Search for the Higgs boson in fermionic channels using ATLAS detector

2014 Dec 1st
Discovery Physics at the LHC

Kruger 2014, South Africa

Kazuya Mochizuki,
on behalf of the ATLAS collaboration
Centre de Physique des Particules de Marseille (CPPM)
Since the discovery...

2012 July 4th, observation of a new boson @ $m \sim 125$ GeV

2013 March
Spin 0 with positive parity compatible with SM Higgs boson with Spin CP measurement

2013 Oct.
Nobel Prize in physics 2013

2013 Nov.
Evidence for $H \rightarrow \tau \tau$

2014 Dec.
Everything seems consistent with the SM. ⇒ Precise measurement is very important with

- Mass
- Couplings
 Especially with fermions
- Spin / CP

$H \rightarrow \gamma \gamma$

$H \rightarrow Z \gamma$

$H \rightarrow Z^0 Z^0 \rightarrow 4 \ell$

$H \rightarrow \tau \tau$

$H \rightarrow \nu \nu$

Long shutdown

LHC Run 1

2012

2013

2014

2015
Higgs searches with fermions at ATLAS

Recently updated. Main topics in this talk.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Reference and released date</th>
<th>Paper submitted to</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>ATLAS-CONF-2014-061 2014 Oct 7</td>
<td>-</td>
</tr>
<tr>
<td>$H \rightarrow \mu\mu$</td>
<td>Physics Letters B doi:10.1016 2014 Jun 30</td>
<td>PLB</td>
</tr>
<tr>
<td>$VH \rightarrow Vbb$</td>
<td>arXiv: 1409.6212 2014 Sep 22</td>
<td>JHEP</td>
</tr>
<tr>
<td>$ttH \rightarrow ttbb$</td>
<td>ATLAS-CONF-2014-011 2014 Mar 24</td>
<td>-</td>
</tr>
<tr>
<td>$ttH \rightarrow tt\gamma\gamma$</td>
<td>arXiv:1408.7084 2014 Aug 27</td>
<td>PRD</td>
</tr>
<tr>
<td>$tH \rightarrow tbb$</td>
<td>arXiv:1409.3122 2014 Sep 10</td>
<td>PLB</td>
</tr>
</tbody>
</table>

Other related talks on SM Higgs

For Higgs combinations and properties	9:15	Kyle CRANMER
For prospect studies	10:45	Philip CLARK
For ttH channels	14:30	Giuseppe SALAMANNA
Higgs production modes

- Largest cross section: 19.27 pb @ 125 GeV
- Large theory uncertainty ~10%

- 2nd Largest cross section: 1.58 pb @ 125 GeV
- Discriminative topology with 2 forward jets
- Main target of $H \rightarrow \tau\tau$ analysis

- Cross section @ 125 GeV: 0.7 (0.42) pb for WH (ZH)
- Associated leptonic W/Z for trigger
- Main target of $H \rightarrow b\bar{b}$ analysis

- Cross section: 0.13 pb @ 125 GeV
- Important for top Yukawa coupling measurement
- Busy and complex final state
1. **Searches with leptons**
 1. $H \rightarrow \tau\tau$
 2. $H \rightarrow \mu\mu$

2. **Searches with quarks**
 1. VH, $H \rightarrow bb$

\[m_H = 125 \text{ GeV} \]

\[Br(H \rightarrow \tau\tau) = 6.3\% \]
\[Br(H \rightarrow \mu\mu) = 0.02\% \]
\[Br(H \rightarrow bb) = 58\% \]
VBF $H \rightarrow \tau_e \tau_{\text{had}}$ candidate in Run 1
$H \rightarrow \tau\tau$ analysis channels

- The search is split into 3 sub-channels based on τ decay modes.

