in the second half of 2012 delivered four times as much data at 8 TeV in the centre of mass as were used in the “discovery” analyses. Thus equipped, the experiments were able to present new results at the 2013 Rencontres de Moriond in March, giving the particle-physics community enough evidence to name this new boson “a Higgs boson”.

At the Moriond meeting, in addition to a suite of final results from the experiments at Fermilab’s Tevatron on the same subject, the ATLAS and CMS collaborations presented preliminary new results that further elucidate the nature of the particle discovered just eight months earlier. The collaborations find that the new particle is looking more and more like a Higgs boson. However, it remains an open question whether this is the Higgs boson of the Standard Model of particle physics, or one of several such bosons predicted in theories that go beyond the Standard Model. Finding the Higgs boson of the Standard Model, or one of several such bosons remains an open question whether this is the Higgs boson.

The discovery followed just over a year of dedicated searches for the Higgs boson, the particle linked to the Brout-Englert-Higgs mechanism that endows elementary particles with mass. At this early stage, the phrase “Higgs-like boson” was the recognized shorthand for a boson whose properties were yet to be fully investigated. The outstanding performance of the LHC in the second half of 2012 delivered four times as much data at 8 TeV in the centre of mass as were used in the “discovery” analyses. Thus equipped, the experiments were able to present new results at the 2013 Rencontres de Moriond in March, giving the particle-physics community enough evidence to name this new boson “a Higgs boson”.

At the Moriond meeting, in addition to a suite of final results from the experiments at Fermilab’s Tevatron on the same subject, the ATLAS and CMS collaborations presented preliminary new results that further elucidate the nature of the particle discovered just eight months earlier. The collaborations find that the new particle is looking more and more like a Higgs boson. However, it remains an open question whether this is the Higgs boson of the Standard Model of particle physics, or one of several such bosons predicted in theories that go beyond the Standard Model. Finding the answer to this question will require more time and data.

This brief summary provides an update of the measurements of the properties of the newly discovered boson using, in most cases, the full proton–proton collision data sample recorded by the ATLAS and CMS experiments in 2011 and 2012 for the H → γγ, H → ZZ → 4l, H → WW(*)→ZZ(*)→4l, H → ττ, H → bb, and H → γγ, H → ττ, and H → bb channels, corresponding to integrated luminosities of up to 5 fb–1 at √s = 7 TeV and up to 21 fb–1 at √s = 8 TeV. In the intervening time, CMS and ATLAS have also developed searches for rarer decays – such as H → Zγ or H → ττ, and for invisible or undetectable decays expected in theories beyond the Standard Model. Finding the answer to this question will require more time and data.

This brief summary provides an update of the measurements of the properties of the newly discovered boson using, in most cases, the full proton–proton collision data sample recorded by the ATLAS and CMS experiments in 2011 and 2012 for the H → γγ, H → ZZ → 4l, H → WW(*)→ZZ(*)→4l, H → ττ, H → bb, and H → γγ, H → ττ, and H → bb channels, corresponding to integrated luminosities of up to 5 fb–1 at √s = 7 TeV and up to 21 fb–1 at √s = 8 TeV. In the intervening time, CMS and ATLAS have also developed searches for rarer decays – such as H → Zγ or H → ττ, and for invisible or undetectable decays expected in theories beyond the Standard Model.

Whether or not the new particle is a Higgs boson is demonstrated by how it interacts with other particles, as well as by its own quantum properties. For example, a Higgs boson is postulated to have no spin and in the Standard Model it is parity – a measure of how its mirror image behaves – should be positive. ATLAS and CMS have compared a number of alternative spin-parity (JP) assignments for this particle and, in pairwise hypothesis tests, the hypothesis of zero spin and positive parity (JP=0+) is consistently favoured, as summarized in Table 1.

<table>
<thead>
<tr>
<th>Higgs Boson</th>
<th>0 (pp) scalar</th>
<th>2 (pp) minimal</th>
<th>1 (qq) exotic scalar</th>
<th>1 (qq) exotic pseudo-vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>2.2%</td>
<td>6.8%</td>
<td>16.8%</td>
<td>6.6%</td>
</tr>
<tr>
<td>CMS</td>
<td>0.16%</td>
<td>1.5%</td>
<td><0.1%</td>
<td><0.1%</td>
</tr>
<tr>
<td>WW(*)</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CMS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ZZ(*)</td>
<td>ATLAS 1.1%</td>
<td>11.3%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CMS</td>
<td>0%</td>
<td>12.4%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>JJ</td>
<td>ATLAS 0.7%</td>
<td>1.6%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>CMS</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 1. Summary of preliminary results of the hypothesis tests compared with the Standard Model hypothesis of zero spin, positive parity (JP=0+). All alternatives are disfavoured using the CLs ratio of probabilities that takes into account how the observation relates to both the Standard Model and the alternative hypotheses.

Fig. 1. Distribution of the four-lepton events selected in the CMS analysis of H → ZZ → 4l. A clear accumulation of events is observed at m^4l = 21 (gg) and m^4l = 10 (qq–). The right panel compares a number of alternative spin-parity (JP) assignments for this particle and, in pairwise hypothesis tests, the hypothesis of zero spin and positive parity (JP=0+) is consistently favoured, as summarized in Table 1.
In CMS, the presence of a signal has been established in each of several expected decay channels. The $H \rightarrow \gamma\gamma$ and $H \rightarrow ZZ^{(*)}$ channels point to a mass between 125 GeV and 125.8 GeV. For $m_H = 125$ GeV, an excess of 4.1 events is observed in the $H \rightarrow \gamma\gamma$ channel and there are remarkable positive results in the decays to $b\bar{b}$ and $\tau\tau$. The reasons behind the success of these analyses have benefitted from many improvements since the discovery of the SM Higgs boson, which allows a measurement of the mass of the new boson (dotted line).

In figure 2, an overview of the main decay channels studied in CMS shows how evidence for a Higgs boson can be seen in each channel with individual significances ranging from 2.2σ to 6.7σ. With respect to the results presented by CMS last July, there are slight differences in the individual signal strengths: smaller in the $H \rightarrow \gamma\gamma$ and larger in the $H \rightarrow b\bar{b}$ and $H \rightarrow \tau\tau$ channels. These results strongly indicate that it is a Higgs boson. Overall, the results continue to be fully compatible with the expectation for a Standard Model Higgs boson.

From figure 3, we can see that the mass measurement has also benefitted from improved energy and momentum resolution. Figure 1 (p21) shows the data entering into the mass measurement. Figure 4 shows the combined signal strength for $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ^{(*)}$, $H \rightarrow WW^{(*)}$, and $H \rightarrow \tau\tau$ channels for a hypothesis of a Higgs boson mass of $m_H = 125.5$ GeV. The branching ratios and possible non-Standard Model effects coming from the branching ratios cancel in $\mu_{H/\gamma\gamma}$, hence the different measurements from all four channels can be compared and combined. The dashed curve shows the Standard Model expectation for the combination. The horizontal dashed lines indicate the 1σ and 2σ confidence levels, with the horizontal full line indicating the confidence level corresponding to $\mu_{\gamma\gamma} = 0$.

In figure 4, an overview of the main decay channels studied in CMS shows how evidence for a Higgs boson can be seen in each channel with individual significances ranging from 2.2σ to 6.7σ. With respect to the results presented by CMS last July, there are slight differences in the individual signal strengths: smaller in the $H \rightarrow \gamma\gamma$ and larger in the $H \rightarrow b\bar{b}$ and $H \rightarrow \tau\tau$ channels. These results strongly indicate that it is a Higgs boson. Overall, the results continue to be fully compatible with the expectation for a Standard Model Higgs boson.

The results of the Standard Model hypothesis and places limits on various model extensions. The ATLAS and CMS collaborations. For the latest preliminary Higgs results from ATLAS, see https://twiki.cern.ch/twiki/bin/view/ATLPublic/HiggsPublicResults, and for CMS, see https://twiki.cern.ch/twiki/bin/view/CMSPub/LHCPublic/HiggsCrossSections. For the Higgs Cross-Section Working Group pages, see https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections.

Résumé
Des résultats affinés : c’est un boson de Higgs

En juillet 2012, les collaborations ATLAS et CMS ont annoncé qu’elles avaient découvert une nouvelle particule ayant une masse d’environ 125 GeV. À cette époque, on utilisait l’expression « boson type Higgs » pour désigner cette particule, dont les propriétés restaient à étudier. Grâce à la performance remarquable du LHC, on a obtenu de la machine, au cours du second semestre 2012, quatre fois plus de données à 8 TeV que le volume utilisé dans les analyses ayant conduit à la découverte. Mais des conclusions de ces données, les expériences ont pu présenter de nouveaux résultats en mars 2013, et les éléments disponibles étaient suffisants pour qu’on puisse le dire : on a trouvé « un boson de Higgs ».

The ATLAS and CMS collaborations.
In CMS, the presence of a signal has been established in each of several expected decay channels. The $H\rightarrow\gamma\gamma$ and $H\rightarrow ZZ^{(*)}$ channels are notable because they have significant positive results in the decays to b quarks (2.2σ) and to leptons (2.9σ). An important hint that this Higgs boson also couples to fermions. As expected in the Standard Model, the search for $H\rightarrow\tau\tau$ has not yielded a signal — nevertheless continuing to strive for its discovery remains a priority. Overall, the result and the others presented by CMS last July, there are slight differences in the individual signal strengths: smaller in the $H\rightarrow\tau\tau$ channel and larger in the $H\rightarrow b\bar{b}$ and $H\rightarrow t\bar{t}$ channels. These results strongly indicate that it is a Higgs boson. Overall, the results continue to be fully consistent with the expectation for a Standard Model Higgs boson, dominantly gluon-initiated processes for producing a Higgs boson, ~ 7 TeV, $L = 5.1 \text{ fb}^{-1}$, ~ 8 TeV, $L = 19.5 \text{ fb}^{-1}$, ~ 8 TeV, $L = 19.6 \text{ fb}^{-1}$, ~ 7 TeV, $L = 4.9 \text{ fb}^{-1}$, ~ 8 TeV, $L = 19.4 \text{ fb}^{-1}$, ~ 8 TeV, $L = 19.6 \text{ fb}^{-1}$.

Further reading

For the generations at Rencontres de Moriond, see http://moriond-2013.web.cern.ch/moriond-2013/.

For the latest preliminary Higgs results from ATLAS, see https://twiki.cern.ch/twiki/bin/view/AtlasPublic/AtlasHiggsPublicResults, and for CMS, see https://twiki.cern.ch/twiki/bin/view/ CMS/BiblioPhysique#PublicationsRelatifsHiggs.

For the Higgs Cross-Section Working Group pages, see https://twiki.cern.ch/twiki/bin/view/Physics/CrossSections.

Résumé

Des résultats affi cés : c’est un boson de Higgs

En juillet 2012, les collaborations ATLAS et CMS ont annoncé qu’elles avaient découvert une nouvelle particule ayant une masse d’environ 125 GeV. À ce stade, on utilise l’expression « boson type Higgs » pour désigner cette particule, dont les propriétés restent à étudier. Grâce à la performance remarquable du LHC, on a obtenu de la machine, au cours du second semestre 2012, quatre fois plus de données à 8 TeV que le volume utilisé dans les analyses ayant conduit à la découverte. Mises de toutes ces données, les expériences ont pu présenter de nouveaux résultats en mars 2013, et les éléments disponibles étaient suffisants pour qu’on puisse le dire : on a trouvé un « boson de Higgs ».

The ATLAs and CMS collaborations.
In the autumn of 1982, I was invited to give a series of seven lectures at CERN under the title “Electroweak Interactions”. These were part of the Academic Training Programme, which was aimed at young experimentalists working on projects at CERN. The lectures were to be given on successive days on 18–26 November, excluding the weekend of 21–22 November. I had given seminars at CERN on earlier occasions and the response had always been positive. Giving seven lectures in a row could be stressful but at least the subject was in my own domain. I expected the number of people attending to be between 50 and 100.

When I arrived to give my lecture on the first day, I was astonished to see that the auditorium was chuck-full of people. (Somebody mentioned later that the number was 400.) For a moment I thought that I had wandered into the wrong auditorium. Seated in the first row were stalwarts of CERN, such as Rolf Hagedorn, Jacques Prentki, Maurice Jacob and André Martin. I could see in the crowd several experienced people whom I knew from the heyday of neutrino physics. It was not at all the kind of audience that I had expected. I began to wonder what I could tell them that they had not heard a dozen times before.

A bold venture

When the opening lecture ended I hastened to return to the dormitory to prepare my second talk. On the way I saw Jack Steinberger, one of the veterans of CERN, for whose course I had once acted as a tutor. I told him that I had come to CERN to give Academic Training lectures and he said, with dismay: “I know that. I looked for my people this morning and there was nobody around, because they had all gone to your lecture.”

That evening I went to the CERN cafeteria for a coffee and there I saw something that I had not noticed before. There was a monitor on the wall and people were watching the screen with great curiosity. The monitor was showing the rate of proton–antiproton collisions in the UA1 detector in an event from the October–December 1982 run of the proton–antiproton collider. The W’s decay produces a high transverse-energy electron (arrowed bottom right) back-to-back with missing energy, indicative of the emission of an invisible neutrino. The scent of discovery: a visit to CERN in late 1982

Lalit Sehgal experienced an increased curiosity in electroweak physics at CERN in the weeks leading up to the discovery of the W and Z bosons.

In the autumn of 1982, I was invited to give a series of seven lectures at CERN under the title “Electroweak Interactions”. These were part of the Academic Training Programme, which was aimed at young experimentalists working on projects at CERN. The lectures were to be given on successive days on 18–26 November, excluding the weekend of 21–22 November. I had given seminars at CERN on earlier occasions and the response had always been positive. Giving seven lectures in a row could be stressful but at least the subject was in my own domain. I expected the number of people attending to be between 50 and 100.

When I arrived to give my lecture on the first day, I was astonished to see that the auditorium was chuck-full of people. (Somebody mentioned later that the number was 400.) For a moment I thought that I had wandered into the wrong auditorium. Seated in the first row were stalwarts of CERN, such as Rolf Hagedorn, Jacques Prentki, Maurice Jacob and André Martin. I could see in the crowd several experienced people whom I knew from the heyday of neutrino physics. It was not at all the kind of audience that I had expected. I began to wonder what I could tell them that they had not heard a dozen times before.

A bold venture

When the opening lecture ended I hastened to return to the dormitory to prepare my second talk. On the way I saw Jack Steinberger, one of the veterans of CERN, for whose course I had once acted as a tutor. I told him that I had come to CERN to give Academic Training lectures and he said, with dismay: “I know that. I looked for my people this morning and there was nobody around, because they had all gone to your lecture.”

That evening I went to the CERN cafeteria for a coffee and there I saw something that I had not noticed before. There was a monitor on the wall and people were watching the screen with great curiosity. The monitor was showing the rate of proton–antiproton collisions in the UA1 detector in an event from the October–December 1982 run of the proton–antiproton collider. The W’s decay produces a high transverse-energy electron (arrowed bottom right) back-to-back with missing energy, indicative of the emission of an invisible neutrino.

The scent of discovery: a visit to CERN in late 1982

Lalit Sehgal experienced an increased curiosity in electroweak physics at CERN in the weeks leading up to the discovery of the W and Z bosons.

In the autumn of 1982, I was invited to give a series of seven lectures at CERN under the title “Electroweak Interactions”. These were part of the Academic Training Programme, which was aimed at young experimentalists working on projects at CERN. The lectures were to be given on successive days on 18–26 November, excluding the weekend of 21–22 November. I had given seminars at CERN on earlier occasions and the response had always been positive. Giving seven lectures in a row could be stressful but at least the subject was in my own domain. I expected the number of people attending to be between 50 and 100.

When I arrived to give my lecture on the first day, I was astonished to see that the auditorium was chuck-full of people. (Somebody mentioned later that the number was 400.) For a moment I thought that I had wandered into the wrong auditorium. Seated in the first row were stalwarts of CERN, such as Rolf Hagedorn, Jacques Prentki, Maurice Jacob and André Martin. I could see in the crowd several experienced people whom I knew from the heyday of neutrino physics. It was not at all the kind of audience that I had expected. I began to wonder what I could tell them that they had not heard a dozen times before.

A bold venture

When the opening lecture ended I hastened to return to the dormitory to prepare my second talk. On the way I saw Jack Steinberger, one of the veterans of CERN, for whose course I had once acted as a tutor. I told him that I had come to CERN to give Academic Training lectures and he said, with dismay: “I know that. I looked for my people this morning and there was nobody around, because they had all gone to your lecture.”

That evening I went to the CERN cafeteria for a coffee and there I saw something that I had not noticed before. There was a monitor on the wall and people were watching the screen with great curiosity. The monitor was showing the rate of proton–antiproton collisions in the UA1 detector in an event from the October–December 1982 run of the proton–antiproton collider. The W’s decay produces a high transverse-energy electron (arrowed bottom right) back-to-back with missing energy, indicative of the emission of an invisible neutrino.

The scent of discovery: a visit to CERN in late 1982

Lalit Sehgal experienced an increased curiosity in electroweak physics at CERN in the weeks leading up to the discovery of the W and Z bosons.

In the autumn of 1982, I was invited to give a series of seven lectures at CERN under the title “Electroweak Interactions”. These were part of the Academic Training Programme, which was aimed at young experimentalists working on projects at CERN. The lectures were to be given on successive days on 18–26 November, excluding the weekend of 21–22 November. I had given seminars at CERN on earlier occasions and the response had always been positive. Giving seven lectures in a row could be stressful but at least the subject was in my own domain. I expected the number of people attending to be between 50 and 100.

When I arrived to give my lecture on the first day, I was astonished to see that the auditorium was chuck-full of people. (Somebody mentioned later that the number was 400.) For a moment I thought that I had wandered into the wrong auditorium. Seated in the first row were stalwarts of CERN, such as Rolf Hagedorn, Jacques Prentki, Maurice Jacob and André Martin. I could see in the crowd several experienced people whom I knew from the heyday of neutrino physics. It was not at all the kind of audience that I had expected. I began to wonder what I could tell them that they had not heard a dozen times before.

A bold venture

When the opening lecture ended I hastened to return to the dormitory to prepare my second talk. On the way I saw Jack Steinberger, one of the veterans of CERN, for whose course I had once acted as a tutor. I told him that I had come to CERN to give Academic Training lectures and he said, with dismay: “I know that. I looked for my people this morning and there was nobody around, because they had all gone to your lecture.”

That evening I went to the CERN cafeteria for a coffee and there I saw something that I had not noticed before. There was a monitor on the wall and people were watching the screen with great curiosity. The monitor was showing the rate of proton–antiproton collisions in the UA1 detector in an event from the October–December 1982 run of the proton–antiproton collider. The W’s decay produces a high transverse-energy electron (arrowed bottom right) back-to-back with missing energy, indicative of the emission of an invisible neutrino.

The scent of discovery: a visit to CERN in late 1982

Lalit Sehgal experienced an increased curiosity in electroweak physics at CERN in the weeks leading up to the discovery of the W and Z bosons.

