Input Mezzanine and Data Formatter for the Fast Tracker at ATLAS

Takashi Mitani

for FTK_IM & Data Formatter team

14-15/May/2015

Aristotle University’s Research Dissemination Center

Thessaloniki, Greece
ATLAS Experiment at LHC

- ATLAS is a general purpose detector
 - Muon spectrometers
 - EM/Hadronic calorimeters
 - Trackers
 - 2D Pixel detector (IBL, Pixel)
 - 1D micro strip detector (SCT)

Very successful run during 2010-2012 (Run 1)
... Discover Higgs with a mass of ~ 125 GeV/c^2
ATLAS Experiment at LHC

- ATLAS is a general purpose detector
 - Muon spectrometers
 - EM/Hadronic calorimeters
 - Trackers

Very successful run during 2010-2012 (Run 1)
... Discover Higgs with a mass of ~ 125 GeV/c^2

Collision at ATLAS

LHC beam has **bunch** structure.

There are a large number of interactions per bunch crossing.
ATLAS Experiment at LHC

• ATLAS is a general purpose detector
 – Muon spectrometers
 – EM/Hadronic calorimeters
 – Trackers

Very successful run during 2010-2012 (Run 1)
... Discover Higgs with a mass of \(\sim 125 \text{ GeV}/c^2 \)

• LHC will be upgraded in Run 2 & 3 (2015-).
 – Energy: \(8 \rightarrow 13 - 14 \text{ TeV} \)
 – Luminosity: \(0.8 \times 10^{34} \rightarrow 1 - 3 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1} \)

... Increase cross section for all processes, and number of interactions per bunch crossing (pile-up).

It will become much more challenging to select interesting events in real time.
What is the Fast Tracker (FTK)?

- Using full pixel and SCT information, FTK reconstructs all tracks (transverse momentum, $p_T > 1$ GeV) with Level 1 accepted events (~100kHz).
- FTK provides track information to high level trigger (HLT) for further event selection within ~100μs.

Benefit of FTK

Save the HLT CPU time and allow to execute more sophisticated algorithms at HLT.

- Apply the correction for high pile-up condition with vertex reconstruction.
- Improve τ, b-jet identification, missing energy resolution, etc...
Input Mezzanine card(IM) + Data Formatter(DF)

IM: Receive the hits and perform clustering

DF: Share hits and provide them to pipelines

AUX: Track fitting p_T, η, ϕ, d_0, z_0

AM: Pattern recognition

Second Stage Board(SSB)

Execute second track fitting using remaining silicon layers.

FTK Level-2 Interface Crate (FLIC)

Send track info. to HLT

Pixels & SCT

Copy the hits from SCT & pixel and send to FTK

Dual HOLA card

Rod Data

100 kHz Event Rate

Raw Data ROBs
Architecture of FTK System

- Input Mezzanine card (IM) + Data Formatter (DF)
- Auxiliary card (AUX) + Associative Memory Board (AM)

IME: Receives hits and performs clustering

DF: Shares hits and provides them to pipelines

AUX: Tracks p, η, ϕ, d_0, z_0

Send track info to HLT

Execute second track finding using remaining silicon layers.

Second Stage Board (SSB)

FTK Level-2 Interface Crate (FLIC)

100 kHz Event Rate

Copy the hits from SCT & pixel and send to FTK
Architecture of FTK System

- FTK Input Mezzanine card (FTK_IM)
- Data Formatter board (DF)

FYI: There are 2 other FTK presentations in poster session from ATLAS.
- Fast Tracker (FTK): A Hardware Track Finder for the ATLAS Trigger, T. Iizawa
- The Serial Link Processor for the Fast Tracker (FTK) processor at ATLAS, N.V. Biesuz
Requirements of FTK IM

- Receive hit information from SCT and Pixel
- Read Out Drivers (ROD) at Level 1 accepted rate (100kHz).
- Perform hit clustering to reduce data size.
- Send the clustered hit data to Data Formatter.
FTK_IM Board Design