\begin{itemize}
 \item $\tau_{\text{had}}\tau_{\text{had}}$
 \begin{itemize}
 \item 42%
 \item Large BR
 \item 2 isolated τ_{had}
 \item E_T^{miss}
 \end{itemize}
 \item $\tau_{\text{lep}}\tau_{\text{had}}$
 \begin{itemize}
 \item 45.6%
 \item Large BR
 \item 1 isolated lepton
 \item 1 isolated τ_{had}
 \item E_T^{miss}
 \end{itemize}
 \item $\tau_{\text{lep}}\tau_{\text{lep}}$
 \begin{itemize}
 \item 12.4%
 \item Small BR
 \item 2 isolated lepton
 \item Higher E_T^{miss}
 \end{itemize}
\end{itemize}

- 2 main production modes targeted
 - **Boosted** category ($gg \rightarrow H$):
 The Higgs candidates have high p_T (> 100 GeV)
 - **VBF** category:
 VBF event topology tagged with 2 jets with large $\Delta\eta(j_1, j_2)$
$H \rightarrow \tau\tau$ analysis strategy

- **2 analyses to confirm each other**
 - **Multi-variate analysis (MVA):**
 Fit BDT output which combines kinematic variables together with $m_{\tau\tau}^{\text{MMC}}$.
 - **Cut-based analysis:**
 Fit $m_{\tau\tau}^{\text{MMC}}$ ($m_{\tau\tau}$ reconstructed with missing mass calculator).
 Cross-check for MVA.

Missing mass calculator (MMC)
Use tau-decay PDFs to pick most likely di-tau invariant mass given visible decay products and E_T^miss

- **Main backgrounds: modeled by data-driven methods**
 - **$Z \rightarrow \tau\tau$, irreducible background**
 Modeling is based on embedding sample (next page).
 - **Tau fakes or lepton fakes (W+jets, multi-jets)**
 Cannot be predicted by MC => data-driven methods below

<table>
<thead>
<tr>
<th>Channel</th>
<th>Estimation method</th>
<th>Control region (CR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau_{\text{lep}}\tau_{\text{lep}}$</td>
<td>Multijet-fit on $p_T^{\ell_2}$</td>
<td>Inverted lepton isolation</td>
</tr>
<tr>
<td>$\tau_{\text{lep}}\tau_{\text{had}}$</td>
<td>Fake-factor method</td>
<td>Inverted τ-id with dedicated CR for different processes</td>
</tr>
<tr>
<td>$\tau_{\text{had}}\tau_{\text{had}}$</td>
<td>Multijet-fit on $\Delta\eta_{\tau\tau}$</td>
<td>OS\leftrightarrowSS inversion, τ isolation inversion</td>
</tr>
</tbody>
</table>

Charge requirements on τ decay product: OS=opposite sign, SS=same sign
Z → ττ background estimation

Tau-embedding technique

- Estimate shape of $Z \rightarrow \tau\tau$ from $Z \rightarrow \mu\mu$ data
 - Remove μ tracks and calorimeter cells
 - Replace μ with τ from full-simulated $Z \rightarrow \tau\tau$ decays generated with TAUOLA

- Event content from data except τ decay
- Validation of the procedure with
 - $\mu \rightarrow \mu$ replacement in data
 - $\mu \rightarrow \tau$ replacement in MC

Background Estimation

- **Data**: $Z \rightarrow \mu\mu$
- **MC**: $Z \rightarrow \tau\tau$ had

Run reconstruction after replacement

Validation of procedure

- $Z \rightarrow \mu\mu$, data vs data(emb)
- $Z \rightarrow \tau\tau$, MC vs MC(emb)

Calo-isolation

Event Content

- Run reconstruction after replacement
- Validation of the procedure with $\mu \rightarrow \mu$ replacement in data, $\mu \rightarrow \tau$ replacement in MC

Graphs

- $Z \rightarrow \mu\mu$, data vs data(emb)
- $Z \rightarrow \tau\tau$, MC vs MC(emb)
$H \to \tau\tau$ BDT analysis

- 6 BDT trainings for 2(Boosted, VBF) * 3($\tau_{\text{lep}}\tau_{\text{lep}}$, $\tau_{\text{lep}}\tau_{\text{had}}$, $\tau_{\text{had}}\tau_{\text{had}}$)
- Simultaneous fit on the 6 BDT output + control regions