In the autumn of 1982, I was invited to give a series of seven lectures at CERN under the title “Electroweak Interactions”. These were part of the Academic Training Programme, which was aimed at young experimentalists working on projects at CERN. The lectures were to be given on successive days on 18–26 November, excluding the weekend of 21–22 November. I had given seminars at CERN on earlier occasions and the response had always been positive. Giving seven lectures in a row could be stressful but at least the subject was in my own domain. I expected the number of people attending to be between 50 and 100.

When I arrived to give my lecture on the first day, I was astonished to see that the auditorium was chuck-full of people. (Somebody mentioned later that the number was 400.) For a moment I thought that I had wandered into the wrong auditorium. Seated in the first row were stalwarts of CERN, such as Rolf Hagedorn, Jacques Prentki, Maurice Jacob and André Martin. I could see in the crowd several experienced people whom I knew from the heyday of neutrino physics. It was not at all the kind of audience that I had expected. I began to wonder what I could tell them that they had not heard a dozen times before.

A bold venture

When the opening lecture ended I hastened to return to the dormitory to prepare my second talk. On the way I saw Jack Steinberger, one of the veterans of CERN, for whose course I had once acted as a tutor. I told him that I had come to CERN to give Academic Training lectures and he said, with dismay: “I know that. I looked for my people this morning and there was nobody around, because they had all gone to your lecture.”

That evening I went to the CERN cafeteria for a coffee and there I saw something that I had not noticed before. There was a monitor on the wall and people were watching the screen with great curiosity. The monitor was showing the rate of proton–antiproton collisions in the UA1 detector in an event from the October–December 1982 run of the proton–antiproton collider. The W’s decay produces a high transverse-energy electron (arrowed bottom right) back-to-back with missing energy, indicative of the emission of an invisible neutrino.
Lalit Sehgal experienced an increased curiosity in electroweak physics at CERN in the weeks leading up to the discovery of the W and Z bosons.

In the autumn of 1982, I was invited to give a series of seven lectures at CERN under the title “Electroweak Interactions”. These were part of the Academic Training Programme, which was aimed at young experimenters working on projects at CERN. The lectures were to be given on successive days on 18–26 November, excluding the weekend of 21–22 November. I had given seminars at CERN on earlier occasions and the response had always been positive. Giving seven lectures in a row could be stressful but at least the subject was in my own domain. I expected the number of people attending to be between 50 and 100.

When I arrived to give my lecture on the first day, I was astonished to see that the auditorium was check-full of people. (Somebody mentioned later that the number was 400.) For a moment I thought that I had wandered into the wrong auditorium. Seated in the first row were stalwarts of CERN, such as Rolf Hagedorn, Jacques Prentki, Maurice Jacob and André Martin. I could see in the crowd several experienced people whom I knew from the heyday of neutrino physics. It was not at all the kind of audience that I had expected. I began to wonder what I could tell them that they had not heard a dozen times before.

A bold venture

When the opening lecture ended I hastened to return to the dormitory to prepare my second talk. On the way I saw Jack Steinberger, one of the veterans of CERN, for whose course I had once acted as a tutor. I told him that I had come to CERN to give Academic Training lectures and he said, with dismay: “I know that. I looked for my people this morning and there was nobody around, because they had all gone to your lecture.”

That evening I went to the CERN cafeteria for a coffee and there I saw something that I had not noticed before. There was a monitor on the wall and people were watching the screen with great curiosity. The monitor was showing the rate of proton–antiproton collisions. The collision rate was low but it was climbing from hour to hour. Now I understood the reason for the crowd in my lecture. CERN was on the way to testing the crucial prediction of electroweak theory, namely the existence of intermediate bosons with masses and properties that were precisely predicted. A confirmation of this prediction would be a triumph for CERN and would probably bring the laboratory its first Nobel prize.

I returned to my room in the dormitory and resumed the writing of my overhead transparencies. I now knew that my lectures would have to focus...
on precisely the questions that the physicists at CERN would be interested in: the cross-sections for W and Z production; the expected event rates; the angular distribution of the W and Z decay products. People would also want to know how uncertain the predictions for the W and Z masses were and why certain theorists (J.J. Sakurai and James Bjorken among them) were cautioning that the masses could turn out to be different. The writing of the transparencies turned out to be time consuming. I had to make frequent revisions, trying to anticipate what questions might be asked. To make corrections on the film transparencies, I was using my after-shave lotion, so that the whole room was reeking of perfume. I was preparing the lectures on a day-by-day basis, not getting much sleep. To stay awake, I would go to the cafeteria for a coffee shortly before it closed. Thereafter I would keep going to the vending machines in the basement for chocolate – until the machines ran out of chocolate or I ran out of coins.

After the fourth lecture, the room in the dormitory had become such a mess (papers everywhere and the strong smell of after-shave) that I decided to ask the secretariat for an office where I could work. Office space in CERN is always scarce but they said I could use the office that was previously occupied by Sakurai. At that point I recalled, with sorrow, his tragic and totally unexpected death that I had read about some weeks earlier. I had forgotten that he was a visitor at CERN at the time. I had high regard for him as a physicist. There was a period of some years when we were doing parallel things in connection with the structure of neutral currents. He was always fair and correct in attributing credit and was an excellent lecturer. I had met him quite recently at the Neutrino ‘82 Conference in Balatonfüred and at the 1982 International Conference on High-Energy Physics in Paris. When the secretary opened the office for me, many of Sakurai’s books and papers were still in the room. Lying on his desk were a couple of preprints that he had been reading on his last day at the office. I felt uncomfortable about disturbing that scene by bringing in my own papers and I told the secretary that I would continue to work in the dormitory.

Champagne times

The lectures went well. The attendance declined after I had finished with the discussion of intermediate bosons (vector quanta) and Higgs particles (scalar quanta). On the eve of the last lecture, I went rather late to the CERN cafeteria for dinner. The place was almost deserted. I saw that there was one corner that had been screened off for a private get-together. There were sounds of a party, with clinking glasses and the pop of a champagne bottle. Glancing inside the screen, I saw Steinberger and a number of American visitors at CERN. I realised that it was Thursday and they were celebrating Thanksgiving. For a moment I had a desire to join them but my natural diffidence held me back. As I was about to leave, one person emerged from the enclosure. It was Gary Feldman from SLAC. He greeted me and said: “I have been attending your lectures. What are you going to talk about tomorrow?” When I said CP violation he said: “What a shame. I should have loved to hear your lectures. What are you going to talk about tomorrow?” When I said that I was about to leave, one person emerged from the enclosure. It was Gary Feldman from SLAC. He greeted me and said: “I have been attending your lectures. What are you going to talk about tomorrow?” When I said CP violation he said: “What a shame. I should have loved to hear your lectures. What are you going to talk about tomorrow?” When I said that I was going to leave, one person emerged from the enclosure. It was a physicist. There was a scent of discovery in the air. On 25 January 1983, eight weeks after my return, CERN held a press conference to announce the discovery of the W boson. The announcement of the Z boson followed on 1 June.

Résumé

Un parfum d’after-shave et de découverte : visite au CERN en novembre 1982

Quand Lalit Sehgal arriva au CERN pour donner une série de conférences sur la physique électrofaible, à l’automne 1982, il eut la surprise de découvrir un amphithéâtre bondé. Il devait rapidement comprendre pourquoi. Les expériences consacrées à la recherche des bosons W et Z avaient commencé, mettant à profit l’audacieuse conversion du Supersynchrotron à protons en collisionneur proton–antiproton. Il dut alors à plusieurs reprises passer la moitié de la nuit à adapter ses cours pour traiter en détail la production de ces bosons vecteurs. Avant son départ, les physiciens de l’expérience UA1 purent lui montrer quelques événements candidats et, l’espace de quelques semaines, le boson W avait été découvert, suivi de peu par le Z.

Lalit M Sehgal, Aachen.

Finding the W and Z

Thirty years ago, CERN made scientific history with the discoveries of the W and Z bosons. Here, we reprint an extract from the special issue of CERN Courier that commemorated this breakthrough.

In February 1981, the Proton Synchrotron received and accelerated antiprotons from the Antiproton Accumulator, thus becoming the world’s first Antiproton Synchrotron. On 7 July, transfer to the Super Proton Synchrotron, acceleration and brief storage at 270 GeV were achieved. Carlo Rubbia delayed his departure to the Lisbon High Energy Physics Conference by a day so that on 10 July he was able to announce that the UA1 detector had seen its first proton–antiproton collisions. There were runs at modest intensities in the second half of the year and the first visual records of the collisions came from another experiment (UA5) using large streamer chambers. UA1 was then moved out to make way for UA2, which took its first data in December. In 1982, an accident to UA1 forced a concentration of the scheduled proton–antiproton running into a single two-month period at the end of the year (October to December). In terms of operating efficiency, it proved a blessing in disguise and research director Erwin Gabathuler happily sacrificed a crate of champagne to the machine-operating crews as the collision rate was taken to 10 times that of the year before. This was the historic run in which the W particles were first observed.

It was astonishing how fast physics results were pulled from the data accumulated up to 6 December 1982. At a Topical Workshop on Proton-Antiproton Collider Physics held in Rome from 12–14 January 1983, the first tentative evidence for observation of the W particle by the UA1 and UA2 collaborations was there. Out of the several thousand-million collisions that had been seen, a tiny handful gave signals that could correspond to the production of a W in the high-energy collision and its subsequent decay into an electron (or positron if the W was positively charged) and a neutrino. The detectors were programmed to look for high-energy electrons coming out at a relatively large angle to the beam direction. Also, energy imbalance of the particles around a decay indicated the emergence of a neutrino, which itself cannot be detected in the experimental apparatus.

The tension at CERN became electric, culminating in two brilliant seminars, from Carlo Rubbia (for UA1) on Thursday 20 January and Luigi Di Lella (for UA2) the following afternoon, both...
Finding the W and Z

Thirty years ago, CERN made scientific history with the discoveries of the W and Z bosons. Here, we reprint an extract from the special issue of CERN Courier that commemorated this breakthrough.

In February 1981, the Proton Synchrotron received and accelerated antiprotons from the Antiproton Accumulator, thus becoming the world’s first Antiproton Synchrotron. On 7 July, transfer of the Super Proton Synchrotron, acceleration and brief storage at 270 GeV were achieved. Carlo Rubbia delayed his departure to the Lisbon High Energy Physics Conference by a day so that on 10 July he was able to announce that the UA1 detector had seen its first proton-antiproton collisions. There were runs at modest intensities in the second half of the year and the first visual records of the collisions came from another experiment (UA5) using large streamer chambers. UA1 was then moved out to make way for UA2, which took its first data in December.

In 1982, an accident to UA1 forced a concentration of the scheduled proton-antiproton running into a single two-month period at the end of the year (October to December). In terms of operating efficiency, it proved a blessing in disguise and research director Erwin Gabathuler happily sacrificed a crate of champagne to the machine-operating crews as the collision rate was taken to 10 times that of the year before. This was the historic run in which the W particles were first observed.

It was astonishing how fast physics results were pulled from the data accumulated up to 6 December 1982. At a Topical Workshop on Proton-Antiproton Collider Physics held in Rome from 12–14 January 1983, the first tentative evidence for observation of the W particle by the UA1 and UA2 collaborations was there. Out of the several thousand-million collisions that had been seen, a tiny handful gave signals that could correspond to the production of a W in the high-energy collision and its subsequent decay into an electron (or positron if the W was positively charged) and a neutrino. The detectors were programmed to look for high-energy electrons coming out at a relatively large angle to the beam direction. Also, energy imbalance of the particles around a decay indicated the emergence of a neutrino, which itself cannot be detected in the experimental apparatus.

The tension at CERN became electric, culminating in two brilliant seminars, from Carlo Rubbia (for UA1) on Thursday 20 January and Luigi Di Lella (for UA2) the following afternoon, both

Lalit M Sehgal, Aachen.

Reminiscence

on precisely the questions that the physicists at CERN would be interested in: the cross-sections for W and Z production; the expected event rates; the angular distribution of the W and Z decay products, etc. People would also want to know how uncertain the predictions for the W and Z masses were and why certain theorists (J.J. Sakurai and James Bjorken among them) were cautioning that the masses could turn out to be different. The writing of the transparencies turned out to be time consuming. I had to make frequent revisions, trying to anticipate what questions might be asked. To make corrections on the film transparencies, I was using my after-shave lotion, so that the whole room was reeking of perfume. I was preparing the lectures on a day-by-day basis, not getting much sleep. To stay awake, I would go to the cafeteria for a coffee shortly before it closed. Thereafter I would keep going to the vending machines in the basement for chocolate — until the machines ran out of chocolate or I ran out of coins.

After the fourth lecture, the room in the dormitory had become such a mess (papers everywhere and the strong smell of after-shave) that I decided to ask the secretariat for an office where I could work. Office space in CERN is always scarce but they said I could use the office that was previously occupied by Sakurai. At that point I recalled, with sorrow, his tragic and totally unexpected death that I had read about some weeks earlier. I had forgotten that he was a visitor at CERN at the time. I had high regard for him as a physicist. There was a period of some years when we were doing parallel things in connection with the structure of neutral currents. He was always fair and correct in attributing credit and was an excellent lecturer. I had met him quite recently at the Neutrino ’82 conference in Balatonfüred and at the 1982 International Conference on High-Energy Physics in Paris. When the secretary opened the office for me, many of Sakurai’s books and papers were still in the room. Lying on his desk were a couple of preprints that he had been reading on his last day at the office. I felt uncomfortable about disturbing that scene by bringing in my own papers and I told the secretary that I would continue to work in the dormitory.

Champagne times

The lectures went well. The attendance declined after I had finished with the discussion of intermediate bosons (vector quanta) and Higgs particles (scalar quanta). On the eve of the last lecture, I went rather late to the CERN cafeteria for dinner. The place was almost deserted. I saw that there was one corner that had been screened off for a private get-together. There were sounds of a party, with clinking glasses and the pop of a champagne bottle. Glancing inside the screen, I saw Steinberger and a number of American visitors at CERN. I realised that it was Thursday and they were celebrating Thanksgiving. For a moment I had a desire to join them but my natural diffidence held me back. As I was about to leave, one person emerged from the enclosure. It was Gary Feldman from SLAC. He greeted me and said: “I have been attending your lectures. What are you going to talk about tomorrow?” When I said CP violation he said: “What a shame. I should have loved to join them but my natural diffidence held me back. As I was about to leave, one person emerged from the enclosure.” I felt uncomfortable about disturbing that scene by bringing in my own papers and I told the secretary that I would continue to work in the dormitory.

Résumé

Un après-midi après-shave et de découverte : visite au CERN en novembre 1982

Quand Lalit Sehgal arriva au CERN pour donner une série de conférences sur la physique électrofaible, à l’automne 1982, il eut la surprise de découvrir un amphithéâtre bondé. Il devait rapidement comprendre pourquoi. Les expériences consacrées à la recherche sur des bosons W et Z avaient commencé, mettant à profit l’audacieuse conversion du Supersynchrotron à proton–antiproton collidant, while van der Meer’s technical insight made the project possible.

room of the UA1 experiment in which physicists from Aachen were participating. They showed me a couple of events that were candidates for the W and Z. It seemed that CERN would have occasion to open champagne bottles, before too long.

I returned to Aachen quite exhausted. I resolved not to give so many lectures again (they had asked for only four/five). I also resolved not to use after-shave as a correcting fluid. But it had been a satisfying visit. I had come to CERN at a time full of suspense. There was a scent of discovery in the air.

On 25 January 1983, eight weeks after my return, CERN held a press conference to announce the discovery of the W boson. The announcement of the Z boson followed on 1 June.

Less than 11 months after Lalit Sehgal’s visit to CERN, Carlo Rubbia, left, and Simon van der Meer were awarded the 1984 Nobel prize for their roles in discovering the W and Z particles. It was Rubbia who pushed hard to bring about the conversion of CERN’s SPS to a proton–antiproton collider, while van der Meer’s technical insight made the project possible.

CERN Courier May 2013

Carlo Rubbia presenting the discovery of the W boson by UA1 in a seminar at CERN on 20 January 1983.
with the CERN auditorium packed to the roof. UA1 announced six candidate W events; UA2 announced four. The presentations were still tentative and qualified. However, over the weekend of 22–23 January, Rubbia became more and more convinced. As he put it, “They look like Ws, they feel like Ws, they smell like Ws, they must be Ws.” And, on 25 January, a press conference was called to announce the discovery of the W. The UA2 team reserved judgement at this stage but further analysis convinced them also.

What was even more impressive was that both teams could already give estimates of mass in excellent agreement with the predictions (about 80 GeV) of the electroweak theory.

It was always clear that the Z would take longer to find. The theory estimated its production rate to be some 10 times lower than that of the W. It implied that the machine physicists had to push their collision rates still higher, and this they did in style in the second historic proton–antiproton run from April to July 1983. They exceeded by 50% the challenging goal that had been set and this time it was director-general Herwig Schopper who forfeited a crate of champagne.

Again there was tension as the run began because the Z did not seem keen to show itself. Although more difficult to produce than the W, its signature is easier to spot because it can decay into an electron–positron pair or a muon pair. Two such high-energy particles flying out in opposite directions were no problem for detectors and data-handling systems that had so cleverly unearthed the W.

On 4 May, when analysing the collisions recorded in the UA1 detector a few days earlier, on 30 April, the characteristic signal of two opposite high-energy tracks was seen. Herwig Schopper reported the event at the “Science for Peace” meeting in San Remo on 5 May. However, the event was not a clean example of a particle–antiparticle pair and it was only after three more events had turned up in the course of the month that CERN went public, announcing the discovery of the Z to the press on 1 June. Again, the mass (near 90 GeV) looked bang in line with theory. Just after the run, Pierre Darriulat was able to announce in July that UA2 had also seen at least four good Z decays.

In addition to the Ws and Zs, the observed behaviour was everything that the electroweak theory predicted. Two independent experiments had confirmed a theory of breathtaking imagination and insight.

Extracted from CERN Courier November 1982 pp360–361.

Résumé

La découverte du W et du Z

Civil engineering for the underground experimental hall for UA2 in February 1980.

The UA1 detector, shown here in its “garage” position, in April 1981.

The press conference at CERN on 25 January 1983, announcing the discovery of the W boson at CERN. From left to right: Carlo Rubbia, spokesperson of UA1; Simon van der Meer, responsible for developing the stochastic cooling technique; Herwig Schopper, director-general; Erwin Gabathuler, research director; and Pierre Darriulat, the UA2 spokesperson.

An event in UA1 from the historic run in October to December 1982. The first W bosons were found during this run (see p25).

The first detection of a Z particle, recorded by the UA1 experiment on 30 April 1983. The two white tracks seen here reveal the electron–positron pair produced in the Z’s decay.

The UA2 detector in September 1981.

Pierre Darriulat, spokesperson of UA2, in September 1983.

A Z boson decaying to an electron–positron pair in the upgraded UA2 detector.
with the CERN auditorium packed to the roof. UA1 announced six candidate W events; UA2 announced four. The presentations were still tentative and qualified. However, over the weekend of 22–23 January, Rubbia became more and more convinced. As he put it, “They look like Ws, they feel like Ws, they smell like Ws, they must be Ws.” And, on 25 January, a press conference was called to announce the discovery of the W. The UA2 team reserved judgement at this stage but further analysis convinced them also. What was even more impressive was that both teams could already give estimates of mass in excellent agreement with the predictions (about 80 GeV) of the electroweak theory.

