PROSPECTS FOR CP VIOLATION MEASUREMENTS IN LHCb

Marta Calvi
University of Milano Bicocca and INFN Milano
At day 1 of LHCb (2005):

Will have provided:

- accurate measurements of $|V_{cb}|$, $|V_{ub}|$, $|V_{td}|$,
 rare B decays channels, perhaps Δm_s
- $\sin(2\beta)$ from $B_d \rightarrow J/\psi K_s$ with $\sigma \leq 0.05$

signals of New Physics or agreement with Standard Model?

precise measurements of all Unitarity Triangles parameters will be
required to get more informations and to over constrain the UT

Few examples:

- $B^0_d \rightarrow J/\psi K^0_s$:

 $A_{CP} (t) = A_{\text{dir}} \cos (\Delta m t) + A_{\text{mix}} \sin (\Delta m t)$

 high statistics is necessary to have sensitivity on A_{dir}

 \text{(LHCb 1 year's data)}

\[\sigma_{\sin 2\beta} = 0.021 \]
New Physics
in $B^0\overline{B}^0$ mixing?

Both B^0 oscillations and $B^0_d \rightarrow J/\psi K^0_s$ asymmetry would be affected: β measurements biased

From CP asymmetry in $B^0_d \rightarrow D^* \pi^\pm$: $-2\beta + \Phi_{NP} - \gamma$

Subtracting from $B^0_d \rightarrow J/\psi K^0_s$: $-2\beta + \Phi_{NP}$

A clean determination of γ and a test of New Physics

Experimental requirements:

- High statistics on B_d and B_s to reach channels with small BR's ($< 10^{-7}$)
- Measure rapid B_s oscillations: good proper time resolution
- Good efficiency on several final states, including hadronic multi-body:
 - Sensitive trigger (leptonic and hadronic final states)
 - Particle identification
 - Good mass resolution
B production at LHC

pp collisions at $\sqrt{s} = 14$ TeV:

- $\sigma_{\text{inel}} \approx 80$ mb
- $\sigma_{b\bar{b}} \approx 500$ μb
- $S/B \sim 1\%$

★ **Forward production of $b\bar{b}$, correlated**

Good acceptance in single arm forward spectrometer

LHCb: 15 mrad $< \theta < 300$ mrad $(1.9 < \eta < 4.9)$

★ **Several pp interactions per bunch crossing**

LHCb chooses to work with single interaction

Advantages for: radiation damage
detector occupancy
triggering
pattern recognition, flavour tagging
The detector will be operated at \(L \sim 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1} \)
- beams defocused at LHCb interaction point
- compatible with LHC running @ \(10^{34} \text{ cm}^{-2} \text{ s}^{-1} \)

\[\rightarrow 10^{12} \overline{b}b \text{ events / year} \]

★ Charged particle multiplicity

New tuning of simulation on UA5, CDF data after LHCb Technical Proposal:
\((\text{PYTHIA 6.1, multiple parton-parton interaction model, CTEQ4L structure function “post-HERA”})\)

but TRIGGER performances are not affected!
LHCb Milestones

- Feb 1996 LHCb Letter of Intent
- Sep 1998 Approval of Technical Proposal
 - Magnet TDR approved April 2000
 - Vertex Locator TDR April 2001
 - Inner Tracker TDR September 2001
 - Outer Tracker TDR March 2001
 - RICH System TDR submitted 7 September 2000
 - Calorimeter System TDR submitted 6 September 2000
 - Muon System TDR January 2001
 - Trigger TDR January 2002
 - Computing TDR July 2002

- 2000- July 2004 Construction Phase
- July 2005 1st beam in LHCb
GOALS:

- **LHCb TRIGGER**

 - 40 MHz trigger, robust and flexible (not relying on a single subdetector)
 - Efficient on several B decay topologies (also fully hadronic final states)

Level 0

- 40 MHz
- 4 µs
- 60 k channels

- pile up veto
- high p_t muons ($p_t > 1$ GeV/c)
- high p_t electrons, photons and hadrons ($p_t > 2.4, 3.4$ GeV/c)
 - (reduction factor = 10 from high p_t)

