Observation of two new Ξ_b^- baryon resonances

The LHCb collaboration

Abstract

Two structures are observed close to the kinematic threshold in the $\Xi_b^0\pi^-$ mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb$^{-1}$, recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bds are expected in this mass region: the spin-parity $J^P = \frac{1}{2}^-$ and $J^P = \frac{3}{2}^+$ states, denoted $\Xi_b^0^-$ and $\Xi_b^1^-$. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be

$$m(\Xi_b^0^-) - m(\Xi_b^0) - m(\pi^-) = 3.653 \pm 0.018 \pm 0.006 \text{ MeV}/c^2,$$

$$m(\Xi_b^1^-) - m(\Xi_b^0) - m(\pi^-) = 23.96 \pm 0.12 \pm 0.06 \text{ MeV}/c^2,$$

$$\Gamma(\Xi_b^1^-) = 1.65 \pm 0.31 \pm 0.10 \text{ MeV},$$

where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of $\Gamma(\Xi_b^0^-) < 0.08 \text{ MeV}$ at 95% confidence level. Relative production rates of these states are also reported.

© CERN on behalf of the LHCb collaboration, license [CC-BY-4.0]
In the constituent quark model \[1,2\], baryonic states form multiplets according to the symmetry of their flavor, spin, and spatial wavefunctions. The \(\Xi_b\) states form isodoublets composed of a \(\Xi_b^0\) \((bsu)\) and a \(\Xi_b^-\) \((bsd)\) state. Three such \(\Xi_b\) isodoublets that are neither orbitally nor radially excited are expected to exist, and can be categorized by the spin \(j\) of the \(su\) or \(sd\) diquark and the spin-parity \(J^P\) of the baryon: one with \(j = 0\) and \(J^P = \frac{1}{2}^+\), one with \(j = 1\) and \(J^P = \frac{1}{2}^-\), and one with \(j = 1\) and \(J^P = \frac{3}{2}^-\). This follows the same pattern as the well-known \(\Xi_c\) states \[3\], and we therefore refer to these three isodoublets as the \(\Xi_b^0\), the \(\Xi_b^-\), and the \(\Xi_b^0\). The spin-antisymmetric \(J^P = \frac{1}{2}^+\) state, observed by multiple experiments \[4–11\], is the lightest and therefore decays through the weak interaction. The others should decay predominantly strongly through a \(P\)-wave pion transition \((\Xi_b^0 \rightarrow \Xi_b\pi)\) if their masses are above the kinematic threshold for such a decay; otherwise they should decay electromagnetically \((\Xi_b^0 \rightarrow \Xi_b\gamma)\). Observing such electromagnetic decays at hadron colliders is challenging due to large photon multiplicities and worse energy resolution for low energy photons compared to charged particles.

There are numerous predictions for the mass spectrum of these low-lying states \[12–23\]. The consensus is that the isospin-averaged value of the mass difference \(m(\Xi_b^0) - m(\Xi_b^-)\) is above threshold for strong decay but that the isospin-averaged difference \(m(\Xi_b^+\pi^-) - m(\Xi_b^-\pi^+)\) is near the kinematic threshold. However, it is expected that the mass difference \(m(\Xi_b^+\pi^-) - m(\Xi_b^-\pi^+)\) is larger than \(m(\Xi_b^0) - m(\Xi_b^-)\) due to the relatively large isospin splitting between the charged and neutral \(\Xi_b\) states. For the ground state, the measured isospin splitting of \(m(\Xi_b^-) - m(\Xi_b^0) = 5.92 \pm 0.64 \text{ MeV/c}^2\) \[24\] is in good agreement with the predicted value of \(6.24 \pm 0.21 \text{ MeV/c}^2\) \[13\]. While the equivalent isospin splitting for the \(\Xi_b^0\) and \(\Xi_b^+\pi^-\) states is likely to be smaller due to differences in the hyperfine mass corrections, the mass difference \(m(\Xi_b^-\pi^+) - m(\Xi_b^0)\) could well be 5–10 MeV/c\(^2\) larger than \(m(\Xi_b^0) - m(\Xi_b^-)\). It is therefore plausible that the decay \(\Xi_b^0 \rightarrow \Xi_b\pi^-\) is kinematically allowed, while \(\Xi_b^0 \rightarrow \Xi_b^-\pi^+\) is not. This is consistent with the recent CMS observation \[25\] of a single peak in the \(\Xi_b^-\pi^+\) mass spectrum, interpreted as the \(\Xi_b'^0\) resonance. We note that \(\Xi_b^0 \rightarrow \Xi_b^-\pi^0\) may also be allowed even if \(\Xi_b^-\pi^0\) is not.