It was always clear that the Z would take longer to find. The theory estimated its production rate to be some 10 times lower than that of the W. It implied that the machine physicists had to push their collision rates still higher, and this they did in style in the second historic proton–antiproton run from April to July 1983. They exceeded by 50% the challenging goal that had been set and this time it was director-general Herwig Schopper who forfeited a crate of champagne.

Again there was tension as the run began because the Z did not seem keen to show itself. Although more difficult to produce than the W, its signature is easier to spot because it can decay into an electron–positron pair or a muon pair. Two such high-energy particles flying out in opposite directions were no problem for detectors and data-handling systems that had so cleverly unearthed the W.

On 4 May, when analysing the collisions recorded in the UA1 detector a few days earlier, on 30 April, the characteristic signal of two opposite high-energy tracks was seen. Herwig Schopper reported the event at the “Science for Peace” meeting in San Remo on 5 May. However, the event was not a clean example of a particle–antiparticle pair and it was only after three more events had turned up in the course of the month that CERN went public, announcing the discovery of the Z to the press on 1 June. Again, the mass (near 90 GeV) looked bang in line with theory. Just after the run, Pierre Darriulat was able to announce in July that UA2 had also seen at least four good Z decays.

In addition to the Ws and Zs, the observed behaviour was everything that the electroweak theory predicted. Two independent experiments had confirmed a theory of breathtaking imagination and insight.

● Extracted from CERN Courier November 1982 pp360–361.

Résumé
La découverte du W et du Z

Heavy-ion collisions are used at CERN and other laboratories to re-create conditions of high temperature and high energy density, similar to those that must have characterized the first instants of the universe, after the Big Bang. Yet heavy-ion collisions are not all equal. Because heavy ions are extended objects, the system created in a central head-on collision is different from that created in a peripheral collision, where the nuclei just graze each other.

Measuring just how central such collisions are at the LHC is an important part of the studies by the ALICE experiment, which specializes in heavy-ion physics. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

Centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density because it is related directly to the initial overlap region of the colliding nuclei. Geometrically, it is defined by the impact parameter, \(b \) – the distance between the centres of the two colliding nuclei in a plane transverse to the collision axis (figure 1). Centrality is thus related to the fraction of the geometrical cross-section that overlaps, which is proportional to \(\pi b^2/\pi (2R_A)^2 \), where \(R_A \) is the nuclear radius. It is customary in heavy-ion physics to characterize the centrality of a collision in terms of the number of participants \(N_{\text{part}} \), i.e. the number of nucleons that undergo at least one collision, or in terms of the number of binary collisions among nucleons from the two nuclei \(N_{\text{coll}} \).

However, neither the impact parameter nor the number of participants, spectators or nucleon–nucleon collisions are directly measurable. This means that experimental observables are needed that can be related to these geometrical quantities. One such observable is the multiplicity of the particles produced in collision in a given rapidity range around mid-rapidity; this multiplicity increases monotonically with the impact parameter. A second useful observable is the energy carried by the spectators close to the beam direction and deposited – in the case of the ALICE experiment – in the Zero Degree Calorimeter (ZDC); this decreases for more central collisions, as shown in the upper part of figure 2, overleaf.

To see how much of a heavy ion participates in a collision, ALICE must determine a key parameter – centrality.

Heavy-ion collisions are used at CERN and other laboratories to re-create conditions of high temperature and high energy density, similar to those that must have characterized the first instants of the universe, after the Big Bang. Yet heavy-ion collisions are not all equal. Because heavy ions are extended objects, the system created in a central head-on collision is different from that created in a peripheral collision, where the nuclei just graze each other.

Measuring just how central such collisions are at the LHC is an important part of the studies by the ALICE experiment, which specializes in heavy-ion physics. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

Centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density because it is related directly to the initial overlap region of the colliding nuclei. Geometrically, it is defined by the impact parameter, \(b \) – the distance between the centres of the two colliding nuclei in a plane transverse to the collision axis (figure 1). Centrality is thus related to the fraction of the geometrical cross-section that overlaps, which is proportional to \(\pi b^2/\pi (2R_A)^2 \), where \(R_A \) is the nuclear radius. It is customary in heavy-ion physics to characterize the centrality of a collision in terms of the number of participants \(N_{\text{part}} \), i.e. the number of nucleons that undergo at least one collision, or in terms of the number of binary collisions among nucleons from the two nuclei \(N_{\text{coll}} \). The nucleons that do not participate in any collision – the spectators – essentially keep travelling undeflected, close to the beam direction.

However, neither the impact parameter nor the number of participants, spectators or nucleon–nucleon collisions are directly measurable. This means that experimental observables are needed that can be related to these geometrical quantities. One such observable is the multiplicity of the particles produced in collision in a given rapidity range around mid-rapidity; this multiplicity increases monotonically with the impact parameter. A second useful observable is the energy carried by the spectators close to the beam direction and deposited – in the case of the ALICE experiment – in the Zero Degree Calorimeter (ZDC); this decreases for more central collisions, as shown in the upper part of figure 2, overleaf. Experimental centrality is expressed as a percentage of the total nuclear interaction cross-section, e.g. the 10% most central events are the 10% that have the highest particle multiplicity.
Heavy-ion collisions are used at CERN and other laboratories to re-create conditions of high temperature and high energy density, similar to those that must have characterized the first instants of the universe, after the Big Bang. Yet heavy-ion collisions are not all equal. Because heavy ions are extended objects, the system created in a central head-on collision is different from that created in a peripheral collision, where the nuclei just graze each other. Measuring just how central such collisions are at the LHC is an important part of the studies by the ALICE experiment, which specializes in heavy-ion physics. The centrality determination provides a tool to compare ALICE measurements with those of other experiments and with theoretical calculations.

Centrality is a key parameter in the study of the properties of QCD matter at extreme temperature and energy density because it is related directly to the initial overlap region of the colliding nuclei. Geometrically, it is defined by the impact parameter, \(b \) – the distance between the centres of the two colliding nuclei in a plane transverse to the collision axis (figure 1). Centrality is thus related to the fraction of the geometrical cross-section that overlaps, which is proportional to \(\pi b^2 / \pi (2R_A)^2 \), where \(R_A \) is the nuclear radius. It is customary in heavy-ion physics to characterize the centrality of a collision in terms of the number of participants (\(N_{\text{part}} \)), i.e. the number of nucleons that undergo at least one collision, or in terms of the number of binary collisions among nucleons from the two nuclei (\(N_{\text{coll}} \)). The nucleons that do not participate in any collision – the spectators – essentially keep travelling undeflected, close to the beam direction.

Experimentally, centrality is expressed as a percentage of the total nuclear interaction cross-section, e.g. the 10% most central events are the 10% that have the highest particle multiplicity.

To see how much of a heavy ion participates in a collision, ALICE must determine a key parameter – centrality.
But how much of the total nuclear cross-section is measured in ALICE? Are the events detected only hadronic processes or do they include something else? ALICE collected data during the LHC’s periods of lead–lead running in 2010 and 2011 using interaction triggers that have an efficiency large enough to explore the entire sample of hadronic collisions. However, because of the strong electromagnetic fields generated as the relativistic heavy ions graze each other the event sample is contaminated by background from electromagnetic processes, such as pair-production and photonuclear interactions. These processes, which are characterized by low-multiplicity events with soft, low-momentum particles close to mid-rapidity, produce events that are similar to peripheral hadronic collisions and must be rejected to isolate hadronic interactions. Part of the contamination is rejected by requiring that both nuclei break up in the collision, producing a coincident signal in both sides of the ZDC. The remaining contamination is estimated using events generated by a Monte Carlo simulator of electromagnetic processes (e.g. START). This shows that for about 90% of the hadronic cross-section, the purity of the event sample and the efficiency of the event selection is 100%. Nevertheless, the most peripheral events, 10% of the total, remain contaminated by electromagnetic processes and trigger inefficiency – and must be used with special care in the physics analyses.

The centrality of each event in the sample of hadronic interactions can be defined in terms of particle multiplicity and the spectator energy deposited in the ZDC. Various detectors in ALICE measure quantities that are proportional to the particle multiplicity, with different detectors covering different regions in pseudo-rapidity (η). These include, e.g., the time projection chambers (TPC) or the forward particle detector (FPD). The forward multiplicity detector (1.7 < Δη < 5.0 and –3.4 < Δη < –1.7), on the other hand, is used to study the centrality of the most peripheral region.

The centrality resolution depends on the rapidity coverage of the detector volume. For a geometrical distribution of the impact parameter and for each centrality percentile, the number of particles with different detectors covering different regions in pseudo-rapidity (η) can be classiﬁed by using the measured particle multiplicity and the spectrometer energy deposited in the ZDC. Various detectors in ALICE measure quantities that are proportional to the particle multiplicity, with different detectors covering different regions in pseudo-rapidity (η). These include, e.g., the time projection chambers (TPC) or the forward particle detector (FPD). The forward multiplicity detector (1.7 < Δη < 5.0 and –3.4 < Δη < –1.7), on the other hand, is used to study the centrality of the most peripheral region.

The high-quality results obtained in the determination of centrality are directly reﬂected in the analyses that ALICE performs to investigate the properties of the system that strongly depend on its geometry. Elliptic ﬂow, for example, is a fundamental measurement of the degree of collectivity of the system at an early stage of its evolution since it directly reﬂects the initial anisotropicity, which is largest at the beginning of the evolution. The quality of the centrality determination allows access to the geometrical properties of the system with a very high precision. To remove non-ﬂow effects, which are predominantly short-ranged in rapidity, as well as artefacts of track-splitting, two-particle correlations are calculated in 1% centrality bins with a one-unit gap in pseudo-rapidity. Using these correlations, as well as the multi-particle cumulants (4th, 6th and 8th order), ALICE can extract the elliptic ﬂow coefﬁcient v2 from the data by using a model for the multi-particle correlations that is as efﬁcient as the azimuthal Fourier decomposition of the momentum distribution (ALICE collaboration 2011). Such measurements have allowed ALICE to demonstrate that the hot and dense matter created in heavy-ion collisions at the LHC behaves like a ﬂuid with almost zero viscosity (CERN Courier April 2011 p7) and to pursue further the hydrodynamic features of the quark–gluon plasma that is formed there.

Further reading

Résumé

Participants et spectateurs dans les collisions d’ions lourds Les collisions d’ions lourds sont utilisées pour recréer les conditions de haute température et de densité d’énergie qui doivent avoir existé au tout premier instants de l’Univers, après le Big Bang. Pourtant, toutes les collisions d’ions lourds ne sont pas égales. Comme les ions lourds sont des objets énigmatiques, le système créé dans une collision centrale, frontale, est différent de celui qui résulte d’une collision périphérique, dans laquelle les noyaux ne font que s’effilocher. Mesurer la “centralité” des collisions au LHC constitue une partie importante des études réalisées par l’expérience ALICE, et fournit un outil permettant de comparer les résultats de ces deux méthodes à une autre expérience, ainsi qu’avec les calculs théoriques.

Alberto Toia, University of Padua/INFN.
But how much of the total nuclear cross-section is measured in ALICE? Are the events detected only hadronic processes or do they include something else? ALICE collected data during the LHC’s periods of lead–lead running in 2010 and 2011 using interaction triggers that have an efficiency large enough to explore the entire sample of hadronic collisions. However, because of the strong electromagnetic fields generated as the relativistic heavy ions graze each other the event sample is contaminated by background from electromagnetic processes, such as pair-production and photonuclear interactions. These processes, which are characterized by low-multiplicity events with soft, low-momentum particles close to mid-rapidity, produce events that are similar to peripheral hadronic collisions and must be rejected to isolate hadronic interactions. Part of the contamination is rejected by requiring that both nuclei break up in the collision, producing a coincident signal in both sides of the ZDC. The remaining contamination is estimated using events generated by a Monte Carlo simulator of electromagnetic processes (e.g. STARLite). This shows that for about 90% of the hadronic cross-section, the purity of the event sample and the efficiency of the event selection is 100%. Nevertheless, the most peripheral events, 10% of the total, remain contaminated by electromagnetic processes and trigger inefficiency – and must be used with special care in the physics analyses.

The centrality of each event in the sample of hadronic interac-
tions is determined by two different methods: the charged particle multiplicity and the spectator energy deposited in the ZDC. Various detectors in ALICE measure quantities that are proportional to the particle multiplicity, with different detectors covering different regions in pseudo-rapidity (η). Several of these, e.g. the time projection chamber (covering [η] = 0–0.8), the silicon pixel detector ([η] = 1–1.4), the forward multiplicity detector ([7 < η < 5.1] and [3.4 < η < 17]) and the V0 scintillators, indicate centrality classes. The NBD-Glauber fit is shown as a line. The inset shows an enlargement of the most peripheral region.

The real resolution – principle, the resolution is given by the difference between the true centrality and the value estimated using a given method. In reality, the true centrality is not known, so how can it be measured? ALICE tested its procedure on simulations using the event generator HIJING, which is widely used and tested on hadronic pro-
cesses, together with a full-scale simulation of detector response based on the GEANT toolkit. In HIJING events, the value of the impact parameter is for every given event and, hence, the true cen-
trality is known. The full GEANT simulation yields the values of signals in the detectors for the given event, so using these centrality estimators an estimate of the centrality can be calculated. The real centrality resolution for the given event is equal to the difference between the measured and the true centrality.

In the real data we approximated the true centrality in an iter-
ative procedure, evaluating event-by-event the average centrality measured by all estimators. The correlation between various esti-
mators is excellent, resulting in a high centrality-resolution. Since centrality (or the production rate of particles) depends on the rapidity coverage of the detector used, the best result – achieved with the V0 detector, which has the largest pseudo-rapidity coverage in ALICE – ranges from 0.5% in central collisions to 2% in peripheral ones, in agreement with the estimation from simulations. This high resolution is confirmed by the analysis of elliptic flow and two-particle correlations where the results, which address geometrical aspects of the collisions, change with 1% centrality bins (figure 3).

So much for the experimental classification of the events in percentiles of the hadronic cross-section. This leaves one issue remaining: how to relate the experimental observables (particle multiplicity, zero-degree geometry) to the geometry of the collision (impact parameter, N_{coll}, N_{part}). What is the mean number of partici-
ants in the 10% most central events?

To answer this question requires a model. HIJING is not used in this case, because the simulated particle multiplicity does not agree with the measured one. Instead ALICE uses a much simpler model, the V0 Glauber model. This is a simple technique, widely used in heavy-ion, from the Alternating Gradient Synchronron to Brookhaven, to CERN’s Super Proton Synchronron, to Brookheaven’s Relativistic Heavy-Ion Collider. It uses few assumptions to describe heavy-ion collisions and couple the collision geometry to the detector signals. First, the two colliding nuclei are described by a realistic distribution of nucleons inside the nucleus measured in electron–nucleon scattering experiments (the Woods-Saxon distribution). Second, the nucleons are assumed to follow straight trajectories. Third, two nucleons from different nuclei are assumed to collide if their distance is less than the distance corresponding to the inelas-
tic nucleon–nucleon cross-section. Last, the same cross-section is used for all successive collisions. The model, which is imple-
mented in a Monte Carlo calculation, takes random samples from a geometrical distribution of the impact parameter and for each collision determines N_{coll} and N_{part}.

The Glauber model can be combined with a simple model for particle production to simulate a multiplicity distribution that is then compared with the experimental one. The particle production is simulated in two steps. Employing a simple parameterization, the number of participants and the number of collisions can be used to determine the number of “ancient” (i.e. resolution dependent) and “modern” (i.e. independent of the detector) sources of particles. In the next step, each ancestor emits particles according to a negative binomial distribution (chosen because it describes particle multiplicity in nucleus–nucleus collisions). The simulated distribution describes up to 90% of the experimental one, as figure 2 shows.

Fitting the measured distribution (e.g. the V0 amplitude) with the distribution simulated using the Glauber model creates a connec-
tion between an experimental observable (the V0 amplitude) and the geometrical model of nuclear collisions employed in the model. Since the geometry information (b, N_{coll}, N_{part}) for the simulated dis-
tribution is based on the model’s geometrical properties for centrality classes defined by sharp cuts in the simulated multiplici-
distribution can be calculated.

The high-quality results obtained in the determination of cen-
trality are directly reflected in the analyses that ALICE performs to investigate the properties of the system that strongly depend on its geometry. Elliptic flow, for example, is a fundamental measure of the degree of collectivity of the system at an early stage of its evolution since it directly reflects the initial spatial anisotropy, which is largest at the beginning of the evolution. The quality of the central determination allows access to the geometrical proper-
ties of the system with a very high precision. To remove non-flow effects, which are predominantly short-ranged in rapidity, as well as artefacts of track-splitting, two-particle correlations are calcu-
lated in 1% centrality bins with a one-unit gap in pseudo-rapidity. Using these correlations, as well as the multi-particle cumulants (4th, 6th and 8th order), ALICE can extract the elliptic flow-coef-

cients v_2, v_3 and v_4. The most efficient of the azimuthal Fourier decomposition of the momentum distribution (ALICE collaboration 2011). Such measurements have allowed ALICE to demonstrate that the hot and dense matter created in high-energy collisions at the LHC behaves like a fluid with almost zero viscosity (CERN Courier April 2011 p7) and to pursue fur-
ther the hydrodynamic features of the quark–gluon plasma that is formed there.
Contrary to the stereotype, advances in science are not typically about shouting “Eureka!” Instead, they are about results that make a researcher say, “That’s strange.” This is what happened 30 years ago when the European Muon collaboration (EMC) at CERN looked at the ratio of their data on per-nucleon deep-inelastic muon scattering off iron and compared it with that of the much smaller nucleus of deuterium.

The data were plotted as a function of Bjorken-x, which in deep-inelastic scattering is interpreted as the fraction of the nucleon’s momentum carried by the struck quark. The binding energies of nucleons in the nucleus are several orders of magnitude smaller than the momentum transfers of deep-inelastic scattering, so, naively, such a ratio should be unity except for small corrections for the Fermi motion of nucleons in the nucleus. What the EMC experiment discovered was an unexpected downwards slope to the ratio (figure 1) – as revealed in CERN Courier in November 1982 and then published in a refereed journal the following March (Aubert et al. 1983).

This surprising result was confirmed by many groups, culminating with the high-precision electron- and muon-scattering data from SLAC (Gomez et al. 1994), Fermilab (Adams et al. 1995) and the New Muon collaboration (NMC) at CERN (Amaudruz et al. 1995 and Arneodo et al. 1996). Figure 2 shows representative data. The conclusions from the combined experimental evidence were that: the effect had a universal shape; was independent of the squared four-momentum transfer, Q^2; increased with nuclear mass number A; and scaled with the average nuclear density.

