ATLAS Jet Trigger Update for the LHC Run II

Ademar Delgado
On behalf of the ATLAS Collaboration

LIP - Lisbon
ANIMMA 2015

20-24 April 2015
Introduction: The Large Hadron Collider (LHC) at CERN

- Circular accelerator with 27 km perimeter
- Proton-proton collider
 - Can also collide heavy ions

<table>
<thead>
<tr>
<th>Run-1</th>
<th>Maintenance</th>
<th>Run-2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>2012</td>
<td>2013</td>
<td>2014</td>
</tr>
</tbody>
</table>

During Run-1

<table>
<thead>
<tr>
<th>Centre of mass energy</th>
<th>7 TeV to 8 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch spacing</td>
<td>50 ns</td>
</tr>
<tr>
<td>Interactions per bunch crossing</td>
<td>20</td>
</tr>
<tr>
<td>Peak luminosity</td>
<td>0.7×10^{34} cm$^{-2}$s$^{-1}$</td>
</tr>
</tbody>
</table>

For Run-2

<table>
<thead>
<tr>
<th>Centre of mass energy</th>
<th>13 TeV to 14 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunch spacing</td>
<td>25 ns</td>
</tr>
<tr>
<td>Interactions per bunch crossing</td>
<td>~ 43</td>
</tr>
<tr>
<td>Peak luminosity</td>
<td>1.6×10^{34} cm$^{-2}$s$^{-1}$</td>
</tr>
</tbody>
</table>

ATL-DAQ-PROC-2014-032
Introduction: The ATLAS experiment

Multi-purpose experiment designed to probe the Standard Model and search for new physics at very high energies

Muon Spectrometer: $|\eta| < 2.7$
Air-core toroids and gas-based muon chambers
$\sigma/pT = 2\% @ 50\text{GeV}$ to $10\% @ 1\text{TeV}$ (ID+MS)

EM calorimeter: $|\eta| < 3.2$
Pb-LAr Accordion
$\sigma/E = 10\%/\sqrt{E} \oplus 0.7\%$

Hadronic calorimeter:

- $|\eta| < 1.7$ Fe/scintillator
- $1.3 < |\eta| < 4.9$ Cu/W-Lar
$\sigma/E_{\text{jet}} = 50\%/\sqrt{E} \oplus 3\%$

Inner Tracker: $|\eta| < 2.5$, $B = 2\text{T}$
Si pixels/strips and straw detector
$\sigma/pT = 0.05\% pT (\text{GeV}) \oplus 1\%$

- 10^8 electronic channels
- $1.6 \text{ MB per event (64 TB/s)}$
- 3-level trigger reducing 40 MHz collision rate to 400 Hz of events to tape
Jet: Spray of collimated particles

- Initiated by quarks or gluons
- Most common high p_T objects produced at the LHC
 - Important for a wide range of physics analyses
- The energy deposits are aggregated by the reconstruction algorithms and calibrated to provide the jet momentum measurement
The ATLAS Trigger and DAQ systems: Run-1

- Reduce the accepted events by a factor of 10^5
 - Most interesting physics have small cross-section relative to total p-p cross-section
 - Limited bandwidth to disk data storage

Run-1:

Organized in 3 levels:
- **L1**: Hardware based
 - Coarse granularity.
 - Finds high p_T objects positions
 - Provides seeds for next levels
- **L2**: Software based
 - Full granularity
 - Regions of interest based
- **EF**: Software based
 - Offline like algorithms
 - Can access the full event

- L2 and EF in different farms
 - Extra data transfer

DOI:10.1140/epjc/s10052-011-1849-1
The ATLAS Trigger and DAQ systems: Run-1

- Reduce the accepted events by a factor of 10^5
 - Most interesting physics have small cross-section relative to total p-p cross-section
 - Limited bandwidth to disk data storage

Run-1:

- Organized in 3 levels:
 - L1: Hardware based
 - Coarse granularity.
 - Finds high p_T objects positions
 - Provides seeds for next levels
 - L2: Software based
 - Full granularity
 - Regions of interest based
 - EF: Software based
 - Offline like algorithms
 - Can access the full event

- L2 and EF in different farms
 - Extra data transfer
The ATLAS Trigger and DAQ systems: Run-1

- Reduce the accepted events by a factor of 10^5
 - Most interesting physics have small cross-section relative to total p-p cross-section
 - Limited bandwidth to disk data storage

Run-1:

- Organized in 3 levels:
 - L1: Hardware based
 - Coarse granularity.
 - Finds high p_T objects positions
 - Provides seeds for next levels
 - L2: Software based
 - Full granularity
 - Regions of interest based
 - EF: Software based
 - Offline like algorithms
 - Can access the full event

- L2 and EF in different farms
 - Extra data transfer
The ATLAS Trigger and DAQ systems: Run-2

- Improve the trigger capability for Run-2
 - Better exploit available computing capacity and output rate from the HLT
 - New L1 topological processor and fast tracking at HLT:
 - will allow angular and mass jet selection and rejection of pileup jets
 - Improved data flow architecture
 - L1 output rate raised to 100 kHz (increased energy and luminosity)
 - L2 and EF merged; 250 ms to take a decision for jets
 - Read Out System upgrade; bandwidth increase 10x, memory per channel 5x
Jet trigger: Run-1