In this Letter we present the results of a study of the \(\Xi_b^0\pi^-\) mass spectrum using \(pp\) collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3.0 fb\(^{-1}\). One third of the data were collected at a center-of-mass energy of 7 TeV and the remainder at 8 TeV. We observe two highly significant structures, which are interpreted as the \(\Xi_b^-\) and \(\Xi_b^+\) baryons. The properties of these new states are reported. Charge-conjugate processes are implicitly included.

The LHCb detector \[26\] is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5\), designed for the study of particles containing \(b\) or \(c\) quarks. The detector includes a high-precision tracking system, which provides a momentum measurement with precision of about 0.5% from 2–100 GeV/c and impact parameter resolution of approximately 20 \(\mu\)m for particles with large transverse momentum \(p_T\). Ring-imaging Cherenkov detectors \[27\] are used to distinguish charged hadrons. Photon, electron and hadron candidates are identified using a calorimeter system, which is followed by detectors to identify muons \[28\].

The trigger \[29\] consists of a hardware stage, based on information from the calorimeter.
and muon systems, followed by a software stage. The software trigger requires a two-, three- or four-track secondary vertex which is significantly displaced from all primary pp vertices (PVs) and for which the scalar p_T sum of the charged particles is large. At least one particle should have $p_T > 1.7\text{GeV}/c$ and be inconsistent with coming from any of the PVs. A multivariate algorithm [30] is used to identify secondary vertices consistent with the decay of a b hadron.

In the simulation, pp collisions are generated using PYTHIA [31] with a specific LHCb configuration [32]. Decays of hadrons are described by EVTGEN [33], in which final-state radiation is generated using PHOTOS [34]. The interaction of the generated particles with the detector, and its response, are implemented using the GEANT4 toolkit [35] as described in Ref. [36].

Signal candidates are reconstructed in the final state $\Xi_b^0\pi^-_s$, where $\Xi_b^0 \rightarrow \Xi^+_c\pi^-$ and $\Xi_c^+ \rightarrow pK^−\pi^+$. The first pion is denoted $\pi^−_s$ to distinguish it from the others. The Ξ_b^0 decay mode is the same as that studied in [9], and the selection used for this analysis is heavily inspired by it and by other LHCb studies with baryons or low-momentum pions in the final state (e.g. [37][38]). At each stage of the decay chain, the particles are required to meet at a common vertex with good fit quality. In the case of the $\Xi_b^0\pi^-_s$ candidate, this vertex is constrained to be consistent with one of the PVs in the event. Track quality requirements are applied, along with momentum and transverse momentum requirements, to reduce combinatorial background. Particle identification criteria are applied to the final-state tracks to suppress background from misidentified particles. To remove cross feed from other charm hadrons, Ξ^+_c candidates are rejected if they are consistent with $D^+ \rightarrow K^+K^−\pi^+\pi^−$, $D^+_s \rightarrow K^+K^−\pi^+, D^+ \rightarrow \pi^+K^−\pi^+$, or $D^{*+} \rightarrow D^0(\pi^+K^-)\pi^+$ decays. To reduce background formed from tracks originating at the PV, the decay vertices of Ξ_c^+ and Ξ_b^0 candidates are required to be significantly displaced from all PVs.