A simple picture

The primary theoretical interpretation of the EMC effect – the region $x > 0.3$ – was simple: quarks in nuclei move throughout a larger confinement volume and, as the uncertainty principle implies, they carry less momentum than quarks in free nucleons. The reduction of the ratio at lower x, named the shadowing region, was attributed either to the hadronic structure of the photon or, equivalently, to the overlap in the longitudinal

Contrary to the stereotype, advances in science are not typically about shouting “Eureka!” Instead, they are about results that make a researcher say, “That’s strange.” This is what happened 30 years ago when the European Muon collaboration (EMC) at CERN looked at the ratio of their data on per-nucleon deep-inelastic muon scattering off iron and compared it with that of the much smaller nucleus of deuterium.

The data were plotted as a function of Bjorken-x, which in deep-inelastic scattering is interpreted as the fraction of the nucleon’s momentum carried by the struck quark. The binding energies of nucleons in the nucleus are several orders of magnitude smaller than the momentum transfers of deep-inelastic scattering, so, naively, such a ratio should be unity except for small corrections for the Fermi motion of nucleons in the nucleus. What the EMC experiment discovered was an unexpected downwards slope to the ratio (figure 1) – as revealed in CERN Courier in November 1982 and then published in a refereed journal the following March (Aubert et al. 1983).

This surprising result was confirmed by many groups, culminating with the high-precision electron- and muon-scattering data from SLAC (Gomez et al. 1994), Fermilab (Adams et al. 1995) and the New Muon collaboration (NMC) at CERN (Amaudruz et al. 1995 and Arneodo et al. 1996). Figure 2 shows representative data. The conclusions from the combined experimental evidence were that: the effect had a universal shape; was independent of the squared four-momentum transfer, Q^2; increased with nuclear mass number A; and scaled with the average nuclear density.

A simple picture

The primary theoretical interpretation of the EMC effect – the region $x > 0.3$ – was simple: quarks in nuclei move throughout a larger confinement volume and, as the uncertainty principle implies, they carry less momentum than quarks in free nucleons. The reduction of the ratio at lower x, named the shadowing region, was attributed either to the hadronic structure of the photon or, equivalently, to the overlap in the longitudinal

Contrary to the stereotype, advances in science are not typically about shouting “Eureka!” Instead, they are about results that make a researcher say, “That’s strange.” This is what happened 30 years ago when the European Muon collaboration (EMC) at CERN looked at the ratio of their data on per-nucleon deep-inelastic muon scattering off iron and compared it with that of the much smaller nucleus of deuterium.

The data were plotted as a function of Bjorken-x, which in deep-inelastic scattering is interpreted as the fraction of the nucleon’s momentum carried by the struck quark. The binding energies of nucleons in the nucleus are several orders of magnitude smaller than the momentum transfers of deep-inelastic scattering, so, naively, such a ratio should be unity except for small corrections for the Fermi motion of nucleons in the nucleus. What the EMC experiment discovered was an unexpected downwards slope to the ratio (figure 1) – as revealed in CERN Courier in November 1982 and then published in a refereed journal the following March (Aubert et al. 1983).

This surprising result was confirmed by many groups, culminating with the high-precision electron- and muon-scattering data from SLAC (Gomez et al. 1994), Fermilab (Adams et al. 1995) and the New Muon collaboration (NMC) at CERN (Amaudruz et al. 1995 and Arneodo et al. 1996). Figure 2 shows representative data. The conclusions from the combined experimental evidence were that: the effect had a universal shape; was independent of the squared four-momentum transfer, Q^2; increased with nuclear mass number A; and scaled with the average nuclear density.

A simple picture

The primary theoretical interpretation of the EMC effect – the region $x > 0.3$ – was simple: quarks in nuclei move throughout a larger confinement volume and, as the uncertainty principle implies, they carry less momentum than quarks in free nucleons. The reduction of the ratio at lower x, named the shadowing region, was attributed either to the hadronic structure of the photon or, equivalently, to the overlap in the longitudinal

Contrary to the stereotype, advances in science are not typically about shouting “Eureka!” Instead, they are about results that make a researcher say, “That’s strange”. This is what happened 30 years ago when the European Muon collaboration (EMC) at CERN looked at the ratio of their data on per-nucleon deep-inelastic muon scattering off iron and compared it with that of the much smaller nucleus of deuterium. The data were plotted as a function of Bjorken-x, which in deep-inelastic scattering is interpreted as the fraction of the nucleon’s momentum carried by the struck quark. The binding energies of nucleons in the nucleus are several orders of magnitude smaller than the momentum transfers of deep-inelastic scattering, so, naively, such a ratio should be unity except for small corrections for the Fermi motion of nucleons in the nucleus. What the EMC experiment discovered was an unexpected downwards slope to the ratio (figure 1) – as revealed in CERN Courier in November 1982 and then published in a refereed journal the following March (Aubert et al. 1983). This surprising result was confirmed by many groups, culminating with the high-precision electron- and muon-scattering data from SLAC (Gomez et al. 1994), Fermilab (Adams et al. 1995) and the New Muon collaboration (NMC) at CERN (Amaudruz et al. 1995 and Arneodo et al. 1996). Figure 2 shows representative data. The conclusions from the combined experimental evidence were that: the effect had a universal shape; was independent of the squared four-momentum transfer, Q^2; increased with nuclear mass number A; and scaled with the average nuclear density.

A simple picture

The primary theoretical interpretation of the EMC effect – the region $x > 0.3$ – was simple: quarks in nuclei move throughout a larger confinement volume and, as the uncertainty principle implies, they carry less momentum than quarks in free nucleons. The reduction of the ratio at lower x, named the shadowing region, was attributed either to the hadronic structure of the photon or, equivalently, to the overlap in the longitudinal Q^2. The EMC effect still puzzles after 30 years

Contrary to the stereotype, advances in science are not typically about shouting “Eureka!” Instead, they are about results that make a researcher say, “That’s strange”. This is what happened 30 years ago when the European Muon collaboration (EMC) at CERN looked at the ratio of their data on per-nucleon deep-inelastic muon scattering off iron and compared it with that of the much smaller nucleus of deuterium. The data were plotted as a function of Bjorken-x, which in deep-inelastic scattering is interpreted as the fraction of the nucleon’s momentum carried by the struck quark. The binding energies of nucleons in the nucleus are several orders of magnitude smaller than the momentum transfers of deep-inelastic scattering, so, naively, such a ratio should be unity except for small corrections for the Fermi motion of nucleons in the nucleus. What the EMC experiment discovered was an unexpected downwards slope to the ratio (figure 1) – as revealed in CERN Courier in November 1982 and then published in a refereed journal the following March (Aubert et al. 1983). This surprising result was confirmed by many groups, culminating with the high-precision electron- and muon-scattering data from SLAC (Gomez et al. 1994), Fermilab (Adams et al. 1995) and the New Muon collaboration (NMC) at CERN (Amaudruz et al. 1995 and Arneodo et al. 1996). Figure 2 shows representative data. The conclusions from the combined experimental evidence were that: the effect had a universal shape; was independent of the squared four-momentum transfer, Q^2; increased with nuclear mass number A; and scaled with the average nuclear density.

A simple picture

The primary theoretical interpretation of the EMC effect – the region $x > 0.3$ – was simple: quarks in nuclei move throughout a larger confinement volume and, as the uncertainty principle implies, they carry less momentum than quarks in free nucleons. The reduction of the ratio at lower x, named the shadowing region, was attributed either to the hadronic structure of the photon or, equivalently, to the overlap in the longitudinal Q^2. The EMC effect still puzzles after 30 years

Contrary to the stereotype, advances in science are not typically about shouting “Eureka!” Instead, they are about results that make a researcher say, “That’s strange”. This is what happened 30 years ago when the European Muon collaboration (EMC) at CERN looked at the ratio of their data on per-nucleon deep-inelastic muon scattering off iron and compared it with that of the much smaller nucleus of deuterium. The data were plotted as a function of Bjorken-x, which in deep-inelastic scattering is interpreted as the fraction of the nucleon’s momentum carried by the struck quark. The binding energies of nucleons in the nucleus are several orders of magnitude smaller than the momentum transfers of deep-inelastic scattering, so, naively, such a ratio should be unity except for small corrections for the Fermi motion of nucleons in the nucleus. What the EMC experiment discovered was an unexpected downwards slope to the ratio (figure 1) – as revealed in CERN Courier in November 1982 and then published in a refereed journal the following March (Aubert et al. 1983). This surprising result was confirmed by many groups, culminating with the high-precision electron- and muon-scattering data from SLAC (Gomez et al. 1994), Fermilab (Adams et al. 1995) and the New Muon collaboration (NMC) at CERN (Amaudruz et al. 1995 and Arneodo et al. 1996). Figure 2 shows representative data. The conclusions from the combined experimental evidence were that: the effect had a universal shape; was independent of the squared four-momentum transfer, Q^2; increased with nuclear mass number A; and scaled with the average nuclear density.

A simple picture

The primary theoretical interpretation of the EMC effect – the region $x > 0.3$ – was simple: quarks in nuclei move throughout a larger confinement volume and, as the uncertainty principle implies, they carry less momentum than quarks in free nucleons. The reduction of the ratio at lower x, named the shadowing region, was attributed either to the hadronic structure of the photon or, equivalently, to the overlap in the longitudinal Q^2.
Setting Science in Motion

Whether it is attaining sub-nanometre positioning or controlling hundreds of precision axes of movement in a synchrotron ring, Delta Tau sets the global benchmarks for accuracy and control.

Motion controllers

- Eight-axis with or without integral amplifiers
- Up to 256 axes controlled by one CPU
- Quadrature, serial or analog outputs; most serial protocols available
- Remote power supply control via Ethernet or RS485
- Three current ranges: 250mA continuous/15A peak, 5A cont./30A peak, 5A cont./15A peak
- Voltage supply range: 12V – 60V DC
- Optics and TANGO compliant
- Software programmable to run any combination of DC, brushed DC or AC servo motors

Power supplies

- Ten power supplies available: 500VA and 500VA
- Complete 1U form factor
- Each supply can be connected to up to 4 controllers
- Individually thermally protected outputs
- Internal and external terminal control
- Integral regenerative circuit with thermal overload protection

Delta Tau (UK) Limited
Unit 2, Fareway Close, Gorse Lane Industrial Estate, Clacton on Sea, Essex CO15 4TR
Telephone: +44 (0)1255 221055 Fax: +44 (0)1255 225 391 Email: dtuk@deltatau.co.uk
www.deltatau.co.uk

Silicon Drift Detector

No Liquid Nitrogen
Easy to Use

Solid State Design
Low Cost

Super SDD

125 eV FWHM
25 mm² x 500 µm
11.2 µs peaking time
P/B Ratio: 4200:1

XR-100SDD X-Ray Detector and
X-12SDD Complete X-Ray Spectrometer with X-ray detector and preamplifier, digital pulse processor, MCA, and power supply

AMPTEK Inc.
E-mail: sales@amptek.com
www.amptek.com

Please see web site for vacuum applications

Fig. 3. While figure 2 focuses on lower values of x, this focuses on the valence-quark region. In this region, the slope of the EMC effect in the region 0.3 < x < 0.7 and the x > 1 plateaux from nucleon–nucleon short-range correlation (SRC) can be clearly seen. Both the EMC effect and the plateaux are more or less independent of Q², while the dip at x = 1 fills in as Q² increases.

Fig. 4. The slope of the EMC effect, dR/dx, for 0.3 < x < 0.7 with R = E2/F², versus the magnitude of the observed x > 1 plateaux, denoted as aₚ for various nuclei. For data that were taken by completely different groups, the linearity is striking and has caused renewed interest in understanding the cause of both effects. The inset drawings illustrate the kinematic difference of deep-inelastic EMC effect scattering and the scattering from a correlated pair in x > 1 kinematics.

A significant shift in experimental understanding occurred when new data on Be became available (Sleight et al. 2009). This data changed the experimental conclusion that the EMC effect follows the average nuclear density and instead suggested that the effect follows local nuclear density. In other words, even in deep-inelastic kinematics, Be seemed to act like two alpha particles with a single nearly free neutron, rather than like a collection of nucleons whose properties were all modified. This led experimentalists to ask if the x > 1 scaling plateaux (CERN Courier November 2005 p57) that have been attributed to short-range nuclear–nucleon correlations – a phenomenon that is also associated with high local densities (CERN Courier January/February 2009 p22) could be related to the EMC effect. Figure 3 shows the kinematic range of the EMC effect together with the x > 1 short-range correlation (SRC) region. While the dip at x = 1 has been shown to vary rapidly with Q², the EMC effect and the magnitude of the x > 1 plateaux are basically constant within the Q² range of the experimental data. Plotting the slope of the EMC effect, 0.3 < x < 0.7, against the magnitude of scaling x > 1 plateaux for all of the available data, as shown in figure 4, revealed a striking correlation (Weinstein et al. 2011). This phenomenological relationship has led to renewed interest in understanding how strongly correlated nucleons in the nucleus may be affecting the deep-inelastic results.

CERN Courier May 2013
Silicon Drift Detector

No Liquid Nitrogen
Easy to Use

Solid State Design
Low Cost

XR-100SDD X-Ray Detector and
X-123SDD Complete X-Ray Spectrometer with X-ray detector and preamplifier, digital pulse processor, MCA, and power supply

AMPTEK Inc.
E-mail: sales@amptek.com
www.amptek.com

A significant shift in experimental understanding occurred when new data on ^9Be became available

Fig. 3. While figure 2 focuses on lower values of x, this focuses on the valence-quark region. In this region, the slope of the EMC effect in the region $0.3 < x < 0.7$ and the $x > 1$ plateaux from nucleon–nucleon short-range correlation (SRC) can be clearly seen. Both the EMC effect and the plateaux are more or less independent of Q^2 while the dip at $x = 1$ fills in as Q^2 increases.

Fig. 4. The slope of the EMC effect, dR/dx, for $0.3 < x < 0.7$ with $R = E/|Q^2|$ versus the magnitude of the observed $x > 1$ plateaux, denoted as a_x for various nuclei. For data that were taken by completely different groups, the linearity is striking and has caused renewed interest in understanding the cause of both effects. The inset illustrations draw the kinematic difference of deep-inelastic EMC-effect scattering and the scattering from a correlated pair in $x > 1$ kinematics.

A significant shift in experimental understanding occurred when new data on 9Be became available (Seely et al. 2009). These data changed the experimental conclusion that the EMC effect follows the average nuclear density and instead suggested that the effect follows local nuclear density. In other words, even in deep-inelastic kinematics, 9Be seemed to act like two alpha particles with a single nearly free neutron, rather than like a collection of nucleons whose properties were all modified.

This led experimentalists to ask if the $x > 1$ scaling plateaux (CERN Courier November 2005 p37) that have been attributed to short-range nucleon–nucleon correlations—a phenomenon that is also associated with high local densities (CERN Courier January/February 2009 p22)—could be related to the EMC effect. Figure 3 shows the kinematic range of the EMC effect together with the $x > 1$ short-range correlation (SRC) region. While the dip at $x = 1$ has been shown to vary rapidly with Q^2, the EMC effect and the magnitude of the $x > 1$ plateaux are basically constant within the Q^2 range of the experimental data. Plotting the slope of the EMC effect, $0.3 < x < 0.7$, against the magnitude of scaling $x > 1$ plateaux for all of the available data, as shown in figure 4, revealed a striking correlation (Weinstein et al. 2011). This phenomenological relationship has led to renewed interest in understanding how strongly correlated nucleons in the nucleus may be affecting the deep-inelastic results.
In February 2013, on nearly the 30th anniversary of the EMC publication, experimentalists and theorists came together at a special workshop at the University of Washington Institute of Nuclear Theory to review understanding of the EMC effect, discuss recent advances and plan new experimental and theoretical efforts. In particular, an entire series of EMC and SRC experiments are planned for the new 12 GeV electron beam at Jefferson Lab and analysis is underway of new Drell-Yan experimental data from Fermilab.

A new life

Although the EMC effect is now 30 years old, the recent experimental results have given new life to this old puzzle; no longer is Every Model Cool. Understanding the EMC effect implies understanding how partons behave in the nuclear medium. It thus has far-reaching consequences for not only the extraction of neutron information from nuclear targets but also for understanding effects such as the NuTeV anomaly (CERN Courier September 2009 p9) or the excesses in the neutrino cross-sections observed by the MiniBooNE experiment (CERN Courier May 2007 p8).

Further reading

For more about the workshop at the University of Washington Institute of Nuclear Theory, see www.im.washington.edu/PROGRAMS/13-52w.

D Ade et al. 1998 Phys. Rev. 64 3749.

Résumé

L’effet EMC, encore une énigme 30 ans après

Il y a trente ans, les membres de la collaboration EMC (Collaboration européenne du muon) au CERN découvrissent un effet inattendu en rapportant leurs mesures de la diffusion profondément inélastique du muon au nombre de nucléons : les fonctions de structure étaient différentes s’agissant du fer et s’agissant du deutérium, qui est un noyau beaucoup plus léger. En représentant le rapport férodéutérium en fonction de la fraction de l’impulsion du nucléon portée par le quark frappé, les expérimentateurs ont découverts une pente descendante inattendue. Ce résultat surprenant a été confirmé par de nombreux autres groupes, mais il reste une énigme. Des données récentes sur le deutérium ont rendu l’effet EMC fort probable.

Further reading

http://www.muonsinc.com/

Muons, Inc.

Particle beam and accelerator research, development, design, and realization using advanced technologies:

1) Sources and Beams: p, µ, e, γ, H̅, polarized ions
2) RF: NC fast-tunable, dielectric-loaded, and SSR cavities, magnetrons, couplers, HOM dampers
3) Magnets: HTS High-Field, Helical Beam Cooling
4) Simulations: G4beamline, ACE3P, many codes
5) Detectors: profile monitors, fast TOF
6) Applications: Colliders, Factories, ADS Reactors, SNM detection, SMES, monoe energetic photons, rare decay experiments, 6D muon beam cooling, and anything needing creative solutions

IOP Publishing

Pipeline Beam Cooling

Muons, Inc.

Please visit us at Booth 34 at IPAC13
Magnets and coils
www.scanditronix-magnet.se

ANNIVERSARY

In February 2013, on nearly the 30th anniversary of the EMC publication, experimentalists and theorists came together at a special workshop at the University of Washington Institute of Nuclear Theory to review understanding of the EMC effect, discuss recent advances and plan new experimental and theoretical efforts. In particular, an entire series of EMC and SRC experiments are planned for the new 12 GeV electron beam at Jefferson Lab and analysis is underway of new Drell-Yan experimental data from Fermilab.

A new life

Although the EMC effect is now 30 years old, the recent experimental results have given new life to this old puzzle; no longer is Every Model Cool. Understanding the EMC effect implies understanding how partons behave in the nuclear medium. It thus has far-reaching consequences for not only the extraction of neutron information from nuclear targets but also for understanding effects such as the NuTeV anomaly (CERN Courier September 2009 p9) or the excesses in the neutrino cross-sections observed by the MiniBooNE experiment (CERN Courier May 2007 p8).