- Selects events containing high p_T hadronic jets

Typical chain for single Jet trigger

- **L1:**
 - Sliding window algorithm
 - Calorimeter towers (trigger towers)

- **L2:**
 - Readout Regions of Interest
 - Simple cone algorithm
 - Cells as constituents

- **EF:**
 - Full calorimeter scan
 - Offline algorithms available

Ademar Delgado (LIP - Lisbon)

ATLAS Jet Trigger

20-24 April 2015
Run-1 Jet trigger efficiency:

- The ATLAS jet trigger demonstrated excellent performance throughout Run-1
- EF turn-on curves considerably steeper than corresponding L1 curves
 - Improved E_T resolution, compared to the offline reconstructed jets
 - Monte Carlo simulates the data well

Efficiency turn-on curves for various single inclusive jet triggers

Naming convention: L1_jX and EF_jX, where X is the E_T trigger threshold in GeV
Jet trigger: Run-2

- Selects events containing high p_T hadronic jets

Typical chain for single Jet trigger

- **L1:**
 - Sliding window algorithm
 - Calorimeter towers (trigger towers)

- **HLT** generic jet chain:
 - Prepare detector data (Cell unpacking)
 - Process cell Clustering and Jet maker
 - Evaluate the event (Hypothesis)

Topological Clustering algorithm:

- Iterative 3D calorimeter cell clustering
 - based on signal/noise
- Applies noise suppression
- Most time-demanding step

Jet reconstruction uses $Anti-k_\perp$ algorithm [1]

- Fast, collinear and infrared safe and regular shape algorithm

Jet trigger: Run-2

- Selects events containing high p_T hadronic jets

Typical chain for single Jet trigger

- **L1**:
 - Sliding window algorithm
 - Calorimeter towers (trigger towers)

- **HLT** generic jet chain:
 - Prepare detector data (Cell unpacking)
 - Process cell Clustering and Jet maker
 - Evaluate the event (Hypothesis)

Topological Clustering algorithm:

- Iterative 3D calorimeter cell clustering
 - based on signal/noise
- Applies noise suppression
- Most time-demanding step

Jet reconstruction uses $Anti-k_T$ algorithm [1]

- Fast, collinear and infrared safe and regular shape algorithm

Jet trigger: Run-2

- Selects events containing high p_T hadronic jets

Typical chain for single Jet trigger
- L1:
 - Sliding window algorithm
 - Calorimeter towers (trigger towers)
- HLT generic jet chain:
 - Prepare detector data (Cell unpacking)
 - Process cell Clustering and Jet maker
 - Evaluate the event (Hypothesis)

Jet event rate increase by a factor of five
 - higher energy, luminosity and pileup
- Better exploit available computing capacity
 - HLT algorithms optimization
 - Data reduction through the use of a partial calorimeter readout scheme
Algorithm optimization

- The cell unpack and retrieval time was reduced by a factor of 7
 - More efficient full calorimeter readout
- The cell clustering time was reduced by a factor of 2
 - Pre-fetching, code inlining and the introduction of more efficient data structures

![Graph showing time improvements over software releases](image-url)
Data reduction: Partial calorimeter readout scheme

- Reads at once all the cells around the L1 positions, removing any overlap
- Works as a full calorimeter readout with low activity regions suppression
 - zero-suppressing algorithm
- Increases system flexibility to adapt to different requirements

![Graph showing ATLAS Preliminary Simulation results]
Partial Scan: Data and processing time reduction

- The Partial Scan reads out 3.5 to 7% of the calorimeter cells.

- The cell clustering in the Partial Scan takes 6 to 10% of the time required by the complete calorimeter processing.

ATLAS Preliminary Simulation

- **Full Scan**
 - <no. cells> = 187652
 - <time> = 98.1 ms

- **Partial Scan (η×φ=1x1)**
 - <no. cells> = 6489
 - <time> = 6.3 ms

- **Partial Scan (η×φ=1.5x1.5)**
 - <no. cells> = 13392
 - <time> = 9.7 ms

ATLAS Jet Trigger

Ademar Delgado (LIP - Lisbon)

20-24 April 2015
Partial Scan: Comparing partial to full reconstruction

- The full calorimeter readout gets the best resolution
- The E_T of the most central jet differs by less than 0.5% from full scan trigger jets, for jets above 100 GeV
Conclusions:

- The jet trigger has shown excellent performance during the first data taking.
- The ATLAS TDAQ introduced important improvements to better exploit Run-2:
 - Significant optimizations were achieved during shut-down:
 - Cell unpacking becomes seven times faster.
 - Cell clustering processing time was reduced by a factor of two.
 - A partial calorimeter readout scheme was developed:
 - Zero-suppressing algorithm that filters the low activity regions.
 - Speeded up jet reconstruction by a factor of 10 without much loss of physics performance.
- The ATLAS jet trigger will collect crucial data to calibrate the detector and allow many unique physics measurements. We are ready to face the challenges of the LHC Run-2!
Thank you!
Backup slide: Topological Cluster