- For $m_H = 125.36$ GeV, 4.5σ (3.5σ) significance is observed (expected)

 Evidence for Higgs coupling to tau: γ_τ

- Dominant uncertainties
 - Jet energy scale
 - Background normalization
 - BR ($H \to \tau\tau$)
 - Tau energy scale / identification

![Graphs and plots related to BDT analysis and Higgs signal](image-url)
H → ττ results

- **Signal strength:**

 MVA: $\mu = 1.42^{+0.27}_{-0.26}({\text{stat.}})^{+0.32}_{-0.24}({\text{syst.}}) \pm 0.10({\text{theo.}})$ for $m_H = 125.36$ GeV

 Cut based cross-check (8 TeV only):
 $\mu = 1.37^{+0.57}_{-0.48}(\text{tot.})$

- **Compatible with SM**

 \[\mu^{\tau \tau}_{ggF} = 1.93^{+0.78}_{-0.77}({\text{stat.}})^{+1.19}_{-0.80}({\text{syst.}}) \pm 0.29({\text{theo.}}) \]

 \[\mu^{\tau \tau}_{VBF+VH} = 1.24^{+0.48}_{-0.45}({\text{stat.}})^{+0.31}_{-0.28}({\text{syst.}}) \pm 0.08({\text{theo.}}) \]

 for $m_H = 125.36$ GeV
1. Searches with leptons
 1. $H \rightarrow \tau\tau$
 2. $H \rightarrow \mu\mu$

2. Searches with quarks
 1. $VH, H \rightarrow bb$

Br($H \rightarrow \tau\tau$) = 6.3%
Br($H \rightarrow \mu\mu$) = 0.02%
Br($H \rightarrow bb$) = 58%

$m_H = 125$ GeV
H → μμ analysis

Overview
- Important to measure the 2nd generation couplings
- Search for a narrow resonance of $H \rightarrow \mu\mu$
- Fit $m_{\mu\mu}$ in 110-160 GeV range
- Overwhelming irreducible Drell-Yan background
 Precise background modeling is an important key

Categorization
- ggH, VBF with 2 jets
- For ggH, further categorization based on η^μ:
 - Central category: $|\eta^{\mu_1}|<1$ and $|\eta^{\mu_2}|<1$
 - Non-central category: events not passing above
- $p_T^{\mu\mu}$:
 - Low ($p_T^{\mu\mu}<15$ GeV)
 - Medium ($15<p_T^{\mu\mu}<50$ GeV)
 - High ($50<p_T^{\mu\mu}$ GeV)

Pre-selection
- 2 isolated opposite sign muons
- $p_T^{\mu_1}>25$ GeV, $p_T^{\mu_2}>15$ GeV
- $E_T^{\text{miss}}<80$ GeV

Fit
- Central Muons, $p_T^{\mu\mu}<15$ GeV
- Non-central Muons, $p_T^{\mu\mu}<15$ GeV
- Central Muons, $15<p_T^{\mu\mu}<50$ GeV
- Non-central Muons, $15<p_T^{\mu\mu}<50$ GeV
- VBF≥2 jets, $M_{jj}>500$ GeV, $\Delta\eta_{jj}>3$, $\eta_{j_1}\times\eta_{j_2}<0$
$H \rightarrow \mu\mu$ results

- Observed (expected) limit at 125.5 GeV with 95% CL: 7.0 (7.2) x SM
- 95% CL limit on BR: 1.5×10^{-3}
- Result limited by data statistics => Run 2
- Confirmation of non-universality of Higgs-lepton couplings
1. **Searches with leptons**
 1. $H \rightarrow \tau\tau$
 2. $H \rightarrow \mu\mu$