Level 1

- 1 MHz
- 1 ms
- 220 k channels

- identify secondary vertices

Level 2

- 40 kHz

- refine secondary vertices
- adding momentum information

Level 3

- 200 Hz

- offline algorithms,
- final states reconstruction

to tape (~ 20 Mbyte/s)

Full event read-out and event building

- Pile up vertex detector
- Muon system
- Calorimeter system
- VErtex LOcator
- VELO, first tracking chambers
- Full detector

Marta Calvi
TRIGGER Efficiency

<table>
<thead>
<tr>
<th></th>
<th>L0(%)</th>
<th>L1(%)</th>
<th>L2(%)</th>
<th>Total(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_d \rightarrow J/\psi (e,e) K_S$ + tag</td>
<td>72</td>
<td>42</td>
<td>81</td>
<td>24</td>
</tr>
<tr>
<td>$B_d \rightarrow J/\psi (\mu\mu) K_S$ + tag</td>
<td>88</td>
<td>50</td>
<td>81</td>
<td>36</td>
</tr>
<tr>
<td>$B_s \rightarrow D_S K$ + tag</td>
<td>54</td>
<td>56</td>
<td>92</td>
<td>28</td>
</tr>
<tr>
<td>$B_d \rightarrow \pi\pi$ + tag</td>
<td>76</td>
<td>48</td>
<td>83</td>
<td>30</td>
</tr>
<tr>
<td>$B_d \rightarrow D_S K^*0$</td>
<td>37</td>
<td>59</td>
<td>95</td>
<td>21</td>
</tr>
</tbody>
</table>

for reconstructed and correctly tagged events

Future improvements of L1:
will take into account L0 informations
to form a new decision
will increase efficiency, e.g. in $\mu\mu$ channels
triggering on 2 high-p$_t$ muons
Vertex Locator (VELO)

Silicon strip detector in LHCb vacuum chamber
- 17 stations with R and ϕ measuring planes
- sensitive area $10 \text{ mm} < r < 60 \text{ mm}$
- 2 half disks: retracted during injection by 3 cm to reduce radiation damage

Optimization for TDR:
- # of stations (25), positions, outer & inner radii
- on average 9.5 hits / track

- Strips segmentation and pitch ($40 \mu\text{m} - 105 \mu\text{m}$) determined by occupancy:

 always below 1%

- Number of readout channels = 2.2×10^5
Vertex Locator (VELO)

- Single sided 200 µm Si, double metal read out:
 - Thin detector
 - $S/B \sim 12$

- Impact parameter resolution:
 - Accuracy on primary vertex: 40 µm

- Front-end chip: 2 options under development (DMILL SCTA128 or sub micron BEETLE)

Prototype detector with 3 R and 3 φ sectors
Proper time resolution for $B_s \rightarrow D_s \pi$

* time-dependent asymmetry measurements
* oscillations measurements

$\sigma_\tau \sim 43 \text{ fs}$

$> 5 \sigma$ measurement for $\Delta m_s \leq 48 \text{ ps}^{-1}$ ($x_s = 75$)
MAGNET

warm dipole 4 Tm (4.2 MW, yoke 1450 t)

MAIN TRACKER

OUTER TRACKER: straw drift tubes
INNER TRACKER: triple GEM with 2D readout
Si strips

σp / p = 0.3%
5 GeV/c < p < 200 GeV/c

σ (M) = 17 MeV for B_d → π^+π^-
σ (M) = 4 MeV for D_s → K^-K^+π^-

TDR approved april 2000
Hadron identification in LHCb:

- **Background suppression**
 - high momentum hadrons in two-body B decays

- **B flavour tag**
 - identify K from $b \to c \to s$
 - low momentum hadrons

2 RICH detectors with 3 radiators
more than 3σ π / K separation in $3 < p < 100$ GeV/c
RICH PHOTODETECTORS

Requirements: ~ 3 m² area, 2.5×2.5 mm² granularity, single photon sensitivity, high Q.E.