- Receive 4 optical fibers with 4 SFP transceivers (1.28Gbps).
- Perform clustering by 2 FPGAs
 - Spartan-6 for pixel Artix-7 for IBL. Sufficient logic cells for clustering.
 - 4 GTP lines/FPGA (3.2Gbps)
 - 16 LVDS lines/FPGA
- Use 12 LVDS lines/FPGA of 200 MHz DDR for sending data to DF via FMC connector.
 - 8 LVDS (data) + 4 LVDS (control bit)
Clustering Algorithm

- Map pixel hits in 2D structure of cells on the FPGA.
- Sliding window technique:
 1. Place a clustering window (21×8) around the first hit (reference hit)
 2. Load all hits in the window.
 3. Select all hits neighboring to the reference/selected hits for clustering.
 4. Read selected hits as a cluster.
 5. Iterate 1 - 4 processes.
- The algorithm implementation is fully parallelized and flexible. Achieves the required speed by using 30% of the device resources.
Requirements of Data Formatter

• Pattern recognition and track fitting is performed by 64 \(\eta-\phi \) overlapping towers as parallel processing unit.

 – Finite size of beam luminous region/ Curvature of charged track

• Remap input data into 64 towers.

• Share data considering overlap region.

• Handle a large amount of data (~400 RODs’ data).
System Design for Data Formatter

- Remap pixel and SCT detector $\eta - \phi$ information to FTK logical $\eta - \phi$ information.
- Huge number of hits have to be shared among the processors to avoid inefficiency at boundary region.

ATCA system with full mesh backplane is a natural solution.

- Use 4 ATCA shelves.
- Assigned 8 boards to each shelf.
 - Full mesh communication with backplane.
 - Inter crate connection with optic fibers
Data Formatter Board Design

- Receive 16 inputs from 4 FTK IMs with LVDS lines of 200 MHz DDR via FMC connector.
- Share hit information with other DF boards and send downstream FTK tracking boards.
 - Main engine of DF is one **Virtex-7 FPGA**.
 - GTH high speed lines (10 Gbps)
- Rear Transition Module (RTM) for optical fiber I/Os.
 - Required speed: **6.4 Gbps**
- Zone2 for ATCA backplane interconnection.
 - Required speed: **6.25 Gbps**
Slow Control & Monitoring

- DF boards are accessed via Ethernet links.
 - Each DF FPGA has IP address
 - Control over Ethernet packet.
 - IPbus is used for this access.
 - Each DF FPGA drives the I²C bus on the board to access FTK_IM.
Slow Control & Monitoring

• DF boards are accessed via Ethernet links.
 – Each DF FPGA has IP address
 ✓ Control over Ethernet packet.
 ✓ IPbus is used for this access.
 – Each DF FPGA drives the I²C bus on the board to access FTK_IM.

Using IPbus + I²C connection, we can control and monitor DF and FTK_IM functionalities.
✓ Download Look Up Tables (LUTs) for each board configuration.
✓ Read spybuffer in DF & FTK_IM, etc…
Test Status of FTK_IM and DF at Lab

- **FTK_IM - DF communication**
 - BER < 10^{-15} (ATLAS requirement) in LVDS lines.
 - Clustering algorithms work well.
 - Dataflow can run with full configuration at maximum input rate (~400 words/event at 100kHz).

- **DF-DF data sharing**
 - BER < 10^{-15} in both lines to RTM and ATCA backplane.
 - Established data sharing with few channels.
 - Improvement for many channels is ongoing.