Further reading

Résumé

L’effet EMC, encore un énigme 30 ans après

Il y a trente ans, les membres de la collaboration EMC (Collaboration européenne du muon) au CERN découvrirent un effet inattendu en rapportant leurs mesures de la diffusion profondément inélastique du muon au nombre de nucléons : les fonctions de structure étaient différentes suggérant que des modifications de la distribution en fraction de l’impulsion du nucléon portée par le quark frappé et s’agissant du deutérium, qui est un noyau beaucoup plus léger. En représentant le rapport fer/deutérium en fonction de la charge, les expérimentateurs ont découvert une pente descendante inattendue. Ce résultat surprenant a été confirmé par de nombreux autres groupes, mais il reste une énigme. Des données récentes sur le deutérium, qui est un noyau beaucoup plus léger, en représentant le rapport fer/deutérium en fonction de la charge, ont montré que des corrélations nucléon-nucléon à courte distance pouvaient être liées à l’effet EMC.

Further information visit
www.kepcopower.com/bphi.htm

BOP 1 KILOWATT from KEPCO
BUILT-IN ARBITRARY WAVEFORM GENERATOR

BOP-KW
・ True 4-quadrant programmable voltage and current power supplies
・ Capable of full source and sink operation
・ Achieve low dissipation and high efficiency, when sinking power from source
・ Recuperates the energy for re-use
・ Bi-directional power factor correction (PFC) circuit allows transparent energy interchange without dissipative sinking
・ Keypad controls for automatic creation and display of waveforms and complex patterns
・ Built-in EN60950-2 Class II input EMI filter provided

BOP-GL Series
・ Standard modification of the KW
・ Optimized for exceptionally low current ripple and noise
・ Improved stability (shift and temperature)
・ Suitable for driving induction loads such as large magnetics or motors
・ Pass smoothly through zero without switching providing true ± voltage and ± current

For more information visit
http://www.kepcopower.com/bphi.htm

For more about the workshop at the University of Washington Institute of Nuclear Theory, see www.im.washington.edu/PROGRAMS/13-52w/.

In February 2013, on nearly the 30th anniversary of the EMC publication, experimentalists and theorists came together at a special workshop at the University of Washington Institute of Nuclear Theory to review understanding of the EMC effect, discuss recent advances and plan new experimental and theoretical efforts. In particular, an entire series of EMC and SRC experiments are planned for the new 12 GeV electron beam at Jefferson Lab and analysis is underway of new Drell-Yan experimental data from Fermilab.

A new life

Although the EMC effect is now 30 years old, the recent experimental results have given new life to this old puzzle; no longer is Every Model Cool. Understanding the EMC effect implies understanding how partons behave in the nuclear medium. It thus has far-reaching consequences for not only the extraction of neutron information from nuclear targets but also for understanding effects such as the NuTeV anomaly (CERN Courier September 2009 p9) or the excesses in the neutrino cross-sections observed by the MiniBooNE experiment (CERN Courier May 2007 p8).

Further reading

For more about the workshop at the University of Washington Institute of Nuclear Theory, see www.im.washington.edu/PROGRAMS/13-52w/.

Résumé

L’effet EMC, encore un énigme 30 ans après

Il y a trente ans, les membres de la collaboration EMC (Collaboration européenne du muon) au CERN découvrirent un effet inattendu en rapportant leurs mesures de la diffusion profondément inélastique du muon au nombre de nucléons : les fonctions de structure étaient différentes suggérant que des modifications de la distribution en fraction de l’impulsion du nucléon portée par le quark frappé et s’agissant du deutérium, qui est un noyau beaucoup plus léger. En représentant le rapport fer/deutérium en fonction de la charge, les expérimentateurs ont découvert une pente descendante inattendue. Ce résultat surprenant a été confirmé par de nombreux autres groupes, mais il reste une énigme. Des données récentes sur le deutérium, qui est un noyau beaucoup plus léger, en représentant le rapport fer/deutérium en fonction de la charge, ont montré que des corrélations nucléon-nucléon à courte distance pouvaient être liées à l’effet EMC.

Further information visit
www.kepcopower.com/bphi.htm

For more information visit
http://www.kepcopower.com/bphi.htm

BOP-KW
・ True 4-quadrant programmable voltage and current power supplies
・ Capable of full source and sink operation
・ Achieve low dissipation and high efficiency, when sinking power from source
・ Recuperates the energy for re-use
・ Bi-directional power factor correction (PFC) circuit allows transparent energy interchange without dissipative sinking
・ Keypad controls for automatic creation and display of waveforms and complex patterns
・ Built-in EN60950-2 Class II input EMI filter provided

BOP-GL Series
・ Standard modification of the KW
・ Optimized for exceptionally low current ripple and noise
・ Improved stability (shift and temperature)
・ Suitable for driving induction loads such as large magnetics or motors
・ Pass smoothly through zero without switching providing true ± voltage and ± current

For more information visit
www.kepcopower.com/bphi.htm

For more about the workshop at the University of Washington Institute of Nuclear Theory, see www.im.washington.edu/PROGRAMS/13-52w/.

Measuring magnetic field transients?

The Fast Digital Integrator FD2065 is the world’s fastest and most sensitive voltage integrator.

For the first time it is possible to measure fast, low-level magnetic field disturbances such as eddy currents in a switched magnet.

A complete and upgradable solution for your most exacting magnetic measurements.

Now it’s possible! Designed at the CERN

Recipients of the Fundamental Physics Prize Foundation’s special prize in fundamental physics, announced in December (CERN Courier January/February 2013 p36), accepted their awards at a ceremony in Geneva on 20 March. The prize was shared by leaders of the LHC project and the CMS and ATLAS experiments from the time that the LHC was approved by the CERN Council in 1994. Here Guido Tonelli shares the stage with (left to right): John Ellis, Michel Della Negra, Tejinder Virdee, Peter Jenni, Joe Incandela and Fabiola Gianotti. Stephen Henking also received a special prize, while quantum-field theorist Alexander Polyakov received the 2013 Fundamental Physics Prize for his work in field theory and string theory. The event was hosted by the actor Morgan Freeman, who took the opportunity to visit CERN and the LHC tunnel (right).

Five engineers whose work, beginning in the 1970s, led to the internet and the World Wide Web have together won the inaugural Queen Elizabeth Prize for Engineering. Robert Kahn, Vinton Cerf, Louis Pouzin, Tim Berners-Lee and Marc Andreessen were announced on 18 March as the winners at the Royal Academy of Engineering in London. Kahn, Cerf and Pouzin receive the award for their contributions to the protocols that make up the fundamental architecture of the internet. French computer scientist Pouzin invented the datagram and designed an early packet communications network known as CYCLADES in the early 1970s. His work was broadly used by Americans Kahn and Cerf in the development of TCP/IP. Berners-Lee created the World Wide Web at CERN in 1989 and American Marc Andreessen wrote the Mosaic browser that is credited with popularizing the Web.

By sharing their work freely and without restriction these pioneers allowed the internet and the Web to be adopted rapidly around the world and to grow organically thanks to open and universal standards.

Additionally, they have served as technical and political stewards of the internet and the web over the past 30 years as it has grown from its experimental phase to hosting 50 billion pages of information today. Today a third of the world’s population uses the internet and it is estimated to carry around 330 petabytes of data a year – enough to transfer every character ever written in every book ever published 20 times over.

The Queen Elizabeth Prize for Engineering is a £1 million global engineering prize designed to reward and celebrate the individuals responsible for a ground-breaking innovation in engineering that have benefited humanity. It is administered by the Royal Academy of Engineering.

The winners are due to come to London in June for the formal presentation of the prize at Buckingham Palace by Queen Elizabeth II.

ET Enterprises

New Photomultiplier HV Base

Using photomultipliers is now even easier with a new range of compact, low noise, HV Bases from ET Enterprises.

Incorporating socket, voltage divider and HV supply, they are suitable for use with a wide range of photomultipliers operating in analogue, pulse counting or photon counting modes.

• range of input voltage (5V to 15V)
• output voltage adjustable from 100V to 2000V
• very low power
• high stability

Visit our new website for further information.

ET Enterprises is your single source for ‘Electron Tubes’ and ADIT photomultipliers, including many Photonis replacements.

Use our new interactive website to search our complete range of products or follow the contact links to discuss your application.

ET Enterprises Limited, Riverside Way, Uxbridge, UB8 2YF, UK
Phone: +44 (0)1895 270873
Fax: +44 (0)1895 200880
sales@et-enterprises.com
www.et-enterprises.com

ADIT Electron Tubes, 330 Grove Street, Sweetwater, Texas 79556, USA
Phone: (325) 235 1418
Fax: (325) 235 2872
sales@electrontubes.com
www.electrontubes.com

www.metrotab.com
ET Enterprises Limited, Riverside Way, Sweetwater, Texas 79556, USA

www.et-enterprises.com
sales@et-enterprises.com
Fax: +44 (0)1895 270873
Phone: +44 (0)1895 200880

ET Enterprises

New Photomultiplier HV Base
Using photomultipliers is now easier than ever with a new range of compact, low noise, HV Bases from ET Enterprises.

- Incorporating socket, voltage divider and HV supply, they are suitable for use with a wide range of photomultipliers operating in analogue, pulse counting or photon counting modes.
- Range of input voltage (5V to 15V)
- Very low power
- Output voltage adjustable from 100V to 2000V
- High stability

Visit our new website for further information.

ET Enterprises is now your single source for ‘Electron Tubes’ and ADIT photomultipliers, including many Photonis replacements.

Use our new interactive website to search our complete range of products or follow the contact links to discuss your application.

www.metrostab.com

Measuring magnetic field transients?
The Fast Digital Integrator FD2056 is the world’s fastest and most sensitive voltage integrator.

For the first time it is possible to measure fast, low-level magnetic field disturbances such as eddy currents in a switched magnet.

A complete and upgradeable solution for your most exacting magnetic measurements.

Now it’s possible!
Designed at the CERN

Recipients of the Fundamental Physics Prize Foundation’s special prize in fundamental physics, announced in December (CERN Courier January/February 2013 p36), accepted these awards at a ceremony in Geneva on 20 March. The prize was shared by leaders of the LHC project and the CMS and ATLAS experiments from the time that the LHC was approved by the CERN Council in 1994. Here Guido Tonelli shares the stage with (left to right): Len Evans, Michel Della Negre, Tejinder Virdee, Peter Jenni, Joe Incandela and Fabiola Gianotti. Stephen Hawking also received a special prize, while quantum-field theorist Alexander Polyanin received the 2013 Fundamental Physics Prize for his work in field theory and string theory. The event was hosted by the actor Morgan Freeman, who took the opportunity to visit CERN and the LHC tunnel (right).

Five engineers whose work, beginning in the 1970s, led to the internet and the World Wide Web have together won the inaugural Queen Elizabeth Prize for Engineering. Robert Kahn, Vinton Cerf, Louis Pouzin, Tim Berners-Lee and Marc Andreesen were announced on 18 March as the winners at the Royal Academy of Engineering in London. Kahn, Cerf and Pouzin receive the award for their contributions to the protocols that make up the fundamental architecture of the internet. French computer scientist Pouzin invented the datagram and designed an early packet communications network known as CYCLADES in the early 1970s. His work was broadly used by Americans Kahn and Cerf in the development of TCP/IP. Berners-Lee created the World Wide Web at CERN in 1989 and American Marc Andreesen wrote the Mosaic browser that is credited with popularizing the Web.

By sharing their work freely and without restriction these pioneers allowed the internet and the Web to be adopted rapidly around the world and to grow organically thanks to open and universal standards. Additionally, they have served as technical and political stewards of the internet and the web over the past 30 years as it has grown from its experimental phase to hosting 50 billion pages of information today. Today a third of the world’s population uses the internet and it is estimated to carry around 330 petabytes of data a year – enough to transfer every character ever written in every book ever published 20 times over.

The Queen Elizabeth Prize for Engineering is a £1 million global engineering prize designed to reward and celebrate the individuals responsible for a ground-breaking innovation in engineering that have benefited humanity. It is administered by the Royal Academy of Engineering.

The winners are due to come to London in June for the formal presentation of the prize at Buckingham Palace by Queen Elizabeth II.

Faces & Places

Engineering prize honours internet and Web pioneers
Symposium

Imperial College celebrates Kibble’s 80th birthday

Tom Kibble, one of the founding fathers of the Standard Model, turned 80 last December. To celebrate this milestone and Kibble’s extraordinary contributions to theoretical physics, a symposium was held on 13 March at Imperial College, London.

Kibble has made seminal contributions to the understanding of the mass-generating mechanism for elementary particles via symmetry breaking. Indeed, he has produced papers of 1964 and 1967 provided key foundations for the Standard Model and inspired the search for the Higgs boson. He has also made significant contributions to the study of the dynamics of symmetry breaking near phase transitions with diverse applications including to structure formation in the universe and vortices in helium-3.

The symposium profiled these and other aspects of Kibble’s long scientific career. The two themes that resonated throughout the day were Kibble’s extraordinary scientific achievements coupled with his humility. The tenor of the meeting was set in the morning by Neil Turok, director of the Perimeter Institute for Theoretical Physics, who described Kibble as “our guru and example”. He discussed Kibble’s pioneering work on how topological defects might have formed in the early universe during symmetry-breaking phase transitions as the universe expanded and cooled. Wojciech Zurek of Los Alamos National Laboratory continued the theme with an exploration of analogous processes within the context of condensed matter systems and explaining the analogous processes within the context of condensed matter systems and explaining the analogues processes within the context of condensed matter systems and explaining the analogues processes within the context of condensed matter systems.

The afternoon’s events were concluded by Jim Virdee of Imperial College and the CMS experiment, who summarized the epic quest of finding the Higgs boson at the LHC. His talk surveyed the history of the LHC experiments and brought a rapt audience up to date with the latest data from CERN, all of which support the case that the new boson discovered last year is, indeed, a Higgs boson. At the end of the talk, there was a standing ovation for Kibble that lasted several minutes.

In the evening, Nobel laureate Steven Weinberg gave a stunning keynote presentation to a capacity audience of 700. With no visual props, he talked eruditely on symmetry breaking and its role in elementary particle physics. He emphasized the role played by the three 1964 papers by Robert Brout, François Englert, Peter Higgs, Gerald Guralnik, Carl Hagen and Kibble himself. He also emphasized the significant impact of Kibble’s sol-de-authored 1967 paper that, among other things, explains the mechanism where his Higgs W and Z boson get mass while the photon remains massless.

That evening, the UK Ministry of Defence, David Willetts, praised Kibble’s contributions to fundamental knowledge and the important ongoing role of Imperial College and the UK more generally. Ed Copeland of the University of Nottingham and Kibble’s most prolific collaborator profiled Kibble’s scientific leadership, vision and generosity. Robert Kibble recollected that while his father was doing this amazing work, family life continued as normal — although holiday destinations did strangely seem to coincide with venues for physics conferences. Frank Close of Oxford University concluded the banquet speeches by summarizing the significance of Kibble’s contributions to the Standard Model, again highlighting how his work has paved the way for the recent success of Abdus Salam and Weinberg to realize that symmetry breaking could be applied to a marriage of the weak and electromagnetic interactions.

At the banquet, the UK Minister of Science, David Willetts, praised Kibble’s vision and generosity. Robert Kibble recollected that while his father was doing this amazing work, family life continued as normal — although holiday destinations did strangely seem to coincide with venues for physics conferences. Frank Close of Oxford University concluded the banquet speeches by summarizing the significance of Kibble’s contributions to the Standard Model, again highlighting how his work has paved the way for the recent success of Abdus Salam and Weinberg to realize that symmetry breaking could be applied to a marriage of the weak and electromagnetic interactions.

Robert Brout, François Englert, Peter Higgs, Gerald Guralnik, Carl Hagen and Kibble each had significantly contributed to the understanding of the mass-generating mechanism for elementary particles via symmetry breaking. Indeed, they have produced papers of 1964 and 1967 that provided key foundations for the Standard Model and inspired the search for the Higgs boson. They have also made significant contributions to the study of the dynamics of symmetry breaking near phase transitions with diverse applications including to structure formation in the universe and vortices in helium-3.

The symposium profiled these and other aspects of Kibble’s long scientific career. The two themes that resonated throughout the day were Kibble’s extraordinary scientific achievements coupled with his humility. The tenor of the meeting was set in the morning by Neil Turok, director of the Perimeter Institute for Theoretical Physics, who described Kibble as “our guru and example”. He discussed Kibble’s pioneering work on how topological defects might have formed in the early universe during symmetry-breaking phase transitions as the universe expanded and cooled. Wojciech Zurek of Los Alamos National Laboratory continued the theme with an exploration of analogous processes within the context of condensed matter systems and explaining the analogues processes within the context of condensed matter systems and explaining the analogues processes within the context of condensed matter systems and explaining the analogues processes within the context of condensed matter systems.

The afternoon’s events were concluded by Jim Virdee of Imperial College and the CMS experiment, who summarized the epic quest of finding the Higgs boson at the LHC. His talk surveyed the history of the LHC experiments and brought a rapt audience up to date with the latest data from CERN, all of which support the case that the new boson discovered last year is, indeed, a Higgs boson. At the end of the talk, there was a standing ovation for Kibble that lasted several minutes.

In the evening, Nobel laureate Steven Weinberg gave a stunning keynote presentation to a capacity audience of 700. With no visual props, he talked eruditely on symmetry breaking and its role in elementary particle physics. He emphasized the role played by the three 1964 papers by Robert Brout, François Englert, Peter Higgs, Gerald Guralnik, Carl Hagen and Kibble himself. He also emphasized the significant impact of Kibble’s sol-de-authored 1967 paper that, among other things, explains the mechanism where his Higgs W and Z boson get mass while the photon remains massless. That evening, the UK Ministry of Defence, David Willetts, praised Kibble’s contributions to fundamental knowledge and the important ongoing role of Imperial College and the UK more generally. Ed Copeland of the University of Nottingham and Kibble’s most prolific collaborator profiled Kibble’s scientific leadership, vision and generosity. Robert Kibble recollected that while his father was doing this amazing work, family life continued as normal — although holiday destinations did strangely seem to coincide with venues for physics conferences. Frank Close of Oxford University concluded the banquet speeches by summarizing the significance of Kibble’s contributions to the Standard Model, again highlighting how his work has paved the way for the recent success of Abdus Salam and Weinberg to realize that symmetry breaking could be applied to a marriage of the weak and electromagnetic interactions.

The EPOS Module 362 is designed as a plug-in module for OEM system integration. For details, contact Eva Maria Amstutz, tel +41 41 666 1500, e-mail evama.stutz@maxonmotor.com or visit www.maxonmotor.com.

PI (Physik Instrumente) LP has introduced the C-584, 4-axis digital servo-controller, designed to control motorized linear translation stages and rotary positioning drives with high accuracy and repeatability. The high-speed encoder interface allows the use of direct-metrology-linear and angular scales with resolutions below the nanometre and microrad range. The controller has a dual-core architecture for fast servo handling and command interpretation. Communication is through industry standard TCP/IP, USB and RS-232 interfaces. For details, contact tel +508 832 3456, e-mail info@pi-usa.us or see www.pi-usa.us.

ALMA is a partnership between scientific organizations in North America, South America, Europe, Australia and East Asia, in co-operation with the Republic of Chile.

The EPOS Module 362 is designed as a plug-in module for OEM system integration. For details, contact Eva Maria Amstutz, tel +41 41 666 1500, e-mail evama.stutz@maxonmotor.com or visit www.maxonmotor.com.

