BSM Higgs Physics using the ATLAS Experiment

Searches for $H^+ \rightarrow \tau\nu$ and $A \rightarrow Zh$

Alexander Madsen (Uppsala University / LPSC Grenoble) on behalf of the ATLAS collaboration

Phenomenology 2015
May 4–6, 2015 | Pittsburgh, USA
(CP-conserving) Two-Higgs-Doublet Models (2HDM)

- Higgs sector with two $Y=1$ isospin doublet scalar fields ϕ_1 and ϕ_2.
- If the potential is CP-conserving, there are five Higgs bosons: CP-even h, H; CP-odd A; and electrically charged $H^+, H^−$.
- Their masses are free parameters together with:
 - m_{12}, mixing parameter of ϕ_1 and ϕ_2 in the potential.
 - α, the mixing angle between the scalar components.
 - β, the mixing angle between the charged components and between the pseudoscalar components. $\tan \beta$ is also the ratio of the VEVs.
- Four arrangements of the Yukawa couplings:
 - Type I: ϕ_2 couples to all fermions,
 - Type II: ϕ_1 couples to down-type fermions, ϕ_2 couples to up-type fermions,
 - Lepton specific: ϕ_1 couples to leptons, ϕ_2 couples to quarks,
 - Flipped: Like Type II but leptons couple to ϕ_2.
- If $\cos(\beta - \alpha) = 0$, h has identical couplings to the SM Higgs boson.

The Higgs Sector of the Minimal Supersymmetric Standard Model (MSSM)

- Is a Type II 2HDM with two free parameters at tree-level.
- Benchmark scenarios are defined that keep the low number of parameters at higher orders [arXiv:hep-ph/0202167].

Presented here: Searches for $A \rightarrow Zh$ and $H^\pm \rightarrow \tau\nu$ with the 8 TeV dataset.
$A \rightarrow Zh$
A → Zh with Z → ℓℓ, h → ττ

- 2–4 leptons, including ℓℓ = ee or μμ pair
- 3 combinations of hadronic/leptonic tau decays:
 - $\ell\ell + \tau_{\text{had}}\tau_{\text{had}}$
 - "Loose" τ_{had} identification with 65% efficiency
 - Require large Z boost
 - Large "fake-τ_{had}" background
 - shape & normalization from control regions
 - $\ell\ell + \tau_{\text{lep}}\tau_{\text{had}}$
 - "Medium" τ_{had} identification (55% efficiency)
 - Large "fake-τ_{had}/ℓ" background
 - shape & normalization from control regions
 - $\ell\ell\tau_{\text{lep}}\tau_{\text{lep}}$
 - Include low-p_T leptons, forward muons and muons identified in the calorimeter
 - Large ZZ background if leptons assigned to the h decay have the same flavor:
 - require E_T^{miss} and $m_{\tau\tau}$ outside Z peak

- Require well-reconstructed Z and SM Higgs bosons
- $m_{\tau\tau}$ obtained with Missing Mass Calculator (MMC)

$\sigma \times BR = 50 \text{ pb}$

$\sigma \times BR = 50 \text{ pb}$

$m_A^{rec} = m_{\ell\ell\tau\tau} - m_{\ell\ell} - m_{\tau\tau} + m_Z + m_h$

Alexander Madsen: Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment - Phenomenology 2015
Two b-jets with invariant mass close to 125 GeV.

Their four-momenta are scaled with 125 GeV / m_{bb}.

$\ell\ell + bb$
- Require a well-reconstructed Z boson
- Suppress $t\bar{t}$ by requiring a low $E_T^{\text{miss}} / \sqrt{H_T}$
- Suppress Z+jets by requiring large Z boost
- Can reconstruct m_A^{rec} with 2–3% resolution

$\nu\nu + bb$
- High E_T^{miss} (calorimeter- and track-based)
- Well-separated, high-p_T b-tagged jets
- Suppress $t\bar{t}$ by vetoing additional jets
- Multi-jet events suppressed with angular cuts on E_T^{miss}
- $m_A^{\text{rec},T} = \sqrt{(E_T^{bb} + E_T^{\text{miss}})^2 - (\vec{p}_T^{bb} + \vec{E}_T^{\text{miss}})^2}$

Simulated Z+jets, W+jets, $t\bar{t}$bar events reweighted to match data in control regions.

Shape and normalization of multi-jets events from control regions in data.
$A \rightarrow Zh$ cross section limits

- CLs upper limits are set on
 \[\sigma(gg \rightarrow A) \times \mathcal{B}(A \rightarrow Zh) \times \mathcal{B}(h \rightarrow bb/\tau\tau) : \]

- Limited by uncertainties on background cross sections, τ_{had} ID and energy scale, and on the fake ℓ/τ_{had} background.

- Limited by systematic uncertainties on the jet energy scale, and on the b-tagging efficiency.

- Combined results are interpreted in the CP-conserving 2HDM
A → Zh: 2HDM interpretations

Assumptions:

\[m_A = m_H = m_{H^\pm}, \]
\[m_h = 125 \text{ GeV}, \]
\[m_{12}^2 = m_A^2 \frac{\tan \beta}{1 + \tan^2 \beta} \]

This slide:
fix \(m_A = 300 \text{ GeV} \)

Blue areas show regions excluded by previous search for \(A \to \tau \tau \)
$A \rightarrow Zh$: 2HDM interpretations

Assumptions:

$m_A = m_H = m_{H^\pm}$,
$m_h = 125 \text{ GeV},$
$m_{12}^2 = m_A^2 \frac{\tan \beta}{1 + \tan^2 \beta}$

This slide:

fix $\cos(\beta - \alpha) = 0.1$

Blue areas show regions excluded by previous search for $A \rightarrow \tau \tau$
$H^\pm \rightarrow \tau \nu$
"Light H^\pm" production

Require at least four jets in the event

Select one hadronic tau decay, one b-tagged jet and E_T^{miss}

Reconstruct the transverse mass:

$$m_T = \sqrt{2p_T^{\tau}E_T^{\text{miss}}(1 - \cos \Delta \phi_{\tau, \text{miss}})}$$

Using $\tau_{\text{had}} + E_T^{\text{miss}}$ trigger, simulated events corrected with efficiencies measured in data.

