DESIGN, MANUFACTURE AND PERFORMANCE OF THE LEP MAGNETIC LENSES

by

V. Remondino, T. Verbeeck, L. Walckiers, R. Wolf and C. Wyss

Presented at 10th International Conference on Magnet Technology,
Boston, MA, 22 - 25 September 1987

Geneva, Switzerland
September 1987
DESIGN, MANUFACTURE AND PERFORMANCE OF THE LEP MAGNETIC LENSES

V. Romondino, T. Verbeek, L. Welckiers, R. Wolf and C. Wyas
LEP Division
CERN
Geneva, Switzerland

Abstract: The series production of a total of 816 quadrupole magnets of two different types is approaching its end and that of a total of 510 sextupole magnets, also of two different types, is already finished.

After a review of the design of these lenses, the experience gained during their manufacture is discussed. The results of the systematic measurements of their excitation characteristics and field quality are presented and linked to the quality of the low-carbon steel sheet used for their magnetic circuits and to the quality of the assembly of the magnets.

Introduction

The LEP magnet system [1] contains 1312 quadrupole and sextupole magnets to provide the required focusing of the beams. The main nominal characteristics of these lenses are shown in the table below.

Table 1

Main Characteristics of Quadrupoles and Sextupoles

<table>
<thead>
<tr>
<th></th>
<th>Quadrupoles</th>
<th>Sextupoles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnet type</td>
<td>MQ</td>
<td>MQA</td>
</tr>
<tr>
<td>Total number of magnets</td>
<td>520</td>
<td>288</td>
</tr>
<tr>
<td>Magnetic length (mm)</td>
<td>1600</td>
<td>2000</td>
</tr>
<tr>
<td>Pole width (mm)</td>
<td>112</td>
<td>120</td>
</tr>
<tr>
<td>Total steel mass (kg)</td>
<td>2500</td>
<td>3600</td>
</tr>
<tr>
<td>Number of turns per pole</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>Al conductor cross-sectional area (mm²)</td>
<td>194*</td>
<td>130*</td>
</tr>
<tr>
<td>Resistance at 20 °C (mΩ)</td>
<td>65</td>
<td>250</td>
</tr>
<tr>
<td>Maximum current (A)</td>
<td>525</td>
<td>320</td>
</tr>
<tr>
<td>Mass of aluminium conductor (kg)</td>
<td>235</td>
<td>344</td>
</tr>
</tbody>
</table>

* hollow conductor

In the regular lattice of the LEP arcs, 240 and 248 MQ magnets are connected in series to form the horizontal focusing (F) and defocusing (D) circuits, respectively. Next to them are located the NSF and MSD sextupoles, grouped in circuits consisting of about 20 magnets each. The excitation current for all these magnets is mainly carried by a bus-bar system.

The MQA quadrupoles, used in the dispersion suppressor and acceleration lattice cells, are grouped in 118 independent circuits, each requiring long cables.

1. Basic Requirements

Beam optics, availability of longitudinal space and the cross-section of the vacuum chamber have dictated, together with the technological feasibility and economical aspects, the basic magnet parameters, such as maximum gradients, magnetic and iron lengths, and the number of ampère-turns. The size of the good field region (115 mm horizontally by 66 mm vertically) and the stringent tolerance on field quality (2) over the whole excitation range imposed the minimum pole width, the choice of fully symmetric magnetic circuits and the definition of the tolerances on their symmetry. Concerning the latter, it was required that at any axial position the distances between the corners of adjacent poles be within ± 0.1 mm of the nominal value and that the difference between the largest and the smallest of these values be smaller than 0.1 mm. The admissible spread in the quadrupole strength (5 × 10⁻⁴ r.m.s.) led to fixing tight tolerances of ± 0.08 mm for the inscribed circle diameter and of ± 0.5 mm for the steel length of the relatively long MQ and MQA magnets. For the sextupoles, where the admissible spread in field strength set by beam optics considerations was larger (4 × 10⁻³ r.m.s.), it was found technically reasonable to fix the above tolerances to ± 0.1 mm and ± 0.5 mm, respectively. Furthermore, to respect the limits on the spreads in quadrupole and sextupole strengths, the packing factor must be reproducible to ± 0.3 % and ± 0.5 %, respectively.

Hollow aluminium conductor for directly water-cooled excitation coils was also a mandatory requirement because of the choice of aluminium for the excitation bars of the LEP dipoles and the evident convenience of a common cooling system.

2. Design Features

For all types of lenses, the required length and strength were such that parallel side poles and hence easy to manufacture race-track shaped coils could be designed.

2.1 Coil design and choice of current density

Considering the large number of coils to be manufactured, some effort was made to find a coil design which would be cheaper than the classical one making use of hollow conductor.