2. **Searches with quarks**
 1. $VH, H \rightarrow bb$
 - $ZH \rightarrow \nu\nu bb$
 - $WH \rightarrow \ell\nu bb$
 - $ZH \rightarrow \ell\ell bb$

\[Br(H \rightarrow \tau\tau) = 6.3\% \]
\[Br(H \rightarrow \mu\mu) = 0.02\% \]
\[Br(H \rightarrow bb) = 58\% \]

$m_H = 125$ GeV
$WH \rightarrow \mu vbb$ candidate in Run 1
VH → Vbb analysis I

- Large BR (~58%), but \(pp \rightarrow bb \) overwhelms ggH and VBF production to search

 ⇒ Use associated W/Z production for probe and distinguish signal from backgrounds

- 2 analyses to confirm each other
 - Multi-variate analysis (MVA): fit BDT output which combines kinematic variables in addition to \(m_{bb} \)
 - Cut-based analysis: fit di-jet invariant mass (\(m_{bb} \)). Cross-check for MVA.

- Analysis splits into 3 sub-channels based on decay modes of W/Z: 0-, 1-, 2-lepton

<table>
<thead>
<tr>
<th>Process</th>
<th>(Z \rightarrow \nu\nu)</th>
<th>(W \rightarrow e\nu / W \rightarrow \mu\nu)</th>
<th>(Z \rightarrow e\bar{e} / Z \rightarrow \mu\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#leptons</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Branching fraction</td>
<td>20%</td>
<td>11% / 11%</td>
<td>3.3% / 3.3%</td>
</tr>
<tr>
<td>Main background</td>
<td>Top, W/Z+jets</td>
<td>Top, W+jets</td>
<td>Z+jets</td>
</tr>
</tbody>
</table>
| Event signature (Selection/BDT-input) | • Large \(E_T^{\text{miss}} \) and \(p_T^{\text{miss}} \)
 • \(E_T^{\text{miss}} \) and di-jet in back-to-back | • \(E_T^{\text{miss}} \) and \(H_T \)
 to kill multi-jet | • Low \(E_T^{\text{miss}} \)
 • \(m_T^W \)
 • \(m_{\ell\ell} \) window cut for \(m_Z \) |

\(p_T^{\text{miss}} \): track based \(E_T^{\text{miss}} \)

\(H_T \): Scalar sum of jets, lepton, and \(E_T^{\text{miss}} \)
VH → Vbb analysis II

- To maximize sensitivity and cope with different background composition, analysis further splits into
 - 2-jet and 3-jet categories
 - Low and high p_T^V categories (p_T^V boundary @ 120 GeV)
- Select exactly 2 tagged b-jets
 - MV1c tagger is used: improved c-jet rejection
 - Thanks to **continuous calibration** of b-tagging, three 2-tag categories are used based on tightness of MV1c tagger.
- In addition to three 2-tag regions, simultaneously fit **MC1c in 1-tag region to constraint background**

Graphs:
- **ATLAS:**
 - $\ell \nu b b$ events vs m_{bb} [GeV] for data 2012, VH(bb) (μ=1.0), diboson, single top, multijet, W+hf, W+I, Z+hf, and uncertainty.
 - **Boosted decision trees** for $\ell \nu b b$ events.

Legend:
- Data 2012
- VH(bb) (μ=1.0)
- Diboson
- Single top
- Multijet
- W+hf
- W+I
- Z+hf
- Uncertainty
- Pre-fit background
- VH(bb)=20

Diagram:
- MV1c(j) categories with 80%, 70%, 50% boundaries.
- 1-tag, TT, MM, LL regions.
- Continuous calibration of b-tagging.
VH improvements

- m_{bb} resolution improvement
 - Most important variable in BDT inputs
 - Muon-in-jet correction
 - Kinematic likelihood fit in 2-lepton channel

 No intrinsic E_T^{miss} except semi-leptonic b-decay

- E_T^{miss} triggered muon channel in $WH \rightarrow \ell vbb$

 Compensate the inefficiency of muon trigger

- Low E_T^{miss} ($100 < E_T^{\text{miss}} < 120$ GeV) bin
 in $ZH \rightarrow \nu \nu bb$

