The Future of Charm Physics at LHCb

LHC Run II & the LHCb Upgrade

Chris Parkes
on behalf of the LHCb Collaboration
The Future of Charm Physics at LHCb

LHC Run II & the LHCb Upgrade

Chris Parkes
on behalf of the LHCb Collaboration
LHCb Timeline

- **LHC Run-I** (2010-2012)
 - Many results shown this week, more to come
- **LHC Run-II** (2015-2018)
 - Trigger computing increased, strategy evolved
- **LHC Run-III** (2020-2023)
 - LHCb Upgrade
- **LHC Run-IV** (2025-)
 - LHCb Upgrade (+ additions ?)
LHC Schedule & LHCb

- Schedule till 2020 reasonably firm
- HL-LHC upgrade in LS3
- GPD main upgrades (phase II) scheduled for LS3

Chris Parkes, Delta City, May 2015
LHC Run II

First 13TeV Collisions
20th May 2015

Expectation ~ 5fb⁻¹
Trigger Evolution – Run II

Run I

15 MHz bunch crossing rate

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

- 450 kHz h^\pm
- 400 kHz μ/μ^\pm
- 150 kHz e/γ

Software High Level Trigger

- 29000 Logical CPU cores
- Offline reconstruction tuned to trigger time constraints
- Mixture of exclusive and inclusive selection algorithms

5 kHz Rate to storage

- 2 kHz Inclusive Topological
- 2 kHz Inclusive/Exclusive Charm
- 1 kHz Muon and DiMuon

Run II

30 MHz inelastic event rate

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

- 450 kHz h^\pm
- 400 kHz μ/μ^\pm
- 150 kHz e/γ

Software High Level Trigger

- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers

12.5 kHz Rate to storage

(assuming current event size)
Online: Automatic Alignment & Calibration

- Minimise Online / Offline differences
 - Improve effective trigger performance
- Automatic evaluation at regular intervals
 - Vertex Locator (VELO) alignment as example
 - $O(1 \text{ min})$ CPU, update immediately

Half misalignment per fill in 2010

Max deviation $\sim 10\mu m$

- **Tracking**: spatial & time alignment
- **RICH**: mirror alignment, photon detector image corrections

Reference: G. Dujany, CHEP '15
Turbo Stream

Raw data: electronic signals recorded from detector
Analysis level: information of signal candidate tracks

• Analyse directly on trigger output?
 – Online calibration
 a critical first step

• Maximise number of events for user analysis
 – Output rate is a limit

• Testing mode
 – Raw events will be kept
But **NOT** Limited by LHC

- Upgrade to extend Physics reach
 - Exploit advances in detector technology
 - Displaced Vertex Trigger, **40MHz readout**
 - Better utilise LHC capabilities

- Collect >50 fb\(^{-1}\) data
- Modest cost compared with existing accelerator infrastructure

Independent of LHC upgrade
- HL-LHC not needed
- But compatible with HL-LHC phase
LHCb Upgrade Approved

- Letter Of Intent 2011
- Subsystem TDRs 2014

- Funding largely in place from end 2014

CERN-RRB-2014-105
Trigger Evolution - Upgrade

Run II

LHCb 2015 Trigger Diagram

30 MHz inelastic event rate

L0 Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

- 450 kHz h^\pm
- 400 kHz $\mu/\mu\mu$
- 150 kHz e/γ

Software High Level Trigger

- Partial event reconstruction, select displaced tracks/vertices and dimuons
- Buffer events to disk, perform online detector calibration and alignment
- Full offline-like event selection, mixture of inclusive and exclusive triggers

12.5 kHz Rate to storage

Upgrade

LHCb Upgrade Trigger Diagram

30 MHz inelastic event rate and full event rate building

- LLT: 15-30 MHz output rate, select high E_T/P_T ($h^\pm/\mu/e/\gamma$)

Software High Level Trigger

- Full event reconstruction, inclusive and exclusive kinematic/geometric selections
- Run-by-run detector calibration

Add offline precision particle identification and track quality information to selections

