Firmware development and testing of the ATLAS IBL Back Of Crate card

M. E. Stramaglia on behalf of the ATLAS Collaboration.

AEC-LHEP University of Bern, Sidlerstrasse 5, 3102 Bern, Switzerland
E-mail: maria.elena.stramaglia@cern.ch

ABSTRACT: ATLAS is one of the four big LHC experiments and recently its Pixel Detector was upgraded with a new innermost 4th layer: the Insertable B-Layer (IBL). The upgrade will result in better tracking efficiency, improved precision of measurements and, in the future, compensation for radiation damage of the Pixel-Detector. Newly developed front-end electronics and the higher than originally planned LHC luminosity required a complete re-design of the Off Detector Electronics consisting of the Back Of Crate card (BOC) and the Read Out Driver (ROD). The main purposes of the BOC card are the distribution of the LHC clock to all Pixel Detector components as well as interfacing the detector and the higher level readout optically. The data-path to the detector runs a 40 MHz bi phase mark (BPM) encoded stream. The 160 MHz 8b10b encoded data path from the detector is phase and word aligned in the firmware and then forwarded to the ROD after decoding. The ROD will send out the processed data that is then forwarded to the higher level readout by the BOC card. An overview of the newly developed firmware will be presented together with the results from production tests and the system test at CERN. Focus is put on the partial reconfiguration and results of the fine delay measurements.

KEYWORDS: IBL; Back Of Crate card; ATLAS.
1. The Insertable B-Layer

ATLAS is one of the four big LHC experiments [1] [2] and recently its Pixel Detector [3] was upgraded with a new innermost 4th layer: the Insertable B-Layer (IBL). The Insertable B-Layer (IBL) is the new and innermost layer of the ATLAS Pixel detector. Shown in Figure 1 is the insertion in the detector in May 2014 and it is currently being commissioned. The IBL is a silicon pixel detector made from two types of sensors: planar and 3D sensors. It consists of 14 staves, each of them holding 32 Front-End read-out chips (FE-I4) [4] bump-bonded to the sensor tiles: eight 3D sensors and 12 planar sensors on each stave. Every FE serves 26880 pixels. For the read-out convention, every FE pair is commonly referred to as a "module" (or more precisely DAQ module). Each planar sensor serves two FE chips, while 3D chips serve one FE each; this means that one planar sensor (plus its FE chips) corresponds to one module while two 3D sensors are needed to form one module. More details regarding the detector and the sensor technologies can be found in [5] [6].

Figure 1: IBL during the insertion into the ATLAS Pixel Detector. Half of the staves are visible, as well as the services in the outermost part. A mechanical support is under the detector.
2. Read out chain

The read out scheme is shown in Figure 2(a). The modules are electrically connected to the "optoboards" (2 boards per stave), which handle the electrical-optical conversion. The data transmission runs through optical fibers to serve several aspects: mass reduction, less loss, no cross-talk, decoupling on- from off-detector system. The signals from each optoboard run to a card pair consisting of the Back Of Crate (BOC) card and the Read Out Driver (ROD) card, both hosted in a VME crate. Card pairs are dedicated to IBL (14) and one is for the Diamond Beam Monitor (DBM).

The ROD handles the detector calibration and data taking. The BOC serves as the interface with the detector and the higher level Read-Out Subsystem (ROS) and distributes the LHC clock from the Timing-Trigger Control Interface Module (TIM) to the ROD and to the detector.

An Ethernet connection allows remote access to both the cards from external computers for many purposes: e.g. tests, stand-alone operation and firmware upgrades.

The new IBL BOC card (shown in Figure 2(b)) is equipped with three Xilinx Spartan 6 FPGAs for signal processing:

- One BOC Control FPGA (BCF) for slow control interfaces from the ROD and the Gigabit
Ethernet connection.

- Two BOC Main FPGAs (BMF) dedicated to the signal processing and monitoring of incoming data.

The BOC-ROD communication is made of high-speed signals and the setup-bus relatively slow. The detector interface is handled by commercial SNAP12 plugins that work as optical/electrical converters and vice-versa. Different FPGA settings for the transmitters path can be set to operate at different rates (Tx at 40 - 80 - 160 Mbps) while for the reception always the same rate is chosen (Rx -160 Mbps).

Each module needs one Tx channel and provides two Rx lines. The plugins have 8 channels enabled each, therefore the Tx channels needed for IBL are half of the Rx ones (only two). The connection to the higher level read-out uses the S-Link Protocol, QSFP transceiver modules provide four links dedicated to the ATLAS Fast Tracker (FTK) and four to the ATLAS ROS.