A novel design using anodized aluminium strip as conductor, which simplifies coil winding and gives a higher filling factor with respect to traditional coils, was developed and its feasibility and reliability successfully proven [3]. For each magnet type, both coil designs were studied and optimized taking into account the capital cost of coils, magnetic circuits, power supplies and cooling, and the operational cost for 30 000 hours at 85 GeV of the power taken from the grid (including 17 % power dissipation for losses in power distribution and conversion, and cooling). With the assumed costs, optimum current densities turned out to be about 1.8 A mm⁻² for the hollow aluminium conductor and about 1.3 A mm⁻² for the alternative design. It is worth noting that the optimum found are rather flat (a variation of ± 0.1 A mm⁻² corresponds to a few percent variation in the total system cost, capital plus operation) and that the costs of power and coils are by far the dominant ones.

After competitive tendering, it turned out that for the approximately 30-turn coils of the MQ, NSF and MSD magnets the hollow-conductor coils led to the lowest overall cost, whereas the strip design was the more...
2.2 Pole profile and width

The pole profiles for each type of magnet were defined so as to compensate for the end effects and satisfy the field quality requirements for the integrated field. This approach avoids the machining of chamfers at the magnet ends and the associated loss of magnetic length. For the quadrupoles, a pole profile based on the ideal hyperbolic profile with tangent straight segments was defined by two-dimensional field computations so as to obtain 12 and 20-pole induced gradient errors ($\Delta G/Q_0$) below 2 10^{-4} at the limit of the useful field region.

A model quadrupole with the above pole profile was ordered to assess also the manufacturing methods for the yoke and coils. After measurement of the 12 and 20-pole gradient errors introduced by the end fields and appropriate scaling [4], 12 and 20-pole field components creating a $\Delta G/Q_0$ at $x = 59$ mm, $y = 0$ mm, of $+0.87\%$ and -0.1%, respectively, were introduced in the pole profile of the 1.55 m long, $\phi = 125$ mm series prototype MQ quadrupole. This was done by modifying accordingly the pure hyperbolic profile by iterative computations. The same procedure was then applied for the 1.95 m long MQA quadrupole, where 12 and 20-pole field components leading to a $\Delta G/Q_0$ at $x = 59$ mm, $y = 0$ mm, of $+0.66\%$ and -0.12%, respectively, were introduced in the pole profile.

The pole width for the MQ quadrupoles has been determined so as to be the minimum necessary to satisfy the field quality requirements; that of the stronger MQA quadrupoles had to be slightly larger in order to limit saturation at the pole root, as occurs with a parallel pole design.

As concerns the MSF and MSD sextupoles, the design of their pole profiles has been directly based on two and three-dimensional computations [5].

2.3 Magnetic circuit

The magnetic circuits are made of identical quadrants/sextants, each built from a stack of 1.5 mm thick laminations compressed between end plates and welded to a reinforcing profile.

The magnetic properties for the low-carbon steel sheet were defined following the specifications of the steel for I3B and SPF magnets. No steel shuffling or mixing was asked for. To build a quadrupole, the quadrants are assembled by means of clamps passing through notches located along the mating surfaces. These notches are created by flipping the laminations in groups of 20 during stacking, an operation which is in any case required to average out differences in the laminations' thickness and systematic punching errors of the pole profile. For the sextupoles, the sextants are welded together three by three, after mounting the coils, so as to form upper and lower sextupole halves, which are bolted together.

The reinforcing angles are dimensioned so as to limit the sag of individual stacks to below 0.05 mm to avoid any non-uniform deformation which might occur due to mechanical hysteresis because of friction between laminations during handling and assembly. The bolts clamping the stacks together are in turn dimensioned to apply each a 4 to 5 t force in order to flatten out any long wave deformation induced by the residual welding stresses. Straightness tolerances were specified to be within ± 0.05 mm for the MSF and MSD sextants, ± 0.06 mm and ± 0.08 mm for the MQ and MQA quadrants, respectively.

3. Magnet manufacture

Three different firms were entrusted with the manufacture and delivery of the MQ, MQA, MSF and MSD magnets. About one year was necessary to produce detailed manufacturing drawings and to design and manufacture the tools for series production. Punching dies stamping two laminations per press stroke were adopted to minimize the losses of steel sheet and to achieve sufficient production rates.

The quadrants/sextants required a careful running-in of their manufacture in order to respect the required straightness tolerances. Careful stacking and shimming, to keep the stack ends parallel to each other within a few tenths of a millimeter, minimum weld thickness, possibly stress-relieved reinforcing angles machined to accuracies below 0.1 mm and stiff enough to withstand the forces exerted by the welds, accurate welding procedure, is not the least, skilled personnel are all very important.

The running-in of the manufacture of the MQA coils has underlined the importance of the geometry of strip edges, of the cleanliness of the heat sinks, which had eventually to be annealed, and of the material for the coil fillers, which must match the thermal elongation of the whole coil beyond curing temperature. The winding time is about 5 h for a 29-turn MQ coil, 14 h for a 58-turn MQA strip coil, and only 15 and 30 min for the shorter MSF and MSD 31-turn coils, respectively, for which a nearly fully automated winding table was developed by the manufacturer.