The Ξ^+_c candidates are required to have an invariant mass within 20 MeV/c^2 of the known mass [3], corresponding to approximately $±3\sigma_{\Xi_c^+}$, where $\sigma_{\Xi_c^+}$ is the mass resolution. Candidate Ξ_b^0 decays are required to satisfy $5765 < m_{\text{cand}}(\Xi_b^0) − m_{\text{cand}}(\Xi^+_c) + m_{\Xi_c^+} < 5825\text{MeV}/c^2$, where m_{cand} and $m_{\Xi_c^+}$ refer to the candidate and world-average masses, corresponding to approximately $±2\sigma_{\Xi_b^0}$. In addition, the following kinematic requirements are imposed: $p_T(\Xi_c^+) > 1\text{GeV}/c$, $p_T(\Xi_b^0) > 2\text{GeV}/c$, $p_T(\Xi_b^0\pi^-_s) > 2.5\text{GeV}/c$, and $p_T(\pi^-_s) > 0.15\text{GeV}/c$. Defining $\delta m \equiv m_{\text{cand}}(\Xi_b^0\pi^-_s) − m_{\text{cand}}(\Xi_b^0) − m_{\pi^-_s}$, the region of consideration is $\delta m < 45\text{MeV}/c^2$. There are on average 1.15 candidates retained in this region per event. Such multiple candidates are due almost entirely to cases where the same Ξ_b^0 candidate is combined with different π^-_s candidates from the same PV. All $\Xi_b^0\pi^-_s$ candidates are kept.

The $m_{\text{cand}}(\Xi_b^0)$ projection of the $\Xi_b^0\pi^-_s$ candidates passing the full selection apart from the $m_{\text{cand}}(\Xi_b^0)$ requirement, but including the δm requirement, is shown in Fig. 1. Control samples, notably wrong-sign combinations $\Xi_b^0\pi^+$, are also used to study backgrounds. The δm spectra for the signal and the wrong-sign sample are shown in Fig. 2. Two peaks are clearly visible, a narrow one at $\delta m \approx 3.7\text{MeV}/c^2$ and a broader one at $\delta m \approx 24\text{MeV}/c^2$. No structure is observed in the wrong-sign sample, nor in studies of the Ξ_b^0 mass sidebands.

Accurate determination of the masses, widths, and signal yields of these two states requires knowledge of the signal shapes, and in particular, the mass resolution of the
Figure 1: Distribution of $m_{\text{cand}}(\Xi_b^0)$ for $\Xi_b^0\pi_s$ candidates passing the full selection apart from the $m_{\text{cand}}(\Xi_b^0)$ requirement. Inset: The subset of candidates that lie in the δm signal regions of $3.0 < \delta m < 4.2$ MeV/c^2 and $21 < \delta m < 27$ MeV/c^2.

two peaks. These are obtained from large samples of simulated decays with δm values of 3.69 MeV/c^2 and 23.69 MeV/c^2, corresponding to the two peaks. The natural widths, Γ, are set to negligible values so that the width measured in simulation is due entirely to the mass resolution. The resolution function is parameterized as the sum of three Gaussian distributions with independent mean values. Separate sets of parameters are determined for the two peaks. An indication of the scale of the resolution is given by the weighted averages of the three Gaussian widths, which are 0.21 MeV/c^2 and 0.54 MeV/c^2 for the lower- and higher-mass peaks. In the nominal fits to data, the parameters of the three Gaussian distributions are kept fixed to the values obtained from simulation, given in the Supplementary Material [39]. Small corrections, obtained from simulation, are applied to the masses to account for offsets in the resolution functions. The combinatorial background is modeled by a threshold function of the form

$$f(\delta m) = (1 - e^{-\delta m/C}) (\delta m)^A,$$

where A and C are freely varying parameters determined in the fit to the data.