- Improvement from MVA

Use BDTs in 3(0-, 1-, 2-) lepton-channels x 2(2-,3-) jet bins x 2(low, high) p_T^V bins x 3(LL, MM, TT) 2-tag regions

Combination across channels
For SM Higgs search at $m_H=125.36$ GeV:
MVA: 1.4σ (2.6σ) significance is observed (expected)
Cut-based cross check: 2.2σ (1.9σ) observed (expected)

Signal strength:
MVA: $\mu = 0.52 \pm 0.32$ (stat.) ± 0.24 (syst.) for $m_H = 125.36$ GeV
Cut based cross-check: $\mu = 1.23 \pm 0.44$ (stat.) ± 0.41 (syst.)
Dominant systematic source:
$W/Z +$ heavy flavor modeling (shape, normalization)

Compatible with SM

Combination across channels

Diboson (VZ) production is measured as a cross-check
\Rightarrow compatible with the SM

$- 4.9 \sigma$ (6.3σ) is observed (expected) for VZ production
$- $ Signal strength $\mu = 0.74 \pm 0.09$ (stat.) ± 0.14 (syst.)
Summary

<table>
<thead>
<tr>
<th>Decay channels</th>
<th>Signal strength (μ)</th>
<th>Significance / limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H \rightarrow \tau\tau$</td>
<td>$1.4^{+0.3,\text{(stat)}}_{-0.3,\text{(sys)}}$</td>
<td>$4.5\ (3.5) \ \sigma$</td>
</tr>
<tr>
<td>$H \rightarrow \mu\mu$</td>
<td>$-$</td>
<td>$\mu/\mu_{\text{SM}}=7.0\ (7.2)$</td>
</tr>
<tr>
<td>$VH \rightarrow Vbb$</td>
<td>$0.5^{+0.3,\text{(stat)}}_{-0.2,\text{(sys)}}$</td>
<td>$1.4\ (2.6) \ \sigma$</td>
</tr>
</tbody>
</table>

- **$H \rightarrow \tau\tau$: Evidence for Y_τ**
- **$H \rightarrow \mu\mu$:** No excess observed yet at $m_H=125$ GeV
- **$H \rightarrow bb$:** An excess with 1.4 σ significance observed at $m_H=125$ GeV

- So far, everything looks compatible with the SM expectations

LHC will restart next year!!
- Increased luminosity
- New innermost pixel layer (IBL) in ATLAS

STAY TUNED!
BACKUP BUCKET
VH → Vbb selection

- Cut-based selection has 5 bins in p_T^V in stead of 2 bins of MVA.
- To cope with the different background composition, cuts vary in p_T^V bins in cut-based selection, e.g. ΔR_{jj}.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Dijet-mass analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^V [GeV]</td>
<td>0–90 90(+)–120 120–160 160–200 > 200</td>
<td>0–120 > 120</td>
</tr>
<tr>
<td>$\Delta R_{(jet_1,jet_2)}$</td>
<td>0.7–3.4 0.7–2.3 0.7–1.8 < 1.4</td>
<td>> 0.7 ($p_T^V<200$ GeV)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0-lepton selection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^{miss} [GeV]</td>
<td></td>
<td>> 30</td>
</tr>
<tr>
<td>$\Delta \phi(E_T^{miss},E_T^{miss,vec})$</td>
<td></td>
<td>< $\pi/2$</td>
</tr>
<tr>
<td>$\min[\Delta \phi(E_T^{miss},jet)]$</td>
<td></td>
<td>> 1.5</td>
</tr>
<tr>
<td>$\Delta \phi(E_T^{miss},dijet)$</td>
<td></td>
<td>> 2.8</td>
</tr>
<tr>
<td>$\sum_{i=1}^{N_{jet}^{=2}(3)} p_T^{jet_i}$ [GeV]</td>
<td></td>
<td>> 120 (NU)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 120 (150)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1-lepton selection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m_T^W [GeV]</td>
<td></td>
<td>> 180</td>
</tr>
<tr>
<td>H_T [GeV]</td>
<td></td>
<td>< 120</td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td></td>
<td>> 180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2-lepton selection</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{\ell\ell}$ [GeV]</td>
<td></td>
<td>83–99</td>
</tr>
<tr>
<td>E_T^{miss} [GeV]</td>
<td></td>
<td>71–121</td>
</tr>
</tbody>
</table>

