Status of the CALICE Scintillator HCAL Engineering Prototype

Hartbrich, O (Wuppertal)

29 May 2013

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project AIDA, grant agreement no. 262025.

This work is part of AIDA Work Package 9: Advanced infrastructures for detector R&D.
Status of the CALICE Scintillator HCAL Engineering Prototype

Oskar Hartbrich
for the CALICE Collaboration
ECFA-LC 2013,
May 29th 2013
Overview

- AHCAL engineering prototype design and hardware
- LED calibration system update
- From single PCB to full prototype
 - Lab slab test
 - 2012 CERN layer
 - EM stack (and beyond)
- Other readout options
 - Tiles/SiPMs
 - HCAL/ECAL geometric options
- Conclusion/Outlook
AHCAL Physics Prototype

Not scalable to full detector → Build realistic prototype
The AHCAL Engineering Prototype

- 32 segments (16 in ϕ, 2 in z)

- 40 layers per half-octant
 - 3 slabs of 6 PCBs per layer
 - Millions of channels!

- Challenge: full electronics integration into layers
 - Readout, power, calibration etc.
 - Tight space between absorbers
 - No active cooling inside layers
Integrated electronics

- Layer built up of 18 HCAL Base Unit PCBs
 - extra thin PCBs (780um)
 - cutouts for ASICs
 - → only 5.4 mm thickness including 3mm tiles

- SPIROC2b: highly integrated ASIC for SiPM readout (developed by LLR, France)
 - Channel-wise bias adjustment
 - Channel-wise adjustable gain
 - ~1ns time stamping capability
 - Fully self triggered operation possible
 - Power pulsing → 25 µW/ch
LED Calibration System Update

- Integrated calibration system for SiPM gain calibration (1 LED per channel)
- Showed some spread in LED amplitudes and timing
 - Small change in circuit layout
 → Now much more homogenous output
 → Substantially decreases calibration time

- Used LED type is discontinued
 - Uni Wuppertal is testing new LEDs
 - First candidate identified
The road to a full prototype

Operation modes to be tested:

- Single boards in the lab
- Single boards in testbeam
- Multiple boards in one slab (1D extension)
- Multiple HBUs in one layer (2D extension)
- Multiple layers in one detector (3D extension)

Once operation is established, acquire more layers!
Full Slab Test

- Full slab assembled in lab
 - 6 serial HBUs
- Readout & calibration system tests (see talk by I. Polak in next session)
- Readout unhindered by 2.2m signal path
- 1D extension established

Photo: J. Kvasnicka, I. Polak

SPS from QMB (Prague)
CERN Layer (2x2)

- 2012 CERN hadron beam
- 4 HBUs, 576 channels
- Fully autotriggered, low rates
 → threshold setup very important
- Using common threshold is easiest:
 - Tile lightyield equalised by bias setup
 - SiPM gain equalised by preamplifier setup
 → equalised MIP response
 → common threshold applicable
- Worked out well
 → 2D extension established

- See next talk by Shaojun Lu
 - Adding 1 time dimension
Towards a small HBU stack

- Intermediate goal: small stack for DESY electron beam
 - System tests, performance validation
 - Mechanics test
 - Flexible test bench for tile/SiPM options

- 4 HBUs available from CERN beam last year
 - 1 extra board commissioned from available tiles
 - 8 new PCBs available (Uni HH, DESY)
 → 5 HBUs usable right now, up to ~10 by end of year

- Air stack for cosmics/MIP calibration
- ILD absorber prototype (Fe) for EM showers
New DAQ System

- DAQ used until this point not capable of synchronous multi-layer readout
- New developments based on redesigns of common CALICE DAQ hardware
 - DIF (NIU/Fermilab), new revision 2012
 - LDA, CCC (UK groups) redesigned by Uni Mainz
 - Based on new FPGA/SoC (Xilinx Zynq)
 - Now very flexible, powerful processing on board
 - Still compatible to CALICE DAQ
- Stepwise adaptation from USB data transfer to full HDMI
 - First stage: data via USB, fast signals (clock, triggers) via HDMI through CCC
 - White paper with development stages is available.
 - Conceptually close to CALICE DAQ designs
- Electronics & software 100% compatible to scintillator ECAL (Shinshu, Japan)
New DAQ System

