docker & HEP: containerization of applications for development, distribution and preservation

Sébastien Binet

LAL/IN2P3

2015-04-13
Docker: what is it?

- http://www.docker.io/
- An open source project to pack, ship and run any application as a lightweight container

High level description

- Kind of like a lightweight VM
- Runs in its own process space
- Has its own network interface
- Can run stuff as root

Low level description

- `chroot` on steroids
- Container = isolated process(es)
- Share kernel with host
- No device emulation
Docker: why?

- same use cases than for VMs
- **speed**: boots in (milli)seconds
- **footprint**: 100-1000 containers on a single machine/laptop. small disk requirements

Containers vs. VMs

Containers are isolated, but share OS and, where appropriate, bins/libraries.
Docker: why?

Efficiency: almost no overhead
- processes are isolated but run straight on the host
- CPU performance = native performance
- memory performance = a few % shaved off for (optional) accounting
- network performance = small overhead

Efficiency: storage friendly
- unioning filesystems
- snapshotting filesystems
- copy-on-write

- provisioning takes a few milliseconds
- ... and a few kilobytes
- creating a new container/base-image takes a few seconds
Hello World

- get a base container (ubuntu, centos, …)

 $ docker pull ubuntu

- list images already pulled in:

 $ docker images

- run an executable inside a container

 $ docker run ubuntu:12.10 echo "hello world"
Detached mode

- run a container in detached mode:
  ```
  $ docker run -d ubuntu sh -c \\
  while true; do echo ' hello'; sleep 1; done;
  ```

- get the container id:
  ```
  $ docker ps
  ```

- attach to the container
  ```
  $ docker attach 78c88e279f26
  ```

- start/stop/restart a container
  ```
  $ docker stop 78c88e279f26
  ```
Docker: public index

Public index

- pull an **apache** container from the index:

 $ docker search apache

 $ docker pull creack/apache2

- run the image and check the ports

 $ docker run -d creack/apache2

 $ docker ps

- Expose public ports

 $ docker ps

Also available from the browser:

https://index.docker.io/
Docker: creating a customized container

- run docker interactively:

  ```
  $ docker run -i -t ubuntu bash
  root@bf72b1a06e6c:# apt-get update
  Reading package lists... Done

  root@bf72b1a06e6c:# apt-get install memcached
  [...] 
  root@bf72b1a06e6c:# exit
  ```

- commit the resulting container

  ```
  $ docker commit 'docker ps -q -l ' binet/memcached
  ab59e4b14266
  ```

- run the image

  ```
  $ docker run -d -p 11211 -u daemon binet/memcached memcached
  ab59e4b14266
  ```
install gaudi from RPMs
FROM hepsw/slc-base
MAINTAINER binet@cern.ch

ENV MYSITEROOT /opt/lhcb-sw
ENV CMTCONFIG x86_64-slc6-gcc48-opt

RUN mkdir -p $MYSITEROOT

install some system dependencies
RUN yum install -y bzip2 freetype glibc-headers tar which

retrieve install
RUN curl -O -L http://cern.ch/lhcbproject/dist/rpm/lbpkr && \
 chmod +x ./lbpkr

install (source+binaries)
RUN ./lbpkr install-project GAUDI v26r1
- build the container

  ```
  $ docker build --tag=hepsw/lhcb-gaudi:v26r1 .
  $ docker tag hepsw/lhcb-gaudi:v26r1 hepsw/lhcb-gaudi:latest
  ```

- run the container (and test the build)

  ```
  $ docker run -i -t hepsw/lhcb-gaudi /bin/bash
  [hepsw/lhcb-gaudi] $ cd /scratch
  [hepsw/lhcb-gaudi] $ gaudirun.py \ $GAUDIEXAMPLESROOT/options/TupleEx.py
  ```

- bind mounts

  ```
  $ docker run -i -t hepsw/lhcb-gaudi \
  -v /host/build/results:/scratch 
  /bin/bash
  ```

- copy files from container to host

  ```
  $ docker cp hepsw/lhcb-gaudi:/scratch /host/build/results
  ```
Benchmarks

- **kvm-and-docker-lxc-benchmarking**
 - **executive summary:** Docker delivers very close to the bare-metal performances (consistently better than KVM save for some MySQL tests)

- **tests** Docker containers creation, guest CPU/Mem/IO performances, ...
Disk sizes of containers:

<table>
<thead>
<tr>
<th>REPOSITORY</th>
<th>TAG</th>
<th>VIRTUAL SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>hepsw/lhcb-base</td>
<td>20150331</td>
<td>336.6 MB</td>
</tr>
<tr>
<td>hepsw/lhcb-gaudi</td>
<td>v26r1</td>
<td>3.911 GB</td>
</tr>
<tr>
<td>hepsw/lhcb-davinci</td>
<td>v36r5</td>
<td>7.790 GB</td>
</tr>
<tr>
<td>lhcb-base (slimmed)</td>
<td>latest</td>
<td>322.3 MB</td>
</tr>
<tr>
<td>lhcb-gaudi (slimmed)</td>
<td>latest</td>
<td>3.893 GB</td>
</tr>
<tr>
<td>lhcb-davinci (slimmed)</td>
<td>latest</td>
<td>7.771 GB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>REPOSITORY</th>
<th>TAG</th>
<th>VIRTUAL SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>hepsw/cvmfs-base</td>
<td>20150331</td>
<td>629.4 MB</td>
</tr>
<tr>
<td>hepsw/cvmfs-lhcb</td>
<td>20150331</td>
<td>629.4 MB</td>
</tr>
</tbody>
</table>

Disk sizes of $MYSITEROOT$:

- hepsw/lhcb-base: /opt/lhcb-sw 67M
- hepsw/lhcb-gaudi: /opt/lhcb-sw 3.600G
- hepsw/lhcb-davinci: /opt/lhcb-sw 7.300G

.slimmed: use docker export+import to shrink image size.
Running `gaudirun.py GaudiExamples/TupleEx.py`

AFS

56.87s user 14.26s system 66% cpu 1:46.50 total
57.62s user 13.07s system 99% cpu 1:11.17 total
57.69s user 13.46s system 99% cpu 1:11.58 total
57.93s user 13.26s system 99% cpu 1:11.66 total

Docker-RPMs

55.93s user 12.34s system 98% cpu 1:09.54 total
55.43s user 12.88s system 98% cpu 1:09.12 total
55.54s user 12.16s system 98% cpu 1:08.83 total
55.39s user 11.60s system 98% cpu 1:07.81 total

Docker-CVMFs *(a docker container where CVMFs is configured and running)*

55.53s user 14.01s system 88% cpu 1:18.75 total
54.95s user 12.83s system 97% cpu 1:09.36 total
55.42s user 12.86s system 98% cpu 1:09.35 total
55.42s user 13.01s system 98% cpu 1:09.63 total
no container backend for MacOSX (yet?)

it is foreseen that at some point a jail-based backend will appear

in the meantime: boot2docker
 ▶ launches a very thin Linux-VM where the docker daemon is installed
 ▶ installs the docker client on the host
 ▶ talks via HTTP/REST to the daemon

boot2docker works also for Windows (TM)
Conclusions & Prospects

- easily distribute dev-environments
- easily provision build and dev-environments
- easily relocate binaries (remember: `chroot` on steroids!)
- provision efficient performance-wise environments (production)

- run a HEP-dedicated docker images repository?
 - ACLs
 - $O(GB)$ images …

- put a Frontier server in front?
Docker: HEP examples

hepsw/docks (github)
hepsw/containers (docker public registry)