"Heavy H^\pm" production

Require at least three jets in the event

Increased E_T^{miss} requirement

Graphical representation of the reactions:

- $H^+ \rightarrow \tau^+ \nu$
- $H^- \rightarrow \tau^- \bar{\nu}$

ATLAS event correction factors:

<table>
<thead>
<tr>
<th>E_T^{miss} [GeV]</th>
<th>Trigger correction factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.7</td>
</tr>
<tr>
<td>150</td>
<td>0.75</td>
</tr>
<tr>
<td>200</td>
<td>0.8</td>
</tr>
<tr>
<td>250</td>
<td>0.85</td>
</tr>
<tr>
<td>300</td>
<td>0.9</td>
</tr>
</tbody>
</table>

- $\int_{Ld} = 19.5 \text{ fb}^{-1}$
- $\sqrt{s} = 8 \text{ TeV}$
- 1-track τ
Backgrounds

tt background (embedding method)

- Select events in data with a muon in place of the τ_{had}, and relax cuts to avoid bias.
- Remove muon track and calorimeter deposits
- Replace muon with a simulated tau (with rescaled momentum to account for mass difference) and propagate it through the detector simulation.
- Re-reconstruct the hybrid event

Multi-jet events with jet $\rightarrow \tau_{\text{had}}$ fakes

- Estimated using a matrix method with fake rates measured in an event selection enriched with W+jets events
- For $m_T > 200$ GeV there are very few events and the expected event yield is obtained by fitting the m_T distribution with a power-log function.

- The very small contribution from $e/\mu \rightarrow \tau_{\text{had}}$ fakes is the only background estimation that relies mainly on simulation.
H^± → τν results

Low-mass signal selection: Limits on $\mathcal{BR}(t \rightarrow bH^+) \times \mathcal{BR}(H^+ \rightarrow \tau\nu)$

![Low-mass H^+ selection](image)

Main systematic uncertainties:
- Trigger efficiency
- τ_{had} energy scale
- Embedding muon isolation

Expected $\mathcal{BR} < 1.3 - 0.23\%$

High-mass signal selection: Limits on $\sigma(pp \rightarrow \bar{t}H^+ + X) \times \mathcal{BR}(H^+ \rightarrow \tau\nu)$

![High-mass H^+ selection](image)

Main systematic uncertainties:
- Multi-jet background
- τ_{had} identification

σ × BR < 0.76 pb – 4.5 fb
\(H^\pm \rightarrow \tau \nu \): MSSM interpretations

\[\int L dt = 19.5 \text{ fb}^{-1} \]
\[\sqrt{s} = 8 \text{ TeV} \]
Data 2012
MSSM \(m^\text{max}_{h} \) scenario

\[\int L dt = 19.5 \text{ fb}^{-1} \]
\[\sqrt{s} = 8 \text{ TeV} \]
Data 2012
MSSM \(m^\text{mod+}_{h} \) scenario

\[\int L dt = 19.5 \text{ fb}^{-1} \]
\[\sqrt{s} = 8 \text{ TeV} \]
Data 2012
MSSM \(m^\text{mod-}_{h} \) scenario
Other recent BSM Higgs results

- Higgs to invisible - Searches for SM Higgs boson decaying to Dark Matter
 - In association with a hadronically decaying vector boson
 [arXiv:1504.04324]
 - VBF production
 [ATLAS-CONF-2015-004]
 - $\mathcal{B}\mathcal{R}(H_{125} \rightarrow \text{ inv.}) < 29\%$

- $H^\pm \rightarrow W^\pm Z$ [arXiv:1503.04233]
 - Important in Higgs Triplet Models

- Y_c coupling
 Higgs to J/Ψ: $\mathcal{B}\mathcal{R} < 1.5 \times 10^{-3}$, Higgs to $\Upsilon(1S, 2S, 3S)\gamma$:
 $\mathcal{B}\mathcal{R} < (1.3, 1.9, 1.3) \times 10^{-3}$

- Higgs pair production:
 $HH \rightarrow \gamma\gamma b\bar{b}$: $\sigma \times \mathcal{B}\mathcal{R} < 3.5$ pb
 (non-resonant < 1 pb)
Presented two recent ATLAS searches for BSM Higgs bosons

- **A → Zh**
 - With $\ell\ell\tau_{\text{had}}\tau_{\text{had}}$, $\ell\ell\tau_{\text{lep}}\tau_{\text{had}}$, $\ell\ell\tau_{\text{lep}}\tau_{\text{lep}}$, $\ell\ell bb$, $\nu\nu bb$ final states
 - Constraints on Type I, Type II, Lepton specific and Flipped 2HDMs

- **$H^+ \rightarrow \tau\nu$**
 - Considering H^+ masses below and above the top quark
 - Constraints on several MSSM scenarios

Analysis documentations

- **$H^+ \rightarrow \tau\nu$**: JHEP03 (2015) 088

More to come in Run 2...

- Very exciting time for searches!