- First DAQ stage is implemented
- PC software still Labview based
 - 50% rewritten
 - Now fully multi threaded
 → True parallel readout
- Data readout completely functional
- Very stable operation (72h+ runs)
- Faster than ever (~factor 7)
- Next step: establish parallel data path through LDA for testing
Cosmics stack

- Air stack for cosmic muons
 - External trigger validation by coincident scintillator paddles
 - Running on only 4 boards
 - First test with real particles
 - Very low rates (underground lab)
 → challenging threshold setup

- Long runs (whole weekends)
- No DAQ crashes
 - Software stability proven
DESY Testbeam

- MIP calibration in air stack
 - 3GeV e⁺
 - Crosscheck previous MIP calibration
 - New layer uncalibrated yet

- Energy scans in Fe stack
 - Capture some EM showers
 - First calorimetric results from HBUs

- Achievable resolution is limited by only 5 layers
 - Can add more layers as they come
 - Electronics available for 12 layers
DESY testbeam results

- Synchronous MIP calibration through several layers
- 3D extension readout established

![Histo Chip 141 Channel 15](image1)

![Histo Chip 137 Channel 15](image2)

![Histo Chip 133 Channel 15](image3)

![Histo Chip 129 Channel 15](image4)

<table>
<thead>
<tr>
<th>Histo</th>
<th>Entries</th>
<th>Mean</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>141</td>
<td>368125</td>
<td>376.1</td>
<td>83.70</td>
</tr>
<tr>
<td>137</td>
<td>364803</td>
<td>452.7</td>
<td>117.9</td>
</tr>
<tr>
<td>133</td>
<td>361911</td>
<td>505.0</td>
<td>142.4</td>
</tr>
<tr>
<td>129</td>
<td>343718</td>
<td>482.3</td>
<td>126.9</td>
</tr>
</tbody>
</table>
Flexible electronics

- AHCAL electronics are designed for operation in a full-scale collider detector
- ...but up to now, many parameters are not fully finalized
 - SiPM placement (side or top of tile)
 - Tile design (WLS vs. direct coupling)
 - SiPM type
 - Geometry (tile/strip)

- Electronics are very flexible!
 → Proceed with integration and sensor optimisation in parallel
Surface mount HBU

- Mount SiPM on PCB, not in the tile
 (G. Blazey et al., NIM A605 (2009) 277,
 F. Abu-Ajamieh et al. NIM A659 (2011) 348)
- No gap between tiles
 - One “megatile” per HBU
- Concave cavity in tiles improves uniformity
- 2 surface mount HBUs produced
 - To be equipped with tiles
Direct coupling tiles

- WLS fibre has two tasks:
 - shift wavelength to sensitive range of SiPM
 - improve light yield uniformity within a tile
- new SiPMs are sensitive in blue-UV range
- optimised tile design allows good uniformity without WLS

ITEP

Uni Hamburg

- Two different types:
 - ITEP: injection moulding, easily producible in large quantities
 - Uni Hamburg: machining
- Good uniformity of both types
 - Uni Hamburg type slightly better
Other Geometries: Strip Scintillator ECAL

- ECAL option: needs finer granularity than HCAL
 - 45 * 5 mm² strips instead of 30 * 30 mm² tiles
 - 4 times larger channel density than HCAL
 - Alternating orientation horizontal / vertical

- SciECAL uses Hamamatsu MPPCs as SiPMs
 - 1600 pixels on 1 * 1 mm²
 - Gain: a few 10^5
 - Bias voltage ~70 V
EBU

- HBU design scaled down to Scintillator strip ECAL dimensions
- Two PCB designs needed for different orientations
 - Vertical orientation already produced and tested
 - Horizontal orientation in design, needs minor changes in connectors
ECAL & HCAL geometries

- Different geometry PCBs also supported and explored
 - EBU: 20*20mm tiles
 - EBU: 15*15mm tiles
 - HBU: 90*10mm strips
Summary

- Very versatile electronics provide effective testbench for different tile/SiPM concepts
- Multilayer DAQ based on CALICE DAQ hardware
 - Fast, stable operation so far
- First HBU stack setup commissioned
 - Small scale system test

Outlook

- Testbeam with 5+ layers ongoing
 - More layers to be added during the year → parasitic data taking
- Next step in DAQ development
 - Full HDMI readout
- Plan to be prepared once hadron beams return in 2014