E_T^{miss} triggered μ-ch in WH

- Single muon trigger does not reach 100% efficiency
- Thanks to well measured E_T^{miss} trigger turn on, we can apply E_T^{miss} trigger for the recovery of muon trigger in $WH \rightarrow \ell \nu b\bar{b}$, applied in $p_T^W > 120$ GeV.
- Contribution to significance gain: $\sim 2\%$
\(\Delta \phi \) correction

Sub-division of signal regions based on \(p_T^V \)

\(\Rightarrow \) Modeling of \(p_T^V \) is crucial
$VH \rightarrow Vbb \ p_T^V$ distributions

Figure 1:
- **Title:** ATLAS
- **Subtitle:** $\sqrt{s} = 8$ TeV \[\int L dt = 20.3 \text{ fb}^{-1} \]
- **Legend:**
 - Data 2012
 - VH(bb) ($\mu=1.0$)
 - Diboson
 - tt
 - Single top
 - Multi-Jet
 - W+H
 - W+Cl
 - Z+H
 - Z+Cl
 - Uncertainty
 - Pre-fit background
 - VH(bb)-30

Graphs:
- **Left:** 0 lep., 2 jets, 2 Medium+Tight tags
- **Middle:** 1 lep., 2 jets, 2 Medium+Tight tags
- **Right:** 2 lep., 2 jets, 2 Medium+Tight tags

Axes:
- **X-axis:** p_T^V [GeV]
- **Y-axis:** Events / bin

Legend Entries:
- Data 2012
- VH(bb) ($\mu=1.0$)
- Diboson
- tt
- Single top
- Multi-Jet
- W+H
- W+Cl
- Z+H
- Z+Cl
- Uncertainty
- Pre-fit background
- VH(bb)-30

Contrast:
- Red: VH(bb) ($\mu=1.0$)
- Yellow: Diboson
- Orange: tt
- Green: Single top
- Blue: Multi-Jet
- Light Green: W+H
- Light Blue: W+Cl
- Pink: Z+H
- Purple: Z+Cl
- Gray: Uncertainty
- Black: Pre-fit background
- Dark Green: VH(bb)-30
$VH \rightarrow Vbb$ m_{bb} distributions
VH → Vbb input variables

ATLAS

1s = 8 TeV \(|\Delta t| = 20.3 \text{ fb}^{-1} \)

0 lep., 2 jets, 2 tags

- Data 2012
- VH(bb) \((\times 1.0)\)
- Diboson
- tt
- Single top
- Multi-jet
- W+ \(t\)
- W+ \(c\)
- W+ \(\ell\)
- Z+ \(t\)
- Z+ \(c\)
- Z+ \(\ell\)
- Uncertainty
- Pre-fit background
- VH(bb)-10

Events / 25 GeV

Data/Pred vs. \(m_{bb} \) [GeV]

Events / 20 GeV

Data/Pred vs. \(E_T^{miss} \) [GeV]

\(\Delta R(b_1, b_2)\)

Events / 20 GeV

Data/Pred vs. \(p_T(b_1) \) [GeV]

\(\Delta R(V,bb)\)
VH → Vbb cross-check with diboson production (VZ)

- Use VZ as cross-check which produces exactly the same final states
- Data and background + signal yield are compatible
- Significance for VZ:
 - 4.9 σ observed
 - 6.3 σ expected
- Signal strength for VZ:
 \[\mu = 0.52 \pm 0.32 \text{ (stat.)} \pm 0.24 \text{ (syst.)} \]
$VH \rightarrow bb$ Cut-based (di-jet) mass analysis

