Recent soft QCD and jet physics results from ATLAS
Lake Louise Winter Institute - 2015

Tim Martin
University of Warwick
On behalf of the ATLAS Collaboration

Feb 16, 2015
Introduction

Select highlights from the 21 ATLAS Standard Model papers published in 2014, focusing on topics of Soft QCD and Jet physics.
Topics Covered

- Soft QCD: Λ & $\bar{\Lambda}$ transverse polarisation.
- Soft QCD: The total pp cross section.
- Soft QCD: The Underlying Event in inclusive Z-boson production.

- Jet Physics: Inclusive jet cross sections.
- Jet Physics: Three-jet cross sections.
- Jet Physics: Jet vetoes & azimuthal decorrelation in di-jet events.
Transverse Polarisation of Λ and $\bar{\Lambda}$ \textbf{arXiv:1412.1692 [hep-ex]}

- Past experiments have measured large (up to 30%) Λ transverse polarisation w.r.t. the production plane in p-p and p-Ion collisions.
- ATLAS measure the transverse polarisation differential in Feynman-x ($x_F = p_z/p_{beam}$) and p_T with respect to the beam line.
- Polarisation extracted from the angular distribution of Λ & $\bar{\Lambda}$ decay products via method of moments.
 - For any polarisation P, the first moment of the angular distribution may be written as a linear combination of the un-polarised $E(0)$ and fully-polarised $E(1)$ moments: $E(0) + [E(1) - E(0)]P$.

![Diagram of transverse polarisation](image-url)
Transverse Polarisation of Λ and $\bar{\Lambda}$ arXiv:1412.1692 [hep-ex]

- Results, presented in the fiducial volume of $0.8 < p_T < 15$ GeV, $5 \times 10^{-5} < x_F < 0.01$ and $|\eta| < 2.5$

$$P_\Lambda = -0.010 \pm 0.005\,(\text{stat.}) \pm 0.004\,(\text{syst.})$$

are compatible with zero polarisation. Equivalently for $P_{\bar{\Lambda}} = 0.002$.

- Reconstruction efficiencies are provided as a function of p_T and x_F to allow model builders to weight their Λ baryons for comparison with ATLAS data.
ALFA consists of dedicated tracking detectors in the beam line at $z = \pm 238 \, \text{m} \text{ and } 241 \, \text{m}$ from ATLAS.

Data taking in special runs with high-β^* optics ($* = \text{at IP}$) and parallel-to-point focusing in the vertical plane.

- Elastic scattering angle at IP maps to a y displacement in ALFA.

Allows the reconstruction of the 4-mom transfer: $-t = (\theta^* \times p)^2$
• ALFA consists of dedicated tracking detectors in the beam line at \(z = \pm 238 \text{ m} \) and 241 m from ATLAS.

• Data taking in special runs with high-\(\beta^* \) optics (\(\beta^* = \text{at IP} \)) and parallel-to-point focusing in the vertical plane.
 ○ Elastic scattering angle at IP maps to a \(y \) displacement in ALFA.

Allows the reconstruction of the 4-mom transfer: \(-t = (\theta^* \times p)^2\)
Total Cross Section with ALFA Nuc. Phys B (2014), 486-548

- The (predominantly) exponential $-t$ slope is fitted in the region of high ALFA acceptance ($> 10\%$) yielding slope parameter

$$B = 19.73 \pm 0.14\text{(stat.)} \pm 0.26\text{(syst.)} \text{ GeV}^{-2}$$

- The total cross section is obtained via the optical theorem:

$$\sigma_{\text{tot}}(pp \rightarrow X) = \frac{16\pi}{1 + \rho^2} \frac{1}{L} \frac{dN_{\text{el}}}{dt} \bigg|_{t=0} = 95.35 \pm 0.38\text{(stat.)} \pm 1.30\text{(sys.)} \text{ mb}$$
Total Cross Section with ALFA Nuc. Phys B (2014), 486-548