The masses, widths and yields of the two peaks are determined from an unbinned
Figure 2: Distribution of the mass difference, δm, for $\Xi_{b}^{0}\pi^{-}$ candidates in data. The points with error bars show right-sign candidates in the Ξ_{b}^{0} mass signal region, and the hatched histogram shows wrong-sign candidates with the same selection. The curve shows the nominal fit to the right-sign candidates. Inset: detail of the region 2.0–5.5 MeV/c2.

maximum likelihood fit to the δm spectrum. In an initial fit, each peak is described using a P-wave relativistic Breit-Wigner (RBW) line shape [40] with a Blatt-Weisskopf barrier factor [41], convolved with the resolution function obtained from simulation. The fitted width of the lower-mass peak is found to be consistent with zero and consequently its width is set to zero in the nominal fit, shown in Fig. 2. The fitted yields in the lower- and higher-mass peaks are 121 ± 12 and 237 ± 24 events, with statistical significances in excess of 10σ. The nonzero value of the natural width of the higher-mass peak is also highly significant: the change in likelihood when the width is fixed to zero corresponds to a p-value of 4×10^{-14} using Wilks’s theorem [42].

An upper limit on the natural width of the lower-mass peak is set using ensembles of pseudoexperiments with the same parameters as in data, but with natural widths ranging from 0.01 to 0.12 MeV. The upper limit is taken to be the value of Γ for which a width equal to or greater than that obtained in data is observed in 95% of the pseudoexperiments. The resulting upper limit is $\Gamma(\Xi_{b}^{0}^{-}) < 0.08$ MeV at 95% confidence level (CL).

A number of cross checks are performed to ensure the robustness of the measured masses

\[\text{LOHCb} \]
The converse does not follow, however: a higher-spin resonance that is unpolarized will
θ, which is analogous to the scenario considered in Ref. [47]. Defining

\delta m(\Xi_b^{(*)}) = 3.653 \pm 0.018 \pm 0.006 \text{MeV}/c^2,
\delta m(\Xi_b^{(*)}) = 23.96 \pm 0.12 \pm 0.06 \text{MeV}/c^2,
\Gamma(\Xi_b^{(*)}) = 1.65 \pm 0.31 \pm 0.10 \text{MeV},
\Gamma(\Xi_b^{(*)}) < 0.08 \text{MeV at 95\% CL.}

Combining these with the measurement of \(m(\Xi_b^0) = 5791.80 \pm 0.50 \text{MeV}/c^2 \) obtained
previously at LHCb [9], the masses of these states are found to be

\[m(\Xi_b^-) = 5935.02 \pm 0.02 \pm 0.01 \pm 0.50 \text{MeV}/c^2, \]
\[m(\Xi_b^{*-}) = 5955.33 \pm 0.12 \pm 0.06 \pm 0.50 \text{MeV}/c^2, \]

where the uncertainties are statistical, systematic, and due to the \(m(\Xi_b^0) \) measurement,
respectively.

Helicity angle [46] distributions may be used to distinguish between spin hypotheses
for resonances. We consider the decay sequence \(\Xi_b^{(t,s)^-} \to \Xi_b^0 \pi^- ; \Xi_b^0 \to \Xi_c^{+} \pi^- \), where the
\(\Xi_b^{(t,s)^-} \) has spin \(J \) and the \(\Xi_b^0 \), \(\Xi_c^+ \), and \(\pi^- \) have spin-parity \(\frac{3}{2}, \frac{1}{2} \), and \(0^- \), respectively,
which is analogous to the scenario considered in Ref. [47]. Defining \(\theta_h \) as the angle between
the three-momentum of the \(\Xi_b^0 \) in the \(\Xi_b^{(t,s)^-} \) rest frame and the three-momentum of the
\(\Xi_c^+ \) in the \(\Xi_b^0 \) rest frame, the \(\cos \theta_h \) distribution is a polynomial of order \(2J - 1 \). For \(J = \frac{1}{2} \)
this would yield a flat distribution, and hence a nonuniform distribution would imply \(J > \frac{1}{2} \).
The converse does not follow, however: a higher-spin resonance that is unpolarized will
lead to a flat distribution. For each of the two peaks, the background-subtracted, efficiency-
corrected \(\cos \theta_h \) distributions are studied. Both are found to be consistent with flat
distributions. When fitted with a function of the form \(f(\cos \theta_h) = [a + 3(1 - a) \cos^2 \theta_h] / 2 \),
the fitted values of \(a \) are \(0.89 \pm 0.11 \) and \(0.88 \pm 0.11 \), and the quality of the fits does
not improve significantly. Thus, the available data are consistent with the quark model