3 options considered:
- **Pixel HPD**
 - base line solution
- **Pad HPD**
- **MaPMT**
 - backup solution

Pixel Hybrid PhotoDiode
[CERN and DEP (The Nederlands) project]

- 1024 (500µm×500µm) Si pixel sensor bump bonded to binary read out electronics - ALICE chip
- ∫Q.E. dE ~ 0.77 eV
- 80 mm diameter envelope cross-focusing electrodes
- 70% active area coverage
 (~450 tubes, ~325 k channels)
TEST BEAM RESULTS

61-pixel HPD (80 mm)

Full scale RICH 1 prototype

Accumulated Cherenkov rings

Aerogel test

+ 8 GeV/c beam: π and protons

Accumulated Cherenkov rings on two pad HPD (2048 channels)
L0 trigger requires: fast detector with longitudinal segmentation for e/π separation (electrons up to 200 GeV, hadrons up to 300 GeV)

Hit density varies 2 order of magnitude over calorimeter surface:
variable lateral segmentation (3 zones in ECAL, 2 zones in HCAL)

Joint Calorimeter Test

Pre-shower: sandwich scintillator-Pb-scintillator $2X_0$

ECAL: Shashlik type $25X_0$

$\sigma(E)/E = 10\% / \sqrt{E} \oplus 1.5\%$

HCAL: Fe + scintillating tiles, $5.6\,\lambda_I$

$\sigma(E)/E = 80\% / \sqrt{E} \oplus 10\%$
MUON CHAMBERS

5 muon stations: 870 m² of detector area,
 ~ 150 k physical channels, ~ 26 k logical channels

Regions closer to the beam have stronger requirements for rate capability

- Rate \(\leq 1 \text{ kHz/cm}^2 \) (42% of Muon System)

 RPC with 2 gaps (double gap or 2 single gap ORed)

 Test beam results: time resolution of 1.3 ns, with efficiency >99% in 10 ns
 efficiency >95% at 1.8 kHz/cm²

- 1 kHz/cm² < Rate \(\leq 100 \text{ kHz/cm}^2 \) (58% of Muon System)

 MWPC with anode wire and/or cathode pad readout

 good ageing properties when operated with Ar/CO₂/CF₄ 40/50/10 mixture

 Test beam results: time resolution < 3 ns, with efficiency >99% in 20 ns
 good performances at rates > 100 kHz/cm²

- Rate > 100 kHz/cm² (< 1% of Muon System)

 still under study
\[\gamma \text{ from } B_d \rightarrow D^{*+} \pi^\pm \]

- CP asymmetries from interference between \(B_d \rightarrow D^{*-} \pi^+ \) and \(B_d \rightarrow B \rightarrow D^{*-} \pi^+ \) decays
- Tiny effect (~ 1%) due to double Cabibbo suppressed \(b \rightarrow u \) transition
- Extract \(2\beta + \gamma \) from time dependent fit of CP asymmetries. No penguin contributions.

![Graph showing search for \(B \rightarrow D^{*+} \pi^\pm \) decays]

exclusive reconstruction
\[\sim 84 \text{k ev/year} \quad \text{S/B} \sim 12 \]
(reconstructed and tagged)

partial reconstruction
\[\sim 260 \text{k ev/year} \quad \text{S/B} \sim 3 \]

\[\sigma(2\beta + \gamma) \]

\[\phi + \gamma \]

Sensitivity will depend on strong phase difference

\[\sigma(\gamma) \sim 12^\circ \text{ in 1 year} \quad (\Delta_s = 0) \]

\(B_d \rightarrow D^{*+}a_1^{\pm} \) can be added \(\sim 360 \text{k events/year} \), \(\text{S/B} \sim 4 \).
\[\gamma \text{ from } B_s^0 \rightarrow D_s^+ K^\pm \]

B_s counterpart of B_d \rightarrow D^{*-} \pi^+ but interference effects much larger. No penguins contributions.