ATLAS

$\sqrt{s} = 8 \text{ TeV}$, $Ldt = 20.3 \text{ fb}^{-1}$

- 0+1 lep., 2+3 jets, 2 tags
- Weighted by Higgs S/B

ATLAS

$\sqrt{s} = 7 \text{ TeV}$, $Ldt = 4.7 \text{ fb}^{-1}$

- 0+1 lep., 2+3 jets, 2 tags
- Weighted by Higgs S/B

Graphs:

- Weighted events after subtraction / 20.0 GeV
- m_{bb} [GeV]

ATLAS

$\sqrt{s} = 8 \text{ TeV}$, $Ldt = 20.3 \text{ fb}^{-1}$

- 0 lep., 2+3 jets, 2 tags
- Weighted by Higgs S/B

ATLAS

$\sqrt{s} = 8 \text{ TeV}$, $Ldt = 20.3 \text{ fb}^{-1}$

- 1 lep., 2+3 jets, 2 tags
- Weighted by Higgs S/B

ATLAS

$\sqrt{s} = 8 \text{ TeV}$, $Ldt = 20.3 \text{ fb}^{-1}$

- 2 lep., 2+3 jets, 2 tags
- Weighted by Higgs S/B

Data 2012

- VH(bb) ($\mu=1.0$)
- Diboson
- Uncertainty

ATLAS

- Data 2011
- VH(bb) ($\mu=1.0$)
- Diboson
- Uncertainty
VH → Vbb S/B sorted events

0-lepton

1-lepton

2-lepton
BDT inputs

$H \rightarrow \tau\tau$

<table>
<thead>
<tr>
<th>Variable</th>
<th>VBF</th>
<th>$Boosted$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\tau_{lep}\tau_{lep}$</td>
<td>$\tau_{lep}\tau_{had}$</td>
</tr>
<tr>
<td>$m_{\tau\tau}^{\text{MME}}$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$\Delta R(\tau_1, \tau_2)$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$\Delta \eta(j_1, j_2)$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>m_{j_1, j_2}</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$\eta_{j_1} \times \eta_{j_2}$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>p_T^{total}</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Sum p_T</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$p_T(\tau_1)/p_T(\tau_2)$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>ϕ centrality</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>m_{ℓ, ℓ, j_1}</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>m_{ℓ, ℓ, j_2}</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$\Delta \phi(\ell_1, \ell_2)$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Sphericity</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$p_T^{\ell_1}$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$p_T^{\ell_2}$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$E_T^{\text{miss}}/p_T^{\ell_1}$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>m_T</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$\min(\Delta R(\ell_1, \ell_2))$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$C_{m_1, m_2}(\eta_{\ell_1}) \cdot C_{m_1, m_2}(\eta_{\ell_2})$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$C_{m_1, m_2}(\eta_{\ell_1})$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$C_{m_1, m_2}(\eta_{\ell_2})$</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>$C_{m_1, m_2}(\eta_{\ell_2})$</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

$VH \rightarrow Vbb$

<table>
<thead>
<tr>
<th>Variable</th>
<th>0-Lepton</th>
<th>1-Lepton</th>
<th>2-Lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_T^V</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$p_T^{b_1}$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$p_T^{b_2}$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>m_{bb}</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$\Delta R(b_1, b_2)$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \eta(b_1, b_2)</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>$\Delta \phi(V, bb)$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$</td>
<td>\Delta \eta(V, bb)</td>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>H_T</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$\min(\Delta \phi(\ell, b))$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>m_t^W</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$m_{\ell\ell}$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$MV1c(b_1)$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$MV1c(b_2)$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Only in 3-jet events:

<table>
<thead>
<tr>
<th>Variable</th>
<th>0-Lepton</th>
<th>1-Lepton</th>
<th>2-Lepton</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_T^{\text{jet}_3}$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>$m_{b bj}$</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>
SR & CR