and natural widths of these states and to assess systematic uncertainties. These include
changing the assumed angular momentum (spin 0, 2) and radial parameter (1–5 GeV \(^{-1}\)) of
the RBW and barrier factor; inflating the widths of the resolution functions by a fixed factor
of 1.1, the value found in a large \(D^{*+} \to D^0 \pi \) data sample [43]; inflating the widths of the
resolution functions by a common factor floated in the fit (with 1.03±0.11 obtained); using a
symmetric resolution function; using a non-relativistic BW for the higher-mass peak; using
different background function; varying the fit range; checking the effect of finite sample
size and of the variation of mass resolution with particle mass; keeping only one candidate
in each event; imposing additional trigger requirements; separating the data by charge and
LHCb magnet polarity; and fitting the wrong-sign sample. Where appropriate, systematic
uncertainties are assigned based on the differences between the nominal results and those
obtained in these tests. The calibration of the momentum scale [11, 44] is validated by
obtaining in these tests. The calibration of the momentum scale [11, 44] is validated by
Table 1: Systematic uncertainties, in units of MeV/c^2 (masses) and MeV (width). The statistical uncertainties are also shown for comparison.

<table>
<thead>
<tr>
<th>Source</th>
<th>δm(Ξ^0_b)</th>
<th>δm(Ξ^*_b)</th>
<th>Γ(Ξ^*_b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated sample size</td>
<td>0.002</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Multiple candidates</td>
<td>0.004</td>
<td>0.048</td>
<td>0.055</td>
</tr>
<tr>
<td>Resolution model</td>
<td>0.002</td>
<td>0.003</td>
<td>0.070</td>
</tr>
<tr>
<td>Background description</td>
<td>0.001</td>
<td>0.003</td>
<td>0.019</td>
</tr>
<tr>
<td>Momentum scale</td>
<td>0.003</td>
<td>0.014</td>
<td>0.003</td>
</tr>
<tr>
<td>RBW spin and radial parameter</td>
<td>0.000</td>
<td>0.023</td>
<td>0.028</td>
</tr>
<tr>
<td>Sum in quadrature</td>
<td>0.006</td>
<td>0.055</td>
<td>0.095</td>
</tr>
<tr>
<td>Statistical uncertainty</td>
<td>0.018</td>
<td>0.119</td>
<td>0.311</td>
</tr>
</tbody>
</table>

expectations that the lower-mass peak corresponds to a \(J = \frac{1}{2} \) state and the higher one to a \(J = \frac{3}{2} \) state (if unpolarized or weakly polarized), but other values of \(J \) are not excluded.

We measure the production rates of the two signals relative to that of the \(\Xi^0_b \) state, selected inclusively and passing the same \(\Xi^0_b \) selection criteria as the signal sample. To remain within the bandwidth restrictions of the offline data reduction process, 10% of the candidates in the normalization mode are randomly selected and retained for use in this analysis. To ensure that the efficiencies are well understood, we use only the subset of events in which one or more of the \(\Xi^0_b \) decay products is consistent with activating the hardware trigger in the calorimeter.