2-10 GB/s rate to storage

Chris Parkes, Delta City, May 2015
LHCb Trigger: the key to higher Lumi

- **Aim:** Increase integrated luminosity from 2 fb^{-1} to 5 fb^{-1} per year
 Increase instantaneous luminosity to $2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$

- **Current First Trigger Level:**
 Hardware Muon/ECAL/HCAL
 1.1 MHz readout

- **Performance:**
 Muon channels scale
 Hadronic channels saturate bandwidth
 Hardware trigger particularly poorly suited to lower momentum of charm

- No gain in hadronic channels with current trigger
Solution: Upgrade to 40MHz readout

- Read out full detector at 40MHz
 - Major detector changes
 - Front-end electronics must change
- Use fully software trigger
- Increased flexibility
- Maintain (improve) current detector performance
 - At increased multiple Interactions
 - Occupancies
 - Radiation Damage
LHCb Upgrade to 40 MHz

- VELO Pixel Detector
- Upgrade Tracker Silicon strips
- Outer Tracker Scintillating Fibres
- Muon MWPC (almost compatible)
- RICH Photon Detectors & (partial) mechanics
- Calo PMTs (reduce PMT gain, replace R/O)
LHCb Vertex Locator Upgrade

- Pixel Detector
 - 55x55µm
- In vacuum
- 5mm from LHC beam
 - 10^{16} n_{eq}/cm^2
 - Retracted for filling
- Silicon with Micro-channel
 - Bi-phase CO$_2$ cooling
LHCb Scintillating Fibre Tracker

- Mat made from
 - 250µm diameter fibres
 - SiPM readout
- Radiation hardness challenge
- Fibres & SiPMs
- Defects (bumps) in fibres
- 10,000 km fibre!
Sources of Charm

Prompt charm

Run I $D \to K\pi$: 100M
Offline selected D^* tagged (x5 untagged)

Semileptonic B-hadron decays

Run I $D \to K\pi$: 20M
Offline selected muon tagged

Hadronic B decays
Not only useful to measure CKM γ
Also revealed first spin-3 charm state

→ LHCb collaboration, Phys. Rev. Lett. 113 (2014) 162001
Physics Coverage / Limitations

- Inclusive charm trigger selections are not feasible
 - Upgrade will produce 800 kHz of analysable charm-hadron events
 - 80 GB/s with current data format
 - can keep 2-10 GB/s for ALL LHCb physics
- Have to decide in advance what to keep
 - Cabibbo favoured modes prescaled?
 - Purely exclusive selection – trigger is offline selection
- Limits of physics programme not yet reached
 - Use of neutrals
 - Understanding production/detection asymmetries

\[D^0 \to \pi^+\pi^-\pi^0: \text{1yr LHCb Run 1} = 80 \text{ yrs B factory v1} \]

Statistics

- See backup slides for assumptions
Statistics – Cross-section Adjusted

- 13 TeV cross-section

- See backup slides for assumptions
• 13 TeV cross-section
• Trigger efficiency adjusted for hadronic modes
 • See backup slides for assumptions
Statistics: $D^0 \rightarrow K\pi$ Events

- Millions
- D to $K\pi$ tagged

- 2014: 0
- 2019: 100M
- 2024: Billion
- 2029: 5000

Chris Parkes, Delta City, May 2015
Future Charm Measurements – key channels

- A_Γ, WS $K\pi$, ΔA_{CP}
 - Inherently robust against systematics due to cancellations
 - Not all at the same level, but no limiting uncertainty known

- $y_{CP} \equiv \tau_{K\pi}/\tau_{KK} - 1 \approx y$
 - Comparison of two different final states
 - Less robust, key is controlling lifetime bias

- $K_S\pi\pi$
 - Leading systematics are either model uncertainties or measurements of CP content at threshold
 - Benefits from BESIII

- Rare Decays
 - Systematics unlikely to limit, no bandwidth issues

- Spectroscopy
 - Bandwidth limitations for Cabibbo favoured modes?
Future Sensitivities: $D^0 \rightarrow \mu \mu$