PI (Physik Instrumente) LP has introduced the C-584, 4-axis digital servo-controller, designed to control motorized linear translation stages and rotary positioning drives with high accuracy and repeatability. The high-speed encoder interface allows the use of direct-metrology-linear and angular scales with resolutions below the nanometre and microrad range. The controller has a dual-core architecture for fast servo handling and command interpretation. Communication is through industry standard TCP/IP, USB and RS-232 interfaces. For details, contact Eva Maria Amstutz, tel +41 41 666 1500, e-mail evama.stutz@maxonmotor.com or visit www.maxonmotor.com.

PI (Physik Instrumente) LP has introduced the C-584, 4-axis digital servo-controller, designed to control motorized linear translation stages and rotary positioning drives with high accuracy and repeatability. The high-speed encoder interface allows the use of direct-metrology-linear and angular scales with resolutions below the nanometre and microrad range. The controller has a dual-core architecture for fast servo handling and command interpretation. Communication is through industry standard TCP/IP, USB and RS-232 interfaces. For details, contact Eva Maria Amstutz, tel +41 41 666 1500, e-mail evama.stutz@maxonmotor.com or visit www.maxonmotor.com.

PI (Physik Instrumente) LP has introduced the C-584, 4-axis digital servo-controller, designed to control motorized linear translation stages and rotary positioning drives with high accuracy and repeatability. The high-speed encoder interface allows the use of direct-metrology-linear and angular scales with resolutions below the nanometre and microrad range. The controller has a dual-core architecture for fast servo handling and command interpretation. Communication is through industry standard TCP/IP, USB and RS-232 interfaces. For details, contact Eva Maria Amstutz, tel +41 41 666 1500, e-mail evama.stutz@maxonmotor.com or visit www.maxonmotor.com.
Symposium

Imperial College celebrates Kibble’s 80th birthday

Tom Kibble, one of the founding fathers of the Standard Model, turned 80 last December 13 at Imperial College, London. This year saw the celebration of Kibble’s 80th birthday, marked by a symposium held on 13 March at Imperial College, London. Kibble has made seminal contributions to the understanding of the mass-generating mechanism for elementary particles via symmetry breaking. Indeed, he has profound papers of 1964 and 1967 provided key foundations for the Standard Model and inspired the search for the Higgs boson. He has also made significant contributions to the study of the dynamics of symmetry-breaking near phase transitions with diverse applications including structure formation in the universe and vortices in helium-3. The symposium profiled these and other aspects of Kibble’s long scientific career. The two themes that resonated throughout the day were Kibble’s extraordinary scientific achievements coupled with his humility. The tenor of the meeting was set in the morning by Neil Turok, director of the Perimeter Institute for Theoretical Physics, who described Kibble as “our guru and example”. He discussed Kibble’s pioneering work on how topological defects might have formed in the early universe during symmetry-breaking phase transitions as the universe expanded and cooled. Wojciech Zurek of Los Alamos National Laboratory continued this theme with his work on analogous processes within the context of condensed matter systems and explaining the analogous processes within the context of the marriage of the weak and electromagnetic symmetries as the universe expanded and cooled, systems and explaining the famous Kibble-Zurek scaling phenomenon. Turok noted that while defects have been found everywhere in the lab, they are still to be seen in the universe, although many physicists remain hopeful.

The afternoon’s events were concluded by Jim Virdee of Imperial College and the CMS experiment, who summarized the epic quest of finding the Higgs boson at the LHC. He talked about the history of experimental physics and brought a rich audience up to date with the latest data from CERN, all of which support the case that the new boson discovered last year is, indeed, a Higgs boson. At the end of the talk, there was a standing ovation for Kibble that lasted several minutes.

The keynote speech was delivered by Jim Virdee of Imperial College and the CMS experiment, who summarized the epic quest of finding the Higgs boson at the LHC. He talked about the history of experimental physics and brought a rich audience up to date with the latest data from CERN, all of which support the case that the new boson discovered last year is, indeed, a Higgs boson. At the end of the talk, there was a standing ovation for Kibble that lasted several minutes.

In the evening, Nobel laureate Steven Weinberg gave a stunning keynote presentation to a capacity audience of 700. No visual props, he talked eruditely with high accuracy and repeatability.

In the evening, Nobel laureate Steven Weinberg gave a stunning keynote presentation to a capacity audience of 700. No visual props, he talked eruditely with a few simple steps to suit translation stages and rotary positioners designed to control motorized linear and angular scales with resolutions below the nanometre and microrad regions. The high-speed encoder interface allows dose measurements and fast response to γ-radiation occurrences. The EPOS motor-controller family comprises direct-metrology linear and angular scales with resolutions below the nanometre and microrad regions.

The high-speed encoder interface allows dose measurements and fast response to γ-radiation occurrences. The EPOS motor-controller family comprises direct-metrology linear and angular scales with resolutions below the nanometre and microrad regions.

CERN Courier May 2013

The EPOS Module 362 is designed as a plug-in module for OEM system integration. For details, contact Eva Maria Amstutz, tel +41 666 1500, e-mail evama. amstutz@maxonmotor.com or visit www.maxonmotor.com.

PI (Physik Instrumente) LP has introduced the C-584.4-ax is digital servocontroller, designed to control motorized linear translation stages and rotary positioners with high accuracy and repeatability. The high-speed encoder interface allows dose measurements and fast response to γ-radiation occurrences. The EPOS motor-controller family comprises direct-metrology linear and angular scales with resolutions below the nanometre and microrad regions.

The high-speed encoder interface allows dose measurements and fast response to γ-radiation occurrences. The EPOS motor-controller family comprises direct-metrology linear and angular scales with resolutions below the nanometre and microrad regions.

The EPOS Module 362 is designed as a plug-in module for OEM system integration. For details, contact Eva Maria Amstutz, tel +41 666 1500, e-mail evama.amstutz@maxonmotor.com or visit www.maxonmotor.com.

CERN Courier May 2013

The EPOS Module 362 is designed as a plug-in module for OEM system integration. For details, contact Eva Maria Amstutz, tel +41 666 1500, e-mail evama.amstutz@maxonmotor.com or visit www.maxonmotor.com.
Hugh Hereward 1920–2013

Hugh Hereward, one of the founding fathers of CERN, died on 20 February. As one of the leading accelerator physicists, he made essential contributions to the Proton Synchrotron (PS) and the Intersecting Storage Rings (ISR).

After joining CERN in 1953, Hugh led the group that built the first 50 MeV linear accelerator used to inject protons into the PS, but he soon went on to study more general problems of accelerator theory. He became the great interlocutrix whose chosen role was to study and analyse whatever knotty problems in accelerator theory were preventing a full understanding of the PS – and afterwards the ISR – to exploit the potential of each machine to the fullest.

He made essential contributions to the theory of linear accelerators, proposed and analysed in detail the slow resonant extraction of the PS beam and produced a number of now classic reports and lectures on matching and mismatching beams, beam instabilities and Landau damping, as well as on stochastic cooling. He also was one of the proponents of the ISR. Some of his memos were circulated in handwritten form but were so clear that his colleagues, when asked about these subjects 40 years later, will still search their filing cabinets for “something that Hereward wrote on this”.

On first meeting, Hugh seemed a rather reserved and eccentric person. His well-worn flannel trousers were supported by a broad leather belt whose tarnished buckle was fashioned into the insignia of the Boy Scouts, complete with the motto “Be prepared”. We dared not ask if this was a reminder to himself or an exhortation to others. Colleagues would often consult him – the experience was reminiscent of a trip to Delphi. The question would be posed and a silence would follow, often long enough to induce unease in the questioner, who might be tempted to rephrase the question. This was unwise, for the clock would be restarted and another long pause would ensue. Hugh would seem disturbed that his thought process had been interrupted. Usually, the verdict would be delivered with gravity and precision but, failing that, the question would rebound in quite a different formulation, requiring further research on the part of the questioner.

Hugh’s heyday was when he led the Machine Studies Team that developed the performance of the PS in the 1960s. He became leader by common acclaim and went on to fill the same role at the ISR. When by the mid-1970s, both the PS and the ISR had reached performance levels far beyond what anyone would have dared to forecast, he chose to retire from CERN, to live quietly in a village in the UK, while occasionally accepting consulting engagements for other laboratories in the US, Canada and Europe. Despite the decades that have passed since he left CERN, Hugh has remained vivid in the memory of all who had contact with him and benefitted from his precious advice during those early years.

His former colleagues and friends. Colleagues would often consult him – the experience was reminiscent of a trip to Delphi. The question would be posed and a silence would follow, often long enough to induce unease in the questioner, who might be tempted to rephrase the question. This was unwise, for the clock would be restarted and another long pause would ensue. Hugh would seem disturbed that his thought process had been interrupted. Usually, the verdict would be delivered with gravity and precision but, failing that, the question would rebound in quite a different formulation, requiring further research on the part of the questioner.

Hugh Hereward, left, at CERN in 1961.

Theodoros Kalogeropoulos 1931–2012

Theodoros (Ted) Kalogeropoulos, a distinguished physicist in elementary particle physics and professor emeritus of Syracuse University, passed away on 7 September in Athens, Greece. His burial was at the National and Kapodistrian University of Athens, where his father was a village priest. His primary education was at the Lawrence Radiation Laboratory. Ted’s dissertation, “A study of the Antiproton Annihilation Process in Complex Nuclei”, was an experiment with photographic emulsions. He collaborated with Owen Chamberlain, Emilio Segrè and Dick Dalitz and also participated in a bubble chamber experiment on pion-pion correlations in antiproton-annihilation events.

After receiving his PhD, Ted worked as a postdoc at Columbia University before joining the physics faculty at Syracuse University in 1962. There he continued his studies of antiproton interactions with protons and neutrons at rest and in flight at the Lawrence Radiation Laboratory. Ted was fashionned into the insignia of the Boy Scouts, complete with the motto “Be prepared”. We dared not ask if this was a reminder to himself or an exhortation to others. Colleagues would often consult him – the experience was reminiscent of a trip to Delphi. The question would be posed and a silence would follow, often long enough to induce unease in the questioner, who might be tempted to rephrase the question. This was unwise, for the clock would be restarted and another long pause would ensue. Hugh would seem disturbed that his thought process had been interrupted. Usually, the verdict would be delivered with gravity and precision but, failing that, the question would rebound in quite a different formulation, requiring further research on the part of the questioner.

Hugh Hereward, left, at CERN in 1961.

Theodoros Kalogeropoulos 1931–2012

Theodoros (Ted) Kalogeropoulos, a distinguished physicist in elementary particle physics, and professor emeritus of Syracuse University, passed away on 7 September in Athens, Greece. His burial was at the National and Kapodistrian University of Athens, where his father was a village priest. His primary education was at the Lawrence Radiation Laboratory. Ted’s dissertation, “A study of the Antiproton Annihilation Process in Complex Nuclei”, was an experiment with photographic emulsions. He collaborated with Owen Chamberlain, Emilio Segrè and Dick Dalitz and also participated in a bubble chamber experiment on pion-pion correlations in antiproton-annihilation events.

After receiving his PhD, Ted worked as a postdoc at Columbia University before joining the physics faculty at Syracuse University in 1962. There he continued his studies of antiproton interactions with protons and neutrons at rest and in flight at the Lawrence Radiation Laboratory. Ted’s dissertation, “A study of the Antiproton Annihilation Process in Complex Nuclei”, was an experiment with photographic emulsions. He collaborated with Owen Chamberlain, Emilio Segrè and Dick Dalitz and also participated in a bubble chamber experiment on pion-pion correlations in antiproton-annihilation events.

After receiving his PhD, Ted worked as a postdoc at Columbia University before joining the physics faculty at Syracuse University in 1962. There he continued his studies of antiproton interactions with protons and neutrons at rest and in flight at the Lawrence Radiation Laboratory. Ted’s dissertation, “A study of the Antiproton Annihilation Process in Complex Nuclei”, was an experiment with photographic emulsions. He collaborated with Owen Chamberlain, Emilio Segrè and Dick Dalitz and also participated in a bubble chamber experiment on pion-pion correlations in antiproton-annihilation events.
Hugh Hereward 1920–2013

Hugh Hereward, one of the founding fathers of CERN, died on 20 February. As one of the leading accelerator physicists, he made essential contributions to the Proton Synchrotron (PS) and the Intersecting Storage Rings (ISR).

Hugh was born in 1920 in London to a family of an ocean-going captain of merchant vessels. He attended King Edward’s High School in Birmingham, where a physics teacher who believed in his abilities encouraged him to specialize in the subject. With a scholarship to St John’s College, Cambridge, where John Cockcroft was at the time, he took a shortened degree course and chose in 1942 to continue research rather than join the army. He was one of several physicists who, during the Second World War, contributed to the development of atomic energy in Hans von Halban’s group at Cambridge, before moving to Montreal in 1943.

After joining CERN in 1953, Hugh led the group that built the first 50 MeV linear accelerator used to inject protons into the PS, but he soon went on to study more general problems of accelerator theory. He became the great mentor whom his colleagues remembered to study and analyse whatever knotty problems in accelerator theory were preventing a full understanding of the PS – and afterwards the ISR – to exploit the potential of each machine to the fullest.

He made essential contributions to the theory of linear accelerators, proposed and analysed in detail the slow resonant extraction of the PS beam and produced a number of now classic reports and lectures on matching and mismatching beams, beam instabilities and Landau damping, as well as on stochastic cooling. He also was one of the proponents of the ISR. Some of his memos were circulated in handwritten form but were so clear that his colleagues, when asked about these subjects 40 years later, will still search their filing cabinets for “something that Hereward wrote on this.”

On first meeting, Hugh seemed a rather reserved and eccentric person. His well worn flannel trousers were supported by a broad leather belt whose tarnished buckle was fashioned into the insignia of the Boy Scouts, complete with the motto “Be prepared.” We dared not ask if this was a reminder to himself or an exhortation to others. Colleagues would often consult him – the experience was reminiscent of a trip to Delphi. The question would be posed and a silence would follow, often long enough to induce unease in the questioner, who might be tempted to rephrase the question. This was unwise, for the clock would be restarted and another long pause would ensue – Hugh would seem disturbed that his thought process had been interrupted. Usually, the verdict would be delivered with gravity and precision but, failing that, the question would rebound in quite a different formulation, requiring further research on the part of the questioner.

Hugh’s heyday was when he led the Machine Studies Team that developed the performance of the PS in the 1960s. He became leader by common acclaim and went on to fill the same role at the ISR. When by the mid-1970s, both the PS and the ISR had reached performance levels far beyond what anyone would have dared to forecast, he chose to retire from CERN, to live quietly in a village in the UK, while occasionally accepting consulting engagements for other laboratories in the US, Canada and Europe. Despite the decades that have passed since he left CERN, Hugh has remained vivid in the memory of all who had contact with him and benefitted from his precious advice during those early years.

His former colleagues and friends.

Based on an account in “Engines of Discovery” (World Scientific 2007) by Andrew Sessler and Edmund Wilson.
Paul Kienle 1931–2013

Paul Kienle began studying physics at the Technische Hochschule München (TH München) in 1949. For his diploma thesis he developed position sensitive Geiger-Müller counters, which he used in work for his doctoral thesis (1957) to measure radiation fields. Subsequently he spent more than a year at Brookhaven National Laboratory, where he was trained in health physics and radiation safety. Back at TH München he built up a radiation safety group at the new Research Reactor (FRM) in Garching and in parallel he started work on the application of the Mössbauer-effect, which led to his habilitation degree in 1962. Shortly afterwards Paul became professor of radiation and nuclear physics at the Technische Hochschule Darmstadt, but in 1965 he returned to TH München (which was to be renamed the Technische Universität (TU) München) to become professor of experimental physics, joining his former teacher Heinz Maier-Leibnitz and his fellow student and friend Rudolf Moosbauer. In the following years, he and Ulrich Mayer-Berkhout from the Ludwig-Maximilians-Universität München were responsible for the construction of the Tandem Accelerator Laboratory of both Munich universities, which started operation in Garching in 1970. In 1984 Paul became director of GSI in Darmstadt and led the design and construction of the Heavy Ion Synchrontron and the Experimental Storage Ring (ESR), which started operation in 1990. Two years later he returned again to TU München, but continued research in medium-energy heavy-ion physics at GSI. There he and his colleagues at the ESR discovered a new decay mode, bound β-decay, opening a new field in nuclear astrophysics and in studies of weak decays. In 1996, together with his long-time collaborators from Japan, he was involved in the discovery of deeply bound pionic nuclear states at GSI, which led to some of the first evidence for the partial restoration of spontaneous chiral symmetry-breaking of QCD in a nuclear medium.

Paul’s vision to create new tools for the future is beautifully illustrated with his proposal in 1999 for the construction of the High Energy Storage Ring, as a new approach for physics with antiproton annihilation, which should soon become available at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. As professor emeritus at TU München from 1999, he continued his research and in 2002 became director of the Stefan Meyer Institute for Subatomic Physics in Vienna, focusing on experimental studies at GSI (the FOPI experiment, FAIR, (PANDA), and the INFN Frascati National Laboratories (SIDDHARTA).

His colleagues and friends from TU München, GSI, LNG-INFN and the SMI.

It was a great honour and pleasure to work with Paul and we would like to express our gratitude for, and appreciation of, his tremendous impact on modern nuclear science. We admired his enthusiasm in creating new methods and in triggering work on new technologies to solve open problems in physics. His passion for physics and his motto, niemals aufgeben, (never give up), will provide guidance and an obligation for us all.

Download your copy today http://cerncourier.com/digital
Paul Kienle 1931–2013

Paul Kienle began studying physics at the Technische Hochschule München (TH München) in 1949. For his diploma thesis he developed position sensitive Geiger-Müller counters, which he used in work for his doctoral thesis (1957) to measure radiation fields. Subsequently he spent more than a year at Brookhaven National Laboratory, where he was trained in health physics and radiation safety. Back at TH München he built up a radiation safety group at the new Research Reactor (FRM) in Garching and in parallel he started work on the application of the Mössbauer-effect, which led to his habilitation degree in 1962. Shortly afterwards Paul became professor of radiation and nuclear physics at the Technische Hochschule Darmstadt, but in 1965 he returned to TH München (which was to be renamed the Technische Universität München) to become professor of experimental physics, joining his former teacher Heinz Maier-Leibnitz and his fellow student and friend Rudolf Moßbauer. In the following years, he and Ulrich Mayer-Berkhout from the Ludwig-Maximilians-Universität München were responsible for the construction of the Tandem Accelerator Laboratory of both Munich universities, which started operation in Garching in 1970. In 1984 Paul became director of GSI in Darmstadt and led the design and construction of the Heavy Ion Synchrotron and the Experimental Storage Ring (ESR), which started operation in 1990. Two years later he returned again to TU München, but continued research in medium-energy heavy-ion physics at GSI. There he and his colleagues at the ESR discovered a new decay mode, bound β-decay, opening a new field in nuclear astrophysics and in studies of weak decays. In 1996, together with his long-time collaborators from Japan, he was involved in the discovery of deeply bound pionic nuclear states at GSI, which led to some of the first evidence for the partial restoration of spontaneous chiral symmetry-breaking of QCD in a nuclear medium.