- The (predominantly) exponential $-t$ slope is fitted in the region of high ALFA acceptance ($> 10\%$) yielding slope parameter

$$B = 19.73 \pm 0.14\text{(stat.)} \pm 0.26\text{(syst.)} \text{ GeV}^{-2}$$

- The total cross section is obtained via the optical theorem:

$$\sigma_{\text{tot}}(pp \rightarrow X) = \frac{16\pi}{1 + \rho^2} \frac{1}{L} \frac{dN_{\text{el}}}{dt} \bigg|_{t=0} = 95.35 \pm 0.38\text{(stat.)} \pm 1.30\text{(sys.)} \text{mb}$$

- Underlying Event measurements probe everything *but* the hard scatter: multi parton interactions, colour reconnection, wide angle radiation...
- Traditionally measured *transverse* to the hard axis.
- With Z-events: the *towards* region can also be probed.

Left Sum-p_T density of charged particles in the transverse region for three bins of p_T^Z.

Right Average transverse charged particle multiplicity density as a function $p_{T,\text{lead}}$ for Z, jet and minimum bias data.

At high-p_T the $<N>$ UE looks to be a universal quantity. Disagreement at low-p_T due to the hard scale (m_Z) in Z events.
• Model description for the average sum-p_T density in the transverse and towards regions as a function of p_T^Z.
• The high-p_T^Z transverse region rises faster due to a greater contribution from the hadronic recoil.
• Shapes driven by perturbative radiation at high p_T^Z.

- The inclusive jet cross section is measured with 4.5 fb\(^{-1}\) data.
- In general, both NLO pQCD matrix elements, parton shower matched and with EW corrections are in good agreement with data up to 2 TeV.
- ABM11 and HERAPDF1.5 NLO underestimate \(\sigma\) at low \(|y|\).
- Data & theory compared quantitatively w. correlated uncertainties.
- ATLAS has in addition the two-jet cross section JHEP05(2014)059.
Three Jet Cross Section

- Probe the $2 \rightarrow 3$ scattering process as a function of 3-jet mass and $|Y^*| = |y_1 - y_2| + |y_2 - y_3| + |y_1 - y_3|$.
- NLO QCD calculations show a correlated sensitivity to the choice of anti-$k_t R$ parameter.
- Data are described over $0.4 M_{jjj} < 5$ TeV. The ABM11 PDF are observed to be systematically low compared to other PDF sets.

$R = 0.4$
Three Jet Cross Section arXiv:1411.1855 [hep-ex]

- Probe the $2 \rightarrow 3$ scattering process as a function of 3-jet mass and $|Y^*| = |y_1 - y_2| + |y_2 - y_3| + |y_1 - y_3|$.
- NLO QCD calculations show a correlated sensitivity to the choice of anti-k_t R parameter.
- Data are described over $0.4M_{jjj} < 5$ TeV. The ABM11 PDF are observed to be systematically low compared to other PDF sets.

- Use large-y separated di-jets along with veto on a third in-between jet to probe parton evolutions.
- The ratio of the 1st and 2nd moments of the cosine of the ϕ separation of the di-jets is particularly sensitive to BFKL effects.
- POWHEG (BFKL-like) underestimates whereas HEJ (DGLAP-like) overestimates ϕ correlation.

Image: D. Diakonov, CERN Courier

- Use large-y separated di-jets along with veto on a third in-between jet to probe parton evolutions.
- The ratio of the 1$^{\text{st}}$ and 2$^{\text{nd}}$ moments of the cosine of the ϕ separation of the di-jets is particularly sensitive to BFKL effects.
- POWHEG (BFKL-like) underestimates whereas HEJ (DGLAP-like) overestimates ϕ correlation.
Conclusion

ATLAS continuing to publish measurements on various variables sensitive to non-perturbative \(pp \) modelling effects such as hadronisation, small \(|t| \) scattering and multi parton interactions.

Analysis fiducial volumes are chosen to give greatest model discrimination power.

Jet data are compared to a variety of PDF sets as a function of the mass and \(y \) of the jet system for two values of the jet size parameter.

Correlations between all ATLAS jet cross sections are treated in a common framework to allow for future correlated PDF constraints.

Azimuthal decorrelations are studied in extreme phase spaces with the addition of a veto on additional jets to maximise sensitivity to BFKL evolution effects.