Extract \(\gamma - 2\delta\gamma \) from time dependent fit of CP asymmetries.

Assuming \(2\delta\gamma \) known from \(B_s \rightarrow J/\psi \phi \) this will be a clean measurement of \(\gamma \)

- Background from \(B_s^0 \rightarrow D_s^- \pi^+ \sim 20 \) times higher --> RICH for K/\pi separation (\(\pi \) misid 0.1%)
- Fast \(B_s \) oscillations --> good proper time resolution (VELO \(\sigma(\tau) = 43 \) fs)

2500 events expected in 1 year (reconstructed and tagged)

reconstr. efficiency 0.5 \%
\[\sigma(M_B) \sim 11 \text{ MeV} \]
\[S/B \sim 12.5 \]

Sensitivity to \(\gamma - 2\delta\gamma \) will depend on \(\Delta m_s, \Delta \Gamma_s / \Gamma_s \), strong phase difference:

expected precision \(\gamma - 2\delta\gamma : 6^\circ - 12^\circ (\Delta m_s = 15 \text{ ps}^{-1}) \)
Tree and Penguins parameters, including α, can be extracted from a full 3 body analysis, taking into account interference effects between vector mesons of different charge.

$$\sigma(M_B) = 42 \text{ MeV}$$

(35 MeV with π^0 constraint)

Time dependent analysis of event distribution in Dalitz plot

B0_d \rightarrow $\rho^- \pi^+ \pi^- \pi^0$

M$^2(\pi^+ \pi^- \pi^0)$

expected events: $\sim 1200 \ \rho^\pm \pi^+$

$\sim 100 \ \rho^0 \pi^0$

M$^2(\pi^+ \pi^0)$

Expected sensitivity: $\sigma(\alpha) \sim 3^0 - 6^0$ in 1 year

LHCB
Expected CP sensitivities in 1 year *LHCb* *(10^7 s, L = 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1})*

<table>
<thead>
<tr>
<th>Decay channel</th>
<th>N events (reconstructed and tagged)</th>
<th>parameter</th>
<th>sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^0_d \rightarrow J/\psi K_s)</td>
<td>100 k</td>
<td>(\sin(2\beta))</td>
<td>0.021</td>
</tr>
<tr>
<td>(B^0_d \rightarrow \pi^+ \pi^-)</td>
<td>5000</td>
<td>(\sin(2\alpha))</td>
<td>0.05 (No Penguins)</td>
</tr>
<tr>
<td>(B^0_d \rightarrow \rho \pi)</td>
<td>1300</td>
<td>(\alpha)</td>
<td>(\sim 5^\circ (\alpha=50^\circ))</td>
</tr>
<tr>
<td>(B_d \rightarrow D^{*-} \pi^\pm)</td>
<td>(84k) excl. (260k) incl.</td>
<td>(2\beta + \gamma)</td>
<td>(\sim 12^\circ (2\beta + \gamma=0, \Delta s=0))</td>
</tr>
<tr>
<td>(B^0_s \rightarrow D_s^+ K^\pm)</td>
<td>2400</td>
<td>(-2\delta\gamma + \gamma)</td>
<td>(8^\circ - 12^\circ (\Delta m_s=15-45 \text{ ps}^{-1}))</td>
</tr>
<tr>
<td>(B^0_s \rightarrow J/\psi \phi)</td>
<td>50 k</td>
<td>(\sin(2\delta\gamma))</td>
<td>0.03 ((\Delta m_s=25 \text{ ps}^{-1}))</td>
</tr>
</tbody>
</table>
CONCLUSIONS

- LHCb is rapidly evolving towards final design since TP.
 Major technology choices made.
 Magnet TDR approved, RICH and Calorymeter TDR submitted.
 Other Subsystem coming soon.

- Looking forward for “Ferrara 2005” for first LHCb results
 on new measurements of all UT angles with unparalleled precision
 and may be hints for new Physics beyond the Standard Model.