For this subsample of events, the fitted yields are \(93 \pm 10 \) for the lower-mass \(\Xi^0_b \pi^- \) state, \(166 \pm 20 \) for the higher-mass \(\Xi^0_b \pi^- \) state, and \(162 \pm 15 \) for the \(\Xi^0_b \) normalization sample. The efficiency ratios are determined with simulated decays, applying the same trigger, reconstruction, and selection procedures that are used for the data. Systematic uncertainties (and, where appropriate, corrections) are assigned for those sources that do not cancel in the efficiency ratios. These uncertainties include the modeling of the \(\Xi_b \) momentum spectra, the \(\pi^- \) reconstruction efficiency [48], the fit method, and the efficiency of those selection criteria that are applied to the \(\Xi^0_b \pi^- \) candidates but not to the \(\Xi^0_b \) normalization mode. Combining the 7 TeV and 8 TeV data samples, the results obtained are

\[
\frac{\sigma(pp \to \Xi^0_b^{-} X)B(\Xi^0_b^{-} \to \Xi^0_b \pi^-)}{\sigma(pp \to \Xi^0_b^{-} X)} = 0.118 \pm 0.017 \pm 0.007,
\]

\[
\frac{\sigma(pp \to \Xi^*_b^{-} X)B(\Xi^*_b^{-} \to \Xi^0_b \pi^-)}{\sigma(pp \to \Xi^0_b^{-} X)} = 0.207 \pm 0.032 \pm 0.015,
\]

\[
\frac{\sigma(pp \to \Xi^*_b^{-} X)B(\Xi^*_b^{-} \to \Xi^0_b \pi^-)}{\sigma(pp \to \Xi^0_b^{-} X)} = 1.74 \pm 0.30 \pm 0.12,
\]

where the first and second uncertainties are statistical and systematic, respectively, \(\sigma \) denotes a cross-section measured within the LHCb acceptance and extrapolated to the
full kinematic range with Pythia, \(\mathcal{B} \) represents a branching fraction, and \(X \) refers to the rest of the event. Given that isospin partner modes \(\Xi_b^0 \to \Xi_b^0 \pi^0 \) and \(\Xi_b^0 \to \Xi_b^0 \pi^0 \) are also expected, these results imply that a large fraction of \(\Xi_b^0 \) baryons in the forward region are produced in the decays of \(\Xi_b^0 \) resonances.

As a further check, the \(\Xi_b^0 \pi^\pm \) mass spectrum is studied with additional \(\Xi_b^0 \) decay modes. Significant peaks are seen with the mode \(\Xi_b^0 \to \Lambda_c^+(pK^-\pi^+)K^-\pi^+\pi^- \) for both \(\Xi_b^0 \) final states: \(4\sigma \) for \(\Xi_b^- \) and \(2\sigma \) for \(\Xi_b^0 \) in \(\Xi_b^0 \to D^0(K^-\pi^+)pK^- \); and \(3\sigma \) for \(\Xi_b^- \) and \(3\sigma \) for \(\Xi_b^0 \) in \(\Xi_b^0 \to D^+(K^-\pi^+\pi^+)pK^-\pi^- \). The modes \(\Xi_b^0 \to \Lambda_c^+(pK^-\pi^+)K^-\pi^+\pi^- \) and \(\Xi_b^0 \to D^+(K^-\pi^+\pi^+)pK^-\pi^- \) have not been observed before, and are being studied in separate analyses.