Paul’s vision to create new tools for the future is beautifully illustrated with his proposal in 1999 for the construction of the High Energy Storage Ring, as a new approach for physics with antiproton annihilation, which should soon become available at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt. As professor emeritus at TU München from 1999, he continued his research and in 2002 became director of the Stefan Meyer Institute for Subatomic Physics in Vienna, focusing on experimental studies at GSI (the FOPI experiment), FAIR (PANDA) and the INFN Frascati National Laboratories (SIDDHARTA).

It was a great honour and pleasure to work with Paul and we would like to express our gratitude for, and appreciation of, his tremendous impact on modern nuclear science. We admired his enthusiasm in creating new methods and in triggering work on new technologies to solve open problems in physics. His passion for physics and his motto, niemals aufgeben (never give up), will provide guidance and an obligation for us all.

His colleagues and friends from TU München, GSI, LNF-INFN and the SMI.
Wiktor Peryt 1944–2013

Wiktor Peryt, one of the pioneers who introduced and developed heavy-ion physics at the University of Technology and Economics in Warsaw, died on 20 January. He was originally from Lodz, where he completed his secondary education at Liceum Nr 2 in 1962, followed by the Faculty of Physics at Warsaw University of Technology (WUT), where he obtained his PhD in 1969. After his PhD, Peryt moved to the Niels Bohr Institute in Copenhagen, where he worked for three years before returning to WUT in 1972. He led the WUT group in the ALICE collaboration and participated in data analysis. Thanks to Peryt’s contacts, the group at WUT joined the ALICE collaboration and took part in experiments at JINR, Dubna, participating in R&D for the silicon vertex tracker. He also introduced computer methods into practical work in the student laboratories, allowing real particle data analysis. This led him later to organize the first national conference on Microcomputers in Physics Teaching, held at WUT in 1987. He also pioneered the introduction of CAMAC and VME systems into the teaching and research environment at WUT, in close collaboration with other nuclear institutions both in Poland and abroad. As a collaborator, colleague and teacher, Peryt was rather restrained and far from making publicity of his activity and results. It was therefore sometimes surprising that he was able to attract many young people to work with him. Maybe, to understand this phenomenon, we should recall his "grey roots" – not spectacular results. Now, after his passing, we see him also as "grey roots" – not promoting himself, but giving young people the possibilities of interesting work and a rapid rise in their career.

His former colleagues and friends.

The XXIX International Workshop on High Energy Physics “New Results and Actual Problems in Particle & Astroparticle Physics and Cosmology” will take place on 26–28 June in Provo, Utah, USA. The purpose of this conference is to provide a coherent picture of the understanding of the structure and dynamics of the microcosm, the megacosm and the macrocosm, and to discuss the relationship between these two extremes of modern physics. The workshop will cover both theory and experiment/observations. The aim is to encourage much more critical discussions at the highest level than is usual, with workshop reports accompanied by discussion panels and talks. For details and deadlines (especially regarding Russian visa) see https://indico.cern.ch/conferenceDisplay.py?confId=211539.

EPS-HEP 2013, the 2013 European physics conference on High Energy Physics, organized by the High Energy and Particle Physics Division of the European Physical Society, will take place in Stockholm, on 18–24 July. Parallel and plenary sessions will be held at the Royal Institute of Technology and the Aula Magna at Stockholm University, respectively, with poster sessions throughout the conference. This will also be a joint ECPA-EPJ session on Particle Physics, after the European Strategy Update on the 20 July. For details and registration, see http://eps-hep2013.eu.

HEP-MAD 13, the 6th High-Energy Physics International Conference in Madagascar will be held on 4–10 September in Antananarivo. The conference, which is part specialized meeting and part introductory school, will cover a range of theoretical and experimental physics from high-energy physics to astroparticle physics. These topics will be presented in the form of introductory reviews, short contributions and posters, complemented by national talks in other areas of physics. For details, see www.lpta.univ-montp2.fr/userpublic/LptaEPJ/HEP-MAD13/Welcome.html.

Today’s vast and highly sophisticated particle detectors rely not only on many interactive graduates, but also on the ambition and vision of the particle physicists who, over the past 50 years, have contributed as profoundly to the evolution of these detectors as Bill Willis. Bill was an under-graduate and PhD student at Yale and in the early part of his career he worked on the development of the bubble-chamber technique. He was an author on the famous 1964-paper announcing the discovery of the
D− meson and, in 1965, began to think about ways to study decays into a lepton plus a neutrino in the environment of a hadron collider. He met Veljko Radića, starting a life-long collaboration between scientists. One day, in the early 1970s, he drew on Radića’s blackboard a large circle, representing a sphere with the grid of the holes, explaining that the smaller circles were the holes for the colliding beams, and the large circle represented the volume in which the total energy of all particles (charged and neutral) should be measured and the leptons identified. Bill called his concept the “impactometer” – it has become the standard means of searching for new forms of matter.

The only hadron collider at the time, the Brookhaven Alternating-Field Spectrometer in New York, in 1982, unveiled the opportunity to promote a whole new field: the study of nuclear matter under extreme conditions of temperature and density as a means of searching for new forms of matter. He convinced the CERN management to adapt the Super Proton Synchrotron (SPS) to heavy-ion operation and to support an exploratory round of experiments. He was also instrumental in building the case for the Relativistic Heavy-Ion Collider (RHIC), which began operations at Brookhaven in 2000. The discoveries of a “new form of matter” at the SPS and of the strongly coupled quark–gluon plasma at RHIC are directly traceable to Bill’s scientific vision. This programme continues today as a major research topic at the LHC.

Bill Willis. (Image credit: Columbia Univ.)

EPS-HEP 2013

M E E T I N G S

Axial Field Spectrometer. Throughout this period, Bill continued to collaborate closely with Radića and with new colleagues at CERN, notably Chris Fabjan. He also developed fruitful links with several Russian colleagues, led by Boris Dolgoshein, who became collaborators and friends. Starting in 1975, and extending for over 30 years, Bill spent some of his time at Brookhaven, initially to guide the development of experimentation for ISABELLE. But with ISABELLE’s cancellation and the end of the ISR programme in the early 1980s, he seized the opportunity to promote a whole new field: the study of nuclear matter under extreme conditions of temperature and density as a means of searching for new forms of matter.

Bill Willis. (Image credit: Columbia Univ.)

Today’s vast and highly sophisticated particle detectors rely not only on many interactive graduates, but also on the ambition and vision of the particle physicists who, over the past 50 years, have contributed as profoundly to the evolution of these detectors as Bill Willis. Bill was an under-graduate and PhD student at Yale and in the early part of his career he worked on the development of the bubble-chamber technique. He was an author on the famous 1964-paper announcing the discovery of the
D− meson and, in 1965, began to think about ways to study decays into a lepton plus a neutrino in the environment of a hadron collider. He met Veljko Radića, starting a life-long collaboration between scientists. One day, in the early 1970s, he drew on Radića’s blackboard a large circle, representing a sphere with the grid of the holes, explaining that the smaller circles were the holes for the colliding beams, and the large circle represented the volume in which the total energy of all particles (charged and neutral) should be measured and the leptons identified. Bill called his concept the “impactometer” – it has become the standard means of searching for new forms of matter.

The only hadron collider at the time, the Brookhaven Alternating-Field Spectrometer in New York, in 1982, unveiled the opportunity to promote a whole new field: the study of nuclear matter under extreme conditions of temperature and density as a means of searching for new forms of matter. He convinced the CERN management to adapt the Super Proton Synchrotron (SPS) to heavy-ion operation and to support an exploratory round of experiments. He was also instrumental in building the case for the Relativistic Heavy-Ion Collider (RHIC), which began operations at Brookhaven in 2000. The discoveries of a “new form of matter” at the SPS and of the strongly coupled quark–gluon plasma at RHIC are directly traceable to Bill’s scientific vision. This programme continues today as a major research topic at the LHC.

Bill Willis. (Image credit: Columbia Univ.)

EPS-HEP 2013

Bill Willis. (Image credit: Columbia Univ.)

EPS-HEP 2013
He led the work to replace the detector of the project, then called “NA49 future”. NA61/SHINE, starting with the preparation experiments at CERN. Under his leadership, the group to the NA49 and NA61/SHINE systems interfaced to computers. To use modular electronics and data-handling academic circle where students learned how in Physics Teaching, held at WUT in 1987. The first national conference on Microcomputers laboratories, allowing real physics data revealing new features in the reactions studied. The nuclear cascade model developed in Dubna, chambers with the theoretical predictions of the only hadron collider at the time, the Relativistic Heavy-Ion Collider (RHIC), the latter contributing to our field. But there was also appreciation, the response of the Yale professors who never change their mind.”

His range of activities and enthusiasm continued almost unabated. He was highly active in the International Linear Collider and most recently was involved in the MicroBooNE experiment, in which he combined his talent for developing ingenious approaches and his interest in novel detectors in the field of neutrino physics. In numerous committees and panels, both in Europe and in the US, and, fittingly for someone who had close ties with many Russian physicists, as a Member of the Scientific Policy Committee of the Russian Muon Collaboration and participated to the American Academy of Science and in 2003 he received the W K H Panofsky prize for his “leading role in the development and exploitation of innovative detectors now widely adopted in particle physics, including liquid argon calorimetry, electron identification by detection of transition radiation, and hyperon beams”.

Bill Willis. (Image credit: Columbia Univ.)

Axial Field Spectrometer. Throughout this period, Bill continued to collaborate closely with Rodica and with new colleagues at CERN, notably Chris Fahlander. He also developed fruitful links with several Russian colleagues, led by Boris Dolgoshein, who became collaborators and friends. Starting in 1975, and extending for over 30 years, Bill spent some of his time at Brookhaven, initially to guide the development of experimentation for ISABELLE. But with ISABELLE’s cancellation and the end of the ISR programme in the early 1980s, he seized the opportunity to promote a whole new field: the study of nuclear matter under extreme conditions of temperature and density as a means of searching for new forms of matter. He convinced the CERN management to adapt the Super Proton Synchrotron (SPS) to heavy-ion operation and to support an exploratory round of experiments. He was also instrumental in building the case for the Relativistic Heavy-Ion Collider (RHIC), which began operations at Brookhaven in 2000. The discoveries of a “new form of matter” at the SPS and of the strongly coupled quark–gluon plasma at RHIC are directly traceable to Bill’s scientific vision. This program culminates today as a major research topic at the LHC.

Bill returned to the US in 1990, taking up a professorship at Columbia University, and became engaged in the Superconducting Super Collider (SSC). He was co-spokesperson of the GEM collaboration for the right-handed stop, using his understanding and experience of both CERN and the US, he played a key coordinating role in bringing a large number of US scientists to the LHC programme, with major involvements in both ATLAS and CMS. Bill served as the US ATLAS Construction Project Manager until 2005 and was a member of the ATLAS Executive Board for four years. The performance of the ATLAS liquid argon calorimeter, not least in the discovery of the Higgs boson, should have given him a sense of real satisfaction – not that he would ever show it.
Recruitment

For advertisements inquiries, contact CERN Courier recruitment@classifieds, IOP Publishing, Temple Circus, Temple Way, Bristol, BS1 6HG, UK. Tel: +44 (0)117 930 1264 Fax: +44 (0)117 930 1178 E-mail sales@cerncourier.com

For full details of this exciting career opportunity, including job responsibilities, required skills/qualifications, and complete application instructions, please visit our web site and view the on-line position description. For using the URL:

http://www.triumf.ca/

TRIUMF is an EOE, and will accept applications until 4pm on April 30th, 2013.

Canada Excellence Research Chair in Experimental Particle Astrophysics

Queen’s University, Kingston, Ontario, Canada

Applications are now invited for a Canada Excellence Research Chair (CERC) in Particle Astrophysics at Queen’s University. The CERC program awards world-renowned researchers and their teams up to $10 million over seven years to establish ambitious research programs at Canadian universities. Information about the program can be found at http://www.cerc.gc.ca/cerc-pa-eng.shtml. The position will be at the rank of Professor; the appointee will be a distinguished scientist with an international reputation for research excellence in experimental particle astrophysics and with demonstrated record of excellence. The salary offered will be commensurate with qualifications and experience.

The world-leading SNOLAB underground research facility (www.snolab.ca) provides an excellent opportunity for frontier research work in the field of particle astrophysics. Faculty members in the current Queen’s Particle Astrophysics group (http://www.physics.queensu.ca/group) were extensively involved in the very successful Sudbury Neutrino Observatory (SNO) experiment and in the establishment of SNOLAB, and are leading members of the PICASSO, DEAP, and SuperCDMS dark matter experiments and the SNO+ experiment studying neutrino-less double beta decay and solar, geo., and supernova neutrinos. The group also has close ties with researchers in the Astrophysics Group at Queen’s.

The SNOLAB scientific program is identified in the Queen’s Strategic Plan 2010 as an important goal for the University and Queen’s is committed to maintaining leadership in this field. Candidates should submit a detailed curriculum vitae, a statement of research and teaching interests, and the names of three referees including their contact information to:

Dr. Geoff Lockwood, Head
Department of Physics, Engineering Physics & Astronomy
Queen’s University
Kingston, Ontario, Canada K7L 3N6
E-mail: lockwood@physics.queensu.ca
Tel: (613) 533-6400 x 74787 Fax: (613) 533-4463

The review of applications will begin on April 10, 2013 and will continue until the position is filled. The preferred starting date is July 1, 2014.

Queen’s University is an Equal Opportunity employer. Women and members of visible minorities, Aboriginal people, persons with disabilities, and persons of any sexual orientation or gender identity are encouraged to apply. Queen’s invites applications from all qualified individuals.

You have a previously established international reputation as an expert in accelerator technology and/or accelerator operations with a functional knowledge of beam dynamics, and all associated accelerator systems, including RF, magnets and power supplies, beam diagnostics, controls, and related metrology. The position is responsible for leading the design, construction, commissioning and future operation of the 500 MeV Cyclotron and the primary proton beamlines, the Rare Isotope Beams production and acceleration in the SAGA, and the SRF e-linac complex, which comprises the 500 MeV Cyclotron and the primary proton beamlines, the Rare Isotope Beams production and acceleration in the SAGA, and the SRF e-linac complex. The position will be responsible for all aspects of the design, construction, commissioning and future operation of all linac, accelerator and control systems, including RF, magnets and power supplies, beam diagnostics, controls, and related metrology. The position will expand the capabilities of TRIUMF’s Accelerator Complex, which comprises the 500 MeV Cyclotron and the primary proton beamlines, the Rare Isotope Beams production and acceleration in the SAGA, and the SRF e-linac complex, which comprises the 500 MeV Cyclotron and the primary proton beamlines, the Rare Isotope Beams production and acceleration in the SAGA, and the SRF e-linac complex. The position will be responsible for all aspects of the design, construction, commissioning and future operation of all linac, accelerator and control systems, including RF, magnets and power supplies, beam diagnostics, controls, and related metrology.

Triumph will be responsible for implementing the vision while ensuring beam delivery on time with highest reliability and efficiency, and meeting user and detector sensitivities for cutting-edge experiments. The goal is to evolve beam deliver to the highest standards across all TRIUMF accelerators from a common control room and uniform operations environment.

The Department of Physics within the Division of Physical Sciences at UCSD (http://www.physics.ucsd.edu/) invites applications from qualified individuals for an Associate or Project Scientist. The UCSD High-Energy Physics group is actively converting into a software & hardware computing staff by hiring a Systems Integrator to work within the context of the Open Science Grid Software and Technology group.

A successful candidate will have a Ph.D. in Physics, Computer Engineering, or related fields, and at least 3 years of experience with C/C++ and Python development in a Linux environment. Significant experience with Subversion or equivalent revision control system is required. Experience with test-driven development, systems integration, and distributed computing environments is required. Experience with client-server architectures, cluster, grid, cloud computing, open source projects and packaging for RedHat Enterprise Linux in general, and xTnsGrid in particular is highly desirable. The candidate is expected to be an excellent team player with the ability to work independently.

The University is committed to an excellent and diverse faculty and student body. Salary, title and rank are commensurate with qualifications and based on University of California pay scales.

Interested candidates should submit online at https://apiol-recruit.ucsd.edu/apply/ a curriculum vitae, sample source code of software you developed, a one page description of software projects you have worked on, list of publications and a separate statement that addresses past and potential contributions to and leadership in promoting diversity, equity and inclusion (see http://facultyequity.ucsd.edu/faculty/Applicant-C2D-Info.asp). Candidates should also arrange to have three letters of reference included with their contact information.

Prompt response is recommended. Review of applications will commence on May 10, 2013 and continue until the position is filled.

For information about rates, colour options, publication dates and deadlines please contact us for information about rates, colour options, publication dates and deadlines...
CERN Courier May 2013

Recruitment

FOR ADVERTISEMENTS INQUIRIES, CONTACT CERN COURIER RECRUITMENT/CLASSIFIEDS, IOP PUBLISHING, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6HG, UK.

T: +44 (0)117 930 1264
F: +44 (0)117 930 1178
E: sales@cerncourier.com

PLEASE CONTACT US FOR INFORMATION ABOUT RATE, COLOUR OPTIONS, PUBLICATION DATES AND DEADLINES.

CERN Courier May 2013

EXCITING OPPORTUNITIES

Find out more about our exciting opportunities for scientists, engineers and graduates students. Help develop X-ray instrumentation and other systems. Help create a research facility of supertalves that will provide X-rays of unique quality for cutting edge research in physics, chemistry, the life sciences and materials science.

WORKING AT EUROPEAN XFEL

English is the working language. We offer salary and benefits similar to those of public service organizations in Germany, a free-of-charge company pension scheme, generous relocation package and support, international allowance for non-German candidates hired from abroad, training opportunities etc.

JOIN OUR NETWORK

Join our network of international research institutions, programmes and collaborations. Discuss problems and solutions with colleagues from all over the world.

COME TO HAMBURG

Economically and culturally, Hamburg is the second largest city of Northern Germany. With its long history in trade, Hamburg has always been an outward looking city and a model of Germany’s tolerance. It is a city to work and live in Hamburg, one of the most beautiful and interesting cities in Europe!

CERN SEIZE THE CHANCE

European XFEL is a multi-national non-profit company that is currently building an X-ray free-electron laser facility that will open up new areas of scientific research. When this facility is completed in 2015, its ultra-short X-ray flash-les and unique research opportunities will attract scientists from all over the world to conduct groundbreaking experiments. We are a rapidly growing team made up of people from more than 20 countries. Join us now!

Department of Physics, UC San Diego

As an equal opportunity/affirmative action employer with a strong institutional commitment to excellence and diversity (http://diversity.ucsd.edu/), UCSD is an equal opportunity / affirmative action employer with a strong institutional commitment to excellence and diversity (http://diversity.ucsd.edu/).

Assistant or Associate Project Scientist

The Department of Physics within the Division of Physical Sciences at UCSD (http://www.physics.ucsd.edu/) invites applications from qualified individuals for an Assistant or Associate Project Scientist. The UCSD High-Energy Physics group is a world-class software and computing staff by hiring a Systems Integrator to work within the context of the Open Science Grid Software and Technology group.