Only a few percent of the MQA and sextupole coils had to be rejected due to interturn and ground insulation defects, mishaps during impregnation, obstructed cooling channels, etc.; a quasi-zero rejection quota was achieved for the MQ coils. It is also interesting to note that for the MQA soft aluminum strip coils, where the interturn insulation relies on the amodic coating and a 0.05 mm thick glass-fibre tape, interturn short-circuits only occurred on about 1% of coil production, under normal (no clean area) electric shop conditions.

4. Results of Magnetic Measurements

The measuring system used is described in Ref. 6. The reproducibility of the measurements is of 2×10^{-4} for the integrated field strength and 1×10^{-4} for the harmonic content expressed as gradient error at the limit of the useful aperture.

4.1 Integrated field strength

The standard deviation of the integrated field strength (σ_s) and the ampere-turn loss (ΔM) are shown in Figs. 1.4 to 1.6 for the different magnet types. The link between the higher loss of ampere-turns and larger σ_s is evident.

For the MQ quadrupoles, the fact that the standard deviation is also larger in the region where no ampere-turn loss occurs, is mainly due to the steel sheet being delivered by two different manufacturers because of production difficulties at the originally chosen steel producer's premises. This situation could be accepted considering the large number of independent circuits, each containing only a few MQ magnets; the latter are chosen so as to limit the spread to below 5×10^{-4} r.m.s. among the magnets of a same circuit.
The histograms concerning the coercivity, H_C, and MQA strength at $I = 160$ A are superimposed in Fig. 2 which also shows the correlation coefficient between the average H_C of the MQA magnets and their strength for various excitation levels.

Table 2 shows the average values and the standard deviation of core length, L_C, diameter of inscribed circle, d, and coercivity, H_C, of the different magnets.

As regards the MQ magnets, Fig. 3 shows the evolution of the correlation coefficients, k, linking L_C, d and H_C to the integrated quadrupole strength, G_L, throughout the excitation range. It can be seen that $k(H_C, G_L)$ is positive at low excitation (remanent field) and negative at higher excitation (lower permeability associated with higher H_C), $k(d^{-3}, G^r)$ is maximum in the linear part of the excitation, whereas $k(W, G_L)$ increases with excitation, W being the average core weight.

Fig. 4 shows the d^{-3}, G^r) and $k(W, G_L)$ as a function of excitation current; the lower values of $k(d^{-3}, G^r)$ at both ends of the excitation range are again linked to the major role played there by the magnetic properties of the steel.

4.2 Field quality

For the quadrupoles (see Table 3), the errors due to 6-pole components, which are introduced by magnetic or geometrical asymmetries of one pole with respect to the other three poles, average to values near...
Table 3

Field Quality of Quadrupole Magnets

\[G' = \int (d\beta / dx) \, dx \] \(\cdot \) \(e = \Delta G/G_0^2 \) at \(x = 59 \text{ mm}, \ y = 0 \text{ mm} \) (in units of \(10^{-4} \))

<table>
<thead>
<tr>
<th>Field component</th>
<th>MQ quadrupoles</th>
<th>MOA quadrupoles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specified</td>
<td>(I = 55 \text{ A})</td>
</tr>
<tr>
<td>Normal 6-pole</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Skew</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Normal 8-pole</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Skew</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Normal 12-pole</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Normal 20-pole</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Table 4

Field Quality of Sextupole Magnets

\[G'\prime = \int (d^2\beta / dx^2) \, dx \] \(\cdot \) \(e = \Delta G'/G_0^2 \) at \(x = 59 \text{ mm}, \ y = 0 \text{ mm} \) (in units of \(10^{-3} \))

<table>
<thead>
<tr>
<th>Field component</th>
<th>MSF Sextupoles</th>
<th>MSD sextupoles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Specified</td>
<td>(I = 18 \text{ A})</td>
</tr>
<tr>
<td>Normal 8-pole</td>
<td>1.7</td>
<td>20</td>
</tr>
<tr>
<td>Skew</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Normal 10-pole</td>
<td>3.4</td>
<td>20</td>
</tr>
<tr>
<td>Skew</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Normal 18-pole</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Normal 30-pole</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

With respect to the sextupole field quality (see Table 4), the presence of a skew 8-pole component could be linked to the higher stiffness of the lower magnet halves, where welded U-profiles act as feet, with respect to the upper halves. When bolting the two halves together, a slight rotation (some hundreds of a millimeter) of the upper poles occurs. The presence of a normal 10-pole component is believed to be due to the distance between upper and lower halves being slightly larger than the ideal value.

Acknowledgements

The authors would like to thank B. Jean-Frost and P. Rohrig (design), C. Buggione (model work), J. Rinn and Ch. Giloux (magnetic measurements of the quadrupoles), the team of J. Vloogest, SPG Division (magnetic measurements of the sextupoles) and T. Torsen (software facilities for data analysis).

Particular thanks are due to the manufacturing teams of the three magnet suppliers for their ingenuity in overcoming difficulties, their craftsmanship and their effort to maintain the delivery schedules.

References