3. Signal processing and tests

Figure 3: Signal processing from the ROD/ethernet port to the optoboards (Downlink) and from the optoboards to the ROD (Uplink).

The signal processing can be divided into two different paths: downlink from the read-out chain to the detector, and uplink from the detector to the ROD. Commands and triggers to the modules are sent from the ROD through the downlink path: Figure 3. In case the ROD is not available, commands can also be generated by an external source and send them directly to the Tx FIFO bus through the ethernet port.

The commands are BPM encoded sending data and clock information on the same line. The optoboard then splits the clock and the data signal into two parallel lines before forwarding them to the modules.

In order to synchronize the phases of the BOC and ROD clocks with the ATLAS Timing, Trigger and Control System (TTC), the detector timing is adjusted using coarse and fine delay blocks. The incoming data is phase aligned for a correct decoding (lower part in Figure 3). The search for word boundaries in the 8b10b encoding looks for comma words. The aligned data is decoded and forwarded to the ROD. Data monitoring functions are available to measure the signal quality.

To assure functionality of the final system, the transmission was checked at each connection step.
checking BPM encoding and decoding. Two particular tests were dedicated to the data transmission on the BOC side. One verified that the data sent from the Tx could reach the Rx side without any corruption after passing through a fiber connection, the other included also the additional step with the optoboard in between. The direct loopback was performed between Tx and Rx on the same bridge (half BOC under the control of one BMF) as represented in Figure 4(a), the loopback in ATLAS including the optoboard is instead in Figure 4(b).

In the first case, 160 Mbps and 8b10b encoded data (Rx request) without BPM encoding (no optoboard included) were sent. Data were randomly generated by a software code and sent through the ethernet to the Tx bus. Then they were forwarded through optical fiber to the Rx and read back on the Rx bus for comparison. The second loopback test was done following the previous scheme but including the optoboard into the loop and therefore at a 40 Mbps. A dedicated firmware allowed the Rx line on the BOC to receive data at a lower frequency. A loopback PCB connected the output to the input line on the optoboard. For this second test the information was BPM encoded and only the data line was then forwarded from the optoboard to the Rx channels. In both cases all data sent were correctly received and decoded. For the first loop, it is possible to estimate a limit for the bit error rate of the order of 10^{-13}; for the second one, the foreseen bit error rate limit is of the order of 10^{-11} due to a faster test.

4. Fine delay implementation and FE emulator

To allow for phase adjustment of each detector module with respect to the LHC, the BOC allows delaying clock and commands. The coarse delay gives a step of 6.25 ns per setting. A fine delay is then needed for adjustment of the timing of the detector, especially for low TOT hits. The required maximum step was fixed to 100 ps, while the optoboard requires an ideal duty-cycle of the signal that should not exceed (50±2)%.

A variable output delay is obtained changing the 8 bit wide fine delay-setting (IODELAY2) by using partial reconfiguration as shown in Figure 5(a). In total 1249 channels have been tested. The results are presented in Figure 5(b). The average slope of the delay is (34.7 ± 0.7) ps per setting: more than one half lower than the maximum allowed. A single channel measurement in Figure 5(a) shows that the delay increases linearly with the setting of the output delay while the duty cycle is only minimally affected. An FE emulator was implemented on the BOC. It is intended for testing the full readout chain without the connection to the optoboard and to the actual detector. The emulator is able to simulate
the detector response and sends out an editable number of hits. It can work in run and configuration mode, reading/writing global registers, manual/automatic mode. In manual mode one can define the hit pattern, which should be sent when a trigger is received (completed with ID and header / trailer), this only works per trigger. Here a FIFO will be filled and read out. In the automatic mode, instead, one can define how many hits will be generated per received trigger. These hits are then randomly distributed over the "chip".

In Figure 6, the occupancy histogram obtained shows sufficient uniformity of the automatic hit distribution generated after 100000 triggers with 188 hits each [15]. This matches the expectations.

Figure 5: Delay measurements results.
for a correctly working front end chip, when it is properly configured and receives the same number of hits and triggers everywhere. The fact that some pixels and columns are “preferred” is due to imperfections of the random number generator inside the emulator.

Figure 6: Occupancy histogram generated by the FE emulator after 100000 triggers and 188 hits. Automatic hit generation [15].

5. Conclusion

The firmware for the BOC card is ready and performs very well. Loopback tests were intensively used to qualify the setup and demonstrate error free data transmission. The implementation of the fine delay using IODELAY2 has successfully been used and will be adjusted before data taking using the partial reconfiguration method. The emulator significantly helped the development of firmware and software in the readout.
References