• Scaling sensitivities with \sqrt{N} from current LHCb results
 • Assumes scaling of systematic uncertainties
 • Ignores potential improvements in selections and analyses
• Shows data set collection date
Future Sensitivities: ΔA_{CP}

- Scaling sensitivities with \sqrt{N} from current LHCb results (D^* tagged only)
 - Assumes scaling of systematic uncertainties
 - Ignores potential improvements in selections and analyses
 - Shows data set collection date

~10^{-4} level
Future Sensitivities: CPV & Mixing

- See backup slides for assumptions
- Current World Average + LHCb projections (D* tagged only)
- Central values of current world averages used
Conclusions

• LHCb Charm programme has exceeded expectations for LHC Run 1
• LHC Run II has begun
 • Novel trigger strategies are required to keep pace
• LHCb Upgrade
 • Approved, ~ financed
 • Significant technological challenges, fast timescale
 • Bandwidth key to charm prospects

Probe SM level CPV at LHCb Upgrade

V1

Upgrade ?
Backup Slides
Physics Performance Assumptions

Based on LHCb-PUB-2014-040

• Run-2
 • Cross-section increases linearly with \sqrt{s}
 • Non-muon trigger efficiency suffers from tighter thresholds and have a factor 2 lower efficiency
 • Does not assume Turbo Stream
 • $2fb^{-1}$ per year, $5fb^{-1}$ in total for run II

• Upgrade
 • Removal of hardware trigger brings factor 2 efficiency boost for non-muon triggered events
 • Charm factor may well be significantly higher
 • $\sim5fb^{-1}$ per year
Sensitivity Prediction Assumptions

Based on M. Gersabeck, LHCb-Talk-2015-039, for IHEP 100 TeV workshop

- **Mixing and CPV** – A_Γ, y_{cp}, WS $K\pi$, $K_{S\pi\pi}$
- **Uses current WA central values from fit**

 - A_Γ: projection of LHCb 1fb$^{-1}$ D* tagged
 - WS $K\pi$: projection of LHCb 3fb$^{-1}$
 - y_{cp}: projection of LHCb 0.03fb$^{-1}$
 - $K_{S\pi\pi}$: assume same sensitivity per event as Belle

- **ΔA_{CP}**: projection of LHCb 1fb$^{-1}$ prelim. result D* tagged only

- **D$^0\rightarrow\mu\mu$**: projection of LHCb 1fb$^{-1}$, leptonic trigger – different scaling

In all CPV, mixing D* tagged only is used in extrapolations
Use of semileptonic B decays, muon tagged, will improve results, and is complementary in systematics
Extrapolations

M. Gersabeck, LHCb-Talk-2015-039, for IHEP workshop

<table>
<thead>
<tr>
<th>Run</th>
<th>\sqrt{s} in TeV</th>
<th>L in fb$^{-1}$</th>
<th>$\varepsilon_{\text{trig}}$</th>
<th>L_{eq}</th>
<th>$\sum L_{eq}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (2011)</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1 (2012)</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>5</td>
<td>0.5</td>
<td>4.6</td>
<td>7.9</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>15</td>
<td>2</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>25</td>
<td>2</td>
<td>100</td>
<td>168</td>
</tr>
</tbody>
</table>

- L_{eq} - Calculate equivalent luminosities to 7 TeV
- Extrapolate signal yields accordingly
- Based on existing Run-I measurements where available
Future Sensitivities

M. Gersabeck, LHCb-Talk-2015-039, for IHEP workshop

• Scaling sensitivities with \sqrt{N}
 • Assumes scaling of systematic uncertainties
 • Ignores potential improvements in selections and analyses

| Run | $x \times 10^{-3}$ | $y \times 10^{-3}$ | $|q/p| \times 10^{-3}$ | ϕ [mrad] |
|-----|-------------------|-------------------|-----------------------|--------------|
| 1 | 1.22 | 0.53 | 59 | 89 |
| 2 | 0.92 | 0.37 | 44 | 70 |
| 3 | 0.42 | 0.15 | 20 | 33 |
| 4 | 0.25 | 0.09 | 12 | 20 |