- **FTK_IM - DF - downstream board communication**
 - BER < 10^{-15} in GTH + optical fiber line.
 - With full configuration, data flow can run up to ~10 kHz.
 - Improvement for higher rate is ongoing.
Test Status of FTK_IM and DF at USA15

- FTK_IM and DF system are installed in the ATLAS underground counting room (CERN USA15).
- We prepared all optical fibers for FTK system.
- **Confirmed that FTK_IM and DF can receive inputs from SCT and Pixel RODs.**
- Currently FTK_IM and DF are being tested using cosmic rays and first low luminous beam collision data.
Mass Production & Quality Control

- 80 FTK_IM boards with Spartan-6 FPGAs were produced by a company in Japan.
 - Requirement: 64 + 16 spares.
- A quick check was done and the mass production found to be in good shape.
 - Checked part’s positions.
 - Continuity check between parts.
- Quality control tests are ongoing.
 - Check I/O functionalities.
 - Check SRAM and FRAM connectivity and functionality.
 - Do burn-in test with an extended period of time.

After completing quality control tests,
FTK_IMs will be ready to be delivered to CERN and installed.
Summary

• FTK provides full detector track information for events accepted by Level 1 trigger.
 – Allow to execute more sophisticated selection algorithms at HLT.
• FTK_IM and DF are input interface of the FTK system.
 – Receive hits from SCT and Pixel/IBL ROD at Level 1 accepted rate.
 – Perform clustering to reduce data size.
 – Distribute hits to proper downstream FTK boards.
• FTK_IM and DF boards have been tested extensively.
• Mass production has started.
 – 80 FTK_IMs of Spartan-6 are under quality control.

FTK_IM and DF installation will start this summer.
FTK_IM and DF team members

- T. Mitani: Waseda University
- A. Annovi: INFN Sezione di Pisa
- M. Berreta: INFN Laboratori Nazionali di Frascati
- R. Brown: Stanford University
- M. Gatta: INFN Laboratori Nazionali di Frascati
- S. Gkaitatzis: Aristotle University of Thessaloniki
- T. Iizawa: Waseda University
- N. Ilic: Stanford University
- N. Kimura: Aristotle University of Thessaloniki
- K. Kordas: Aristotle University of Thessaloniki
- Y. Okumura: Chicago University
- C. Petridou: Aristotle University of Thessaloniki
- C.-L. Sotiropoulou: Universita’di Pisa and INFN Sezione di Pisa
- L. Tompkins: Stanford University
- K. Yorita: Waseda University
Thank you for your attention
Backup
FTK_IM Board Design

• Communicate with DF via FMC connector.
 – Distribute electric power.
 \[12 \rightarrow 1.2V \, (10A) \quad \text{for FPGA} \]
 \[3.3 \rightarrow 1.2V \, (5A) \]
 – CLK sharing (200MHz).
 – 4 LVDS lines/FPGA for hold and reset signal from DF.
 – JTAG lines to download FW.
 – I^2C lines for slow control and monitoring functionality.
 – Additional 2GTP lines/FPGA for high speed.

• FRAM & SRAM support IM functionality: e.g.) Store pseudo input data, etc.

14-15/May/2015

MOCAST2015
FTK principle: Pattern Recognition

Find low resolution track called as “pattern”.

Pattern bank

Low resolution hit (SS)
FTK principle: Pattern Recognition

1. Generate possible all patterns by **MC simulation**. ~300 M events of single muon event are used for pattern generation.
FTK principle : Pattern Recognition

2. Find the pattern in real data using pattern recognition. Real data’s hits are sent to pattern bank sequentially, and patterns are recognized like a bingo game. All patterns are founded when all hits are arrived.

\[\Phi : \text{Real Hits} \]

Low resolution hit (SS)

pattern bank

Very Fast!
FTK principle: Track Fitting

Estimate the track parameters using full resolution hit info.

1. Pre-Calculate the Constants for the 5 parameter’s *linear approximation* as a function of hit coordinate using MC simulation.

 \[\hat{p}_i = \sum_{l=1}^{N} C_{il} x_l + q_i \]

 Parameter s

 \(\hat{p}_i \): Track Parameters (i=0~4)

 \(x_i \): Hit Coordinate

 \(\tilde{C}_i, q_i \): Constant

2. Estimate the track parameters using *linear approximation* equation with pre-calculated constant using real data’s full resolutions hits coordinate.

 FTK can estimate track information very fast without any looped process to minimize something.