Search for CP violation in $D^0 \rightarrow \pi^− \pi^+ \pi^0$ decays with the energy test

Shanzhen Chen1, on behalf of the LHCb collaboration

1The University of Manchester, Manchester, United Kingdom

Introduction

- $D^0 \rightarrow \pi^− \pi^+ \pi^0$ decay
 - CP violation search in Dalitz plot
 - Singly Cabibbo-suppressed
 - Penguin-tree interference
 - Interfering resonances
- Energy test
 - Statistical method
 - Sensitive to local asymmetry of two distributions
- First application as CP violation search
- Applied using GPUs
- Using full LHCb π^0 reconstruction
 - Two separate photon clusters (resolved π^0)
 - Two overlapping photon clusters (merged π^0)

LHCb detector

- Single-arm forward spectrometer, pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks
- High-precision tracking system and particle identification

Dataset

- Data collected in 2012, integrated luminosity is $2 fb^{-1}$
- Flavour tag using soft pion coming from $D^0 \rightarrow D^0 \pi^0$
- Offline selection based on boosted decision trees (BDT)
- Resolved sample and merged sample are selected separately
- Yields 416×10^3 resolved candidates and 247×10^3 merged candidates

Sensitivity studies

Sensitivity studies are performed with Monte Carlo samples, with CP violation introduced and acceptance efficiency applied.

Results

p-value for no CP violation hypothesis is $(2.6 \pm 0.5) \times 10^{-2}$.

References

[1] R. Aaij et al. (LHCb collaboration), “Search for CP violation in $D^0 \rightarrow \pi^− \pi^+ \pi^0$ decays with the energy test” PLB 740(2015) 158-167.