With a specific configuration of other excited \(\Xi_b \) states, it is possible to produce a narrow peak in the \(\Xi_b^0 \pi^- \) mass spectrum that is not due to a \(\Xi_b^- \) resonance. This can arise from the decay chain \(\Xi_b^{*0} \to \Xi_b^0 \pi^- \), \(\Xi_b^0 \to \Xi_b^0 \pi^0 \), where the \(\Xi_b^{*0} \) is the \(L = 1 \), \(J^P = \frac{1}{2}^- \) state analogous to the \(\Xi_c(2790) \). If both decays are close to threshold, the particles produced will be kinematically correlated such that combining the \(\Xi_b^0 \) daughter with the \(\pi^- \) from the \(\Xi_b^{*0} \) would produce a structure in the \(m(\Xi_b^0 \pi^-) \) spectrum. In general such a structure would be broader than that seen in Fig. 2 and would be accompanied by a similar peak in the wrong-sign \(\Xi_b^0 \pi^+ \) spectrum from the isospin-partner decay, \(\Xi_b^{*0} \to \Xi_b^- \pi^+ \), \(\Xi_b^0 \to \Xi_b^0 \pi^- \). However, if a number of conditions are fulfilled, including the \(\Xi_b^{*0} \) and \(\Xi_b^0 \) states being \(279.0 \pm 0.5 \) and \(135.8 \pm 0.5 \) MeV/c\(^2 \) heavier than the \(\Xi_b^0 \) ground state, respectively, it is possible to circumvent these constraints. This would also require that the production rate of the \(L = 1 \) state be comparable to that of the \(L = 0 \), \(J^P = \frac{3}{2}^+ \) state. Although this scenario is contrived, it cannot be excluded at present.

In conclusion, two structures are observed with high significance in the \(\Xi_b^0 \pi^- \) mass spectrum with mass differences above threshold of \(\delta m = 3.653 \pm 0.018 \pm 0.006 \) MeV/c\(^2 \) and 23.96 \(\pm 0.12 \pm 0.06 \) MeV/c\(^2 \). These values are in general agreement with quark model expectations for the \(J^P = \frac{1}{2}^- \Xi_b^- \) and \(J^P = \frac{3}{2}^+ \Xi_b^{*-} \) states. Their natural widths are measured to be \(\Gamma(\Xi_b^-) < 0.08 \) MeV at 95% CL and \(\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 \) MeV. The observed angular distributions in the decays of these states are consistent with the spins expected in the quark model, but other \(J \) values are not excluded. The relative production rates are also measured.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the HLb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); INFN (Italy); FOM and NWO (The Netherlands); MNISW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NS (USA). The Tier1 computing centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for
the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom).
References

[32] I. Belyaev et al., Handling of the generation of primary events in GAUSS, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155

[43] LHCb collaboration, A search for time-integrated CP violation in D^0 → K^-K^+ and D^0 → π^-π^+ decays, LHCb-CONF-2013-003

22 Sezione INFN di Padova, Padova, Italy
23 Sezione INFN di Pisa, Pisa, Italy
24 Sezione INFN di Roma Tor Vergata, Roma, Italy
25 Sezione INFN di Roma La Sapienza, Roma, Italy
26 Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
27 AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
28 National Center for Nuclear Research (NCBJ), Warsaw, Poland
29 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
30 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
31 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
32 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
33 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35 Institute for High Energy Physics (IHEP), Protvino, Russia
36 Universitat de Barcelona, Barcelona, Spain
37 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38 European Organization for Nuclear Research (CERN), Geneva, Switzerland
39 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40 Physik-Institut, Universität Zürich, Zürich, Switzerland
41 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
43 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
44 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
45 University of Birmingham, Birmingham, United Kingdom
46 H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
47 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
48 Department of Physics, University of Warwick, Coventry, United Kingdom
49 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
50 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
52 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
53 Imperial College London, London, United Kingdom
54 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
55 Department of Physics, University of Oxford, Oxford, United Kingdom
56 Massachusetts Institute of Technology, Cambridge, MA, United States
57 University of Cincinnati, Cincinnati, OH, United States
58 University of Maryland, College Park, MD, United States
59 Syracuse University, Syracuse, NY, United States
60 Pontificia Universidad Católica del Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2
61 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to 3
62 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia, associated to 8
63 Institut für Physik, Universität Rostock, Rostock, Germany, associated to 11
64 National Research Centre Kurchatov Institute, Moscow, Russia, associated to 31
65 Instituto de Física Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to 36
66 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to 41
67 Celal Bayar University, Manisa, Turkey, associated to 38

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
b P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
c Università di Bari, Bari, Italy