$H \rightarrow \tau\tau$ CR

<table>
<thead>
<tr>
<th>Process</th>
<th>$\tau_{lep}\tau_{lep}$</th>
<th>$\tau_{lep}\tau_{had}$</th>
<th>$\tau_{had}\tau_{had}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z \rightarrow \ell\ell$-enriched</td>
<td>$80 < m_{\tau\tau}^{vis} < 100$ GeV (same-flavour)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top control region</td>
<td>invert b-jet veto</td>
<td>invert b-jet veto and $m_T > 40$ GeV</td>
<td>pass preselection, fail VBF and Boosted selections</td>
</tr>
<tr>
<td>Rest category</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$Z \rightarrow \tau\tau$-enriched</td>
<td>$m_{\tau\tau}^{HPTO} < 100$ GeV</td>
<td>$m_T < 40$ GeV and $m_{\tau\tau}^{MMC} < 110$ GeV</td>
<td></td>
</tr>
<tr>
<td>Fake-enriched</td>
<td>same sign τ decay products</td>
<td>same sign τ decay products</td>
<td></td>
</tr>
<tr>
<td>W-enriched</td>
<td></td>
<td>$m_T > 70$ GeV</td>
<td></td>
</tr>
<tr>
<td>Mass sideband</td>
<td></td>
<td></td>
<td>$m_{\tau\tau}^{MMC} < 110$ GeV or $m_{\tau\tau}^{MMC} > 150$ GeV</td>
</tr>
</tbody>
</table>

- These CRs are used together with 6 BDT output in SR

VH → Vbb SR

<table>
<thead>
<tr>
<th>Channel</th>
<th>Dijet-mass analysis</th>
<th>MVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>0-lepton</td>
<td>1-lepton</td>
</tr>
<tr>
<td>1-tag</td>
<td>$MV1c$</td>
<td>$MV1c$</td>
</tr>
<tr>
<td>LL</td>
<td>m_{bb}</td>
<td>BDT(*)</td>
</tr>
<tr>
<td>MM</td>
<td>m_{bb}</td>
<td>BDT(*)</td>
</tr>
<tr>
<td>TT</td>
<td>m_{bb}</td>
<td>BDT</td>
</tr>
</tbody>
</table>

- MV1c in 1-tag is used for background constraint.
H → τ_{lep}τ_{had} fake factor method

- **Quark / gluon contribution for fake-τ**
 - Fake-τ contribution from $W+$jets is dominated by quark-jets
 - Fake-τ contribution from multi-jet production is dominated by gluon-jets

- **Define “anti-τ” control regions by inverting τ-identification criteria**
 - Inverting m_T selection for $W+$jets
 - Low E_T^{miss} and loose lepton isolation for multi-jet

- **Obtain different mis-identification probabilities (“Fake-Factor”), calculate weighted mean value according to**

 $$r_W = \frac{N_W}{N_W + N_{QCD}}, \quad F = r_W F_W + (1 - r_W) F_{QCD}$$

ATLAS Preliminary

- **1-Prong**
 - $\int L \, dt = 20.3fb^{-1}$
 - $\sqrt{s} = 8\text{TeV}$

- **3-Prong**
 - $\int L \, dt = 20.3fb^{-1}$
 - $\sqrt{s} = 8\text{TeV}$

- **Differences between quark- and gluon-dominated Fake-Factors used as systematic uncertainty (combined with statistical uncertainty from anti-τ data)**

ATLAS-CONF-2013-108
$H \rightarrow \tau\tau$ important input variables

$e^- e^+ + \mu^\pm \mu^\mp$ VBF

$\mu^\tau_{\text{had}} + \sigma^\tau_{\text{had}}$ VBF

τ^τ_{had} Boosted

$\Delta R(\tau^\tau_1, \tau^\tau_2)$
$H \rightarrow \tau\tau$ boosted signal regions
$H \rightarrow \tau\tau$ results

ATLAS Preliminary

$s = 7$ TeV, 4.5 fb$^{-1}$
$s = 8$ TeV, 20.3 fb$^{-1}$