A successful candidate will have a Ph. D. in Physics, Computer Engineering, or related fields, and at least 3 years of experience with C/C++ and Python development in a Linux environment. Significant experience with Subversion or equivalent revision control system is required. Experience with test-driven development, systems integration, and distributed computing environments is required. Experience with client-server architectures, cluster, grid, cloud computing, open source projects and packaging for RedHat Enterprise Linux in general, and RHEL in particular in high availability. The candidate is expected to be an excellent team player with the ability to work independently.

Interested candidates should submit online a complete CV, a curriculum vitae, sample source code of software you developed, a one-page description of software projects you have worked on, list of publications and a separate statement that addresses past and/or potential contributions to and leadership in promoting diversity, equity and inclusion (see http://faculty.ucsd.edu/~faculApplicants/SDInfo.asp). Candidates should also arrange to have three letters of reference addressing research and software development submitted the above-mentioned URL.

The University is committed to an excellent and diverse faculty and student body. Salary, title and rank are commensurate with qualifications and based on University of California pay scales.

Prompt response is recommended. Review of applications will commence on May 10, 2013 and continue until the position is filled.

Department of Physics, Engineering Physics & Astronomy

Queen’s University, Kingston, Ontario, Canada

Applications are invited for a Postdoctoral Fellow position at Queen’s University in the field of experimental particle astrophysics. This position is funded by the world-leading SNOLAB underground research facility (www.sno.lab.ca) providing an excellent opportunity for frontier research work in the field of particle astrophysics. Faculty members in the current Queen’s’s Particle Astrophysics group (http://sno.phy.queensu.ca/group) were extensively involved in the very successful Sudbury Neutrino Observatory (SNO) experiment and in the establishment of SNOLAB, and are leading members of the PICASSO, DEAP, and SuperCDMS dark matter experiments and the SNO+ experiment studying neutrino-less double beta decay and solar, geo, and supernova neutrinos. The group also has close ties with researchers in the Astronomy group at Queen’s.

The SNOLAB scientific program is identified in the Queen’s Strategic Plan. The project is an important one for the University and Queen’s is committed to maintaining leadership in this field.

Candidates should submit a detailed curriculum vitae, a statement of research and teaching interests, and the names of three referees including their contact information to:

Dr. Geoff Lockwood, Head
Department of Physics, Engineering Physics & Astronomy
Queen’s University
Kingston, Ontario, Canada K7L 3N6

E-mail: lockwood@physics.queensu.ca
Tel: (613) 533-6500 x 74787; Fax: (613) 533-4463

The review of applications will begin on April 10, 2013 and will continue until the position is filled. The preferred starting date is July 1, 2013.

Queen’s University is committed to building a culturally diverse and inclusive environment. Applications from women, visible minorities, aboriginal peoples, persons with disabilities, and persons of any sexual orientation or gender identity are encouraged. Queen’s University is an equal opportunity employer.

TRIUMF is an EOE, and will accept applications until 4pm on April 30th, 2013.
Michigan State University | Facility for Rare Isotope Beams
National Superconducting Cyclotron Laboratory

The Facility for Rare Isotope Beams (FRIB), a DOE Office of Science national user facility currently being established, and the National Superconducting Cyclotron Laboratory (NSCL), an NSF facility, both at Michigan State University, are searching for talented individuals seeking rewarding careers to join us in the following positions:

Faculty Positions in Accelerator Physics
Two faculty positions in accelerator physics with a research program related to the Facility for Rare Isotope Beams. PhD in physics, applied physics or engineering and postdoctoral experience required. Background in beam dynamics, linear accelerators, or superconducting radio frequency preferred.

Accelerator Systems Division Project Engineer
Senior technical manager with demonstrated track record, responsible for delivering $250M accelerator scope on budget and schedule.

Magnet Department Manager
Experienced scientist or engineer to lead department that conceives, designs, implements, installs, and maintains superconducting and room-temperature magnet systems for accelerator physics applications.

Vacuum Systems Group Leader
Scientist or engineer to lead the design, installation and maintenance of beamline vacuum systems.

Detector Physicist
Scientist to lead the conception, development, and optimization of radiation detectors.

Scientific Software Engineer
Scientist or engineer to lead the design and implementation of next-generation data acquisition and analysis framework for nuclear science experiments.

Non-Conventional Utilities
Mechanical Engineer/Physicist
Engineer or physicist with work experience at a reactor, accelerator, or radioactive materials processing facility to support detailed design, installation, commissioning, and operations of the non-conventional and conventional mechanical utilities at FRIB.

Postdoctoral Research Associates
in Accelerator Physics
Recent PhDs with experience in areas such as linear accelerators, superconducting radio frequency, beam dynamics, instrumentation, diagnostics, superconducting magnets, accelerator modeling, or radiation transport.

Postdoctoral Research Associates
in Experimental Nuclear Physics
Recent PhDs with a strong interest and experience in experimental nuclear physics or astrophysics with fast and stopped rare-isotope beams.

MSU is an affirmative action, equal opportunity employer

Visit frib.msu.edu/careers for more information and to apply

Raise your profile with our full-service career videos

More than 23,000 monthly unique visitors

Connecting motivated jobseekers with high-profile employers
Michigan State University Facility for Rare Isotope Beams
National Superconducting Cyclotron Laboratory

The Facility for Rare Isotope Beams (FRIB), a DOE Office of Science national user facility currently being established, and the National Superconducting Cyclotron Laboratory (NSCL), an NSF facility, both at Michigan State University, are searching for talented individuals seeking rewarding careers to join us in the following positions:

Faculty Positions in Accelerator Physics
Two faculty positions in accelerator physics with a research program related to the Facility for Rare Isotope Beams. PhD in physics, applied physics or engineering and postdoctoral experience required. Background in beam dynamics, linear accelerators, or superconducting radio frequency preferred.

Accelerator Systems Division Project Engineer
Senior technical manager with demonstrated track record, responsible for delivering $250M accelerator scope on budget and schedule.

Magnet Department Manager
Experienced scientist or engineer to lead department that conceives, designs, implements, installs, and maintains superconducting and room-temperature magnet systems for accelerator physics applications.

Vacuum Systems Group Leader
Scientist or engineer to lead the design, installation and maintenance of beamline vacuum systems.

Detector Physicist
Scientist to lead the conception, development, and optimization of radiation detectors.

Scientific Software Engineer
Scientist or engineer to lead the design and implementation of next-generation data acquisition and analysis framework for nuclear science experiments.

Non-Conventional Utilities
Mechanical Engineer/Physicist
Engineer or physicist with work experience at a reactor, accelerator, or radioactive materials processing facility to support detailed design, installation, commissioning, and operations of the non-conventional and conventional mechanical utilities at FRIB.

Postdoctoral Research Associates
in Accelerator Physics
Recent PhDs with experience in areas such as linear accelerators, superconducting radio frequency, beam dynamics, instrumentation, diagnostics, superconducting magnets, accelerator modeling, or radiation transport.

Postdoctoral Research Associates
in Experimental Nuclear Physics
Recent PhDs with a strong interest and experience in experimental nuclear physics or astrophysics with fast and stopped rare-isotope beams.

Visit frib.msu.edu/careers for more information and to apply
Imaging gaseous detectors and their applications

By Eugenio Nappi and Vladimir Peskov

Wiley-VCH

Hardback: €139
Paperback: €124.99

For those who want to go back to the paleo-electric era of R&D on gas detectors, this book evokes nostalgic memories of the hours spent in dark laboratories chasing sparks under black cloths, chasing leaks with screaming “pistole”, taming coronas with red paint and yellow tape and, if you belonged to the crazy ones of Building 28 at CERN, sharing a glass of wine and the incredible maguary Corsican cheese with Georges Charpak.

Subtitled “The sorcerer’s Apprentice”, and an innocent student might think they have entered the laboratory of Merlin: creating electrons from each fluttering photon, making magical mixtures of liquids, exotic vapours, funny thin films and all of the strange concoctions that inhabited the era of pioneering R&D and led step-by-step to today’s devices. The historical memory behind this book recalls all sorts of gaseous detectors that have been dreamt up by visionary scientists over the past 50 years: drift chambers, the ambitious time-projection chamber, reative plate chambers, ring-imaging Cherenkov counters, parallel-plate avalanche counters, gas electron multipliers, Micromegas, exotic micro-pattern gaseous detectors (MPGDs) and more. All are included, both the ones that behaved and the ones that did not pay off – providing no excuse for anyone to re-make mistakes after reading the book. All of the basic processes that populate gas counters are reviewed and their functioning and limitations are explained in a simple and concise manner offering, to the attentive reader, key secrets and the solutions to obviate hidden traps.

From the basic ionization processes to the trickiness of the streamer and breakdown mechanism, from the detection of a single photon to the problems of high rates – only lengthy, hands-on experience supported by a profound understanding of the physics of the detection processes could bring together the material that this book covers. Furthermore, it includes many notable explanations that are crystal-clear yet also suitable for the theoretical part of a high-profile educational course.

Coming to more recent times, the use of microelectronics techniques in the manufacturing process of gas counters has paved the road to the new era of MPGDs.

The authors follow this route, the detector designs and the most promising future directions and applications, critically but with great expectation, leaving the reader confident of many developments to come.

Each of us will find in this book some corner of our own memory, the significance of our own gaseous detector in recent and current experiments, together with a touch of the new in exploring the many possible applications of gas counters in medicine, biology or homeland security and – when closing the book – the compelling need to stay in the lab. Chapeau!

● Arhiva Cattia: CERN.

Books received

Industrial Accelerators and Their Applications

By Robert W Hamm and Marianne E Hamm (eds.)

World Scientific

Hardback: $270
E-book: €127

This new book provides a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed and the accelerator technology utilized. It also serves as a thorough introduction to these fields for non-experts and laymen alike. Owing to the growing number of industrial applications, there is an increased interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. Many industries are also doing more research on how they can improve their products or processes using particle beams.

An Introduction to Non-Perturbative Foundations of Quantum Field Theory

By Franco Strocchi

Oxford University Press

Hardback: £135 $189.50

Quantum Field Theory (QFT) has proved to be the most useful strategy for the description of elementary-particle interactions and as such is regarded as a fundamental part of modern theoretical physics. In most presentations, the emphasis is on the effectiveness of the theory in producing experimentally testable predictions, which at present essentially means perturbative QFT. However, after more than 50 years of QFT, there is still no single non-trivial (even non-realistic) model of QFT in 3+1 dimensions, allowing a non-perturbative control. This book provides general physical principles and a mathematically sound approach to QFT. It covers the general structure of gauge theories, presents the charge superselection rules, gives a non-perturbative treatment of the Higgs mechanism and covers chiral symmetry breaking in QCD without instabilities.

Novel Superfluids: Volume 1

By Karl-Henri Beenakker and John B Korteling (eds.)

Oxford University Press

Hardback: £100

This volume reports on the latest developments in the field of superfluidity. The phenomenon has had a tremendous impact on the fundamental sciences as well as a host of technologies. In addition to metals and the helium liquids, the phenomenon has now been observed for photons in cavities, excitons in semiconductors, magnons in certain materials and cold gases trapped in high vacuum. It very likely exists for neutrons in a neutron star and, possibly, in a conjectured quark state at their centre. Even the universe itself can be regarded as being in a kind of superfluid state. All of these topics are discussed by experts in the respective subfields.

Multi-element X-ray detectors for beam-line applications

SGX Sensortech have a distinguished heritage in the manufacture of Silicon Drift (SDD) and Si(Li) detectors. Previously known as e2v scientific and Gresham Scientific, SGX specialises in producing detectors from standard designs through customised assemblies to complex multi-element detectors. All detectors are designed to meet the highest specifications, including the largest single active area (100mm²) available of its kind.

Applications include:

- Extended X-ray Absorption Fine Structure (EXAFS)
- X-ray Absorption Near Edge Structure (XANES)
- Total Reflection X-ray Fluorescence (TXRF)
- Particle Induced X-ray Emission (PIXE)
- Micro X-ray Fluorescence (µXRF)
- X-ray Fluorescence (XRF)

Features

- Available in 1 to 13+ channels
- Individual sensor areas 10mm² - 100mm²
- Resolutions from 127 eV
- Count rate > 1 Mcps
- Windows: Thin Polymer / Beryllium
- Focused or planar sensor arrangements
- Custom collimation
- Application specific designs
- High solid angle
- Vacuum compatible (including UHV)
- Slide options: manual / adapted for translation tables

Also available is a choice of close packed 3 x 100mm² or 6 x 100mm² sensor arrays
Bookshelf

Imaging gaseous detectors and their applications
By Eugenio Nappi and Vladimir Peskov
Wiley-VCH
Hardback: €139
Paperback: €139

For those who want to go back to the Paleolithic era of R&D on gas detectors, this book evokes nostalgic memories of the hours spent in dark laboratories, chasing sparks under black cloths, chasing leaks with screaming “pestle”, taming coronas with red paint and yellow tape and, if you belonged to the crazy ones of Building 28 at CERN, sharing a glass of wine and the incredible magnum Corsican cheese with Georges Charpak. Subtitle it “The sorcerer’s Apprentice” and an innocent student might think they have entered the laboratory of Merlin: creating electrons from each fluttering photon; making magical mixtures of liquids, exotic vapours, funny thin films and all of the strange concoctions that inhabited the era of pioneering R&D and led step-by-step to today’s devices.

The historical memory behind this book recalls all sorts of gaseous detectors that have been dreamt up by visionary scientists over the past 50 years: drift chambers, the ambitious time-projection chamber, expensive plate chambers, ring-imaging Cerenkov counters, parallel-plate avalanche counters, gas electron multipliers, Micromegas, exotic micro-pattern gaseous detectors (MPGDs) and more. All are included, both the ones that behaved and the ones that did not pay off – providing no excuse for anyone to re-make mistakes after reading the book. All of the basic processes that populate gas counters are reviewed and their functioning and limitations are explained in a simple and concise manner. The authors follow this route, the detector designs and the most promising future directions and applications, critically but with great expectation, leaving the reader confident of many developments to come.

Each of us will find in this book some corner of our own memory, the significance of our own gaseous detector in recent and current experiments, together with a touch of the new in exploring the many possible applications of gas counters in medicine, biology or homeland security and – when closing the book – the compelling need to stay in the lab. Chapeau!

Eugenio Nappi, Vladimir Peskov

Industrial Accelerators and Their Applications
By Robert W. Hamm and Marianne E. Hamm (eds.)
World Scientific
Hardback: £270
E-book: £127

This new book provides a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed and the accelerator technology utilized. It also serves as a thorough introduction to these fields for non-experts and laymen alike. Owing to the growing number of industrial applications, there is an increased interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. Many industries are also doing more research on how they can improve their products or processes using particle beams.

An Introduction to Non-Perturbative Foundations of Quantum Field Theory
By Franco Strocchi
Oxford University Press
Hardback: £135 $198.50

Quantum Field Theory (QFT) has proved to be the most useful model of QFT in 3+1 dimensions, allowing a non-perturbative control. This book provides general physical principles and a mathematically sound approach to QFT. It covers the general structure of gauge theories, presents the charge superselection rules, gives a non-perturbative treatment of the Higgs mechanism and covers chiral symmetry breaking in QCD without instabilities.

Novel Superfluids: Volume 1
By Karl-Henric Biermann and John B Ketterson (eds.)
Oxford University Press
Hardback: £135 $230

This volume reports on the latest developments in the field of superfluids. The phenomenon has had a tremendous impact on the fundamental sciences as well as a host of technologies. In addition to metals and the helium liquids, the phenomenon has now been observed for photons in cavities, excitons in semiconductors, magnons in certain materials and cold gases trapped in high vacuum. It very likely exists for neutrons in a neutron star and, possibly, in a conjectured quark state at their centre. Even the universe itself can be regarded as being in a kind of superfluid state. All of these topics are discussed by experts in the respective subfields.

The authors follow this route, the detector designs and the most promising future directions and applications, critically but with great expectation, leaving the reader confident of many developments to come.

Chapeau!

Eugenio Nappi, Vladimir Peskov

Research

Multi-element X-ray detectors for beam-line applications
SGX Sensortech have a distinguished heritage in the manufacture of Silicon Drift (SDD) and Si(Li) detectors. Previously known as e2v scientific and Gresham Scientific, SGX specialises in producing detectors from standard designs through customised assemblies to complex multi-element detectors. All detectors are designed to meet the highest specifications, including the largest single active area (100mm²) available of its kind.

Applications include:
• Extended X-ray Absorption Fine Structure (EXAFS)
• X-ray Absorption Near Edge Structure (XANES)
• Total Reflection X-ray Fluorescence (TXRF)
• Particle Induced X-ray Emission (PIXE)
• Micro X-ray Fluorescence (µXRF)
• X-ray Fluorescence (XRF)

Features
• Available in 1 to 13+ channels
• Individual sensor areas 10mm² - 100mm²
• Resolutions from 127 eV
• Count rate > 1 Mcps
• Windows: Thin Polymer / Beryllium
• Focused or planar sensor arrangements
• Custom collimation
• Application specific designs
• High solid angle
• Vacuum compatible (including UHV)
• Slide options: manual / adapted for translation tables

Also available is a choice of close packed 3 x 100mm² or 6 x 100mm² sensor arrays

SGX Sensortech (MA) Ltd, Watery Lane, High Wycombe, Bucks, HP10 0AP, UK
www.sgxssensortech.com
Tel: +44 (0) 1628 533 060
Email: sales.ma@sgxsensortech.com
GECO: General Control Software

The NEW and entirely redesigned “CAEN HV CONTROL SOFTWARE” for SY4527 - SY5527 - VME - NIM - NDT - DT / HV Power Supply

Sy4527 - Sy5527
Universal Power Supply Systems
Compact and Powerful
Great User Interface!

One step ahead!

GECO has dashboard capability: it can manage and control CAEN HV power supplies in any form factor (SY, VME, NIM, NDT and Desktop) as if they were an unique device
GECO has advanced features: Logging, Scripting and Alarming
GECO can organize and group together channels of different modules and different form factors in a customized view
GECO handles all the communication links provided in CAEN power supplies: Ethernet, USB, Optical link and Wi-Fi
GECO can run on Windows and Linux OS

www.caen.it

NDT-NIM HV
Simply the Best Power Supplies for Your Laboratory

VME HV
CAEN Power Supplies
Embrace the Easy Scalability of the VME

Desktop HV
Great performances in an extremely handy stand alone form factor
Welcome to the digital edition of the May 2013 issue of CERN Courier.

Last July, the ATLAS and CMS collaborations announced the discovery of a new particle at the LHC with a mass of 125 GeV. They referred to it as a “Higgs-like boson” because further data were needed to pin down more of its properties. Now, the collaborations have amassed enough evidence to identify the new particle as a Higgs boson, although the question remains of whether it is precisely the Higgs boson of the Standard Model of particle physics. The discovery brings the final touches to a picture that came into focus 30 years ago, when experiments at CERN first observed the W and Z bosons. The masses of these particles were just as electroweak theory predicted, based on their interactions with a hypothesized Higgs field and its boson. Meanwhile, other particle interactions continue to provide puzzles in more complex systems, from relatively simple nuclei to the hot, dense fireball created in heavy-ion collisions.

To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up.

To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe.