Search for Violation of CPT and Lorentz invariance in B^0_s meson oscillations

(The D0 Collaboration)

1LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
2Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
3Universidade Federal do ABC, Santo André, Brazil
4University of Science and Technology of China, Hefei, People’s Republic of China
5Universidad de los Andes, Bogotá, Colombia
6Charles University, Faculty of Mathematics and Physics, Center for Particle Physics, Prague, Czech Republic
7Czech Technical University in Prague, Prague, Czech Republic
8Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
9Universidad San Francisco de Quito, Quito, Ecuador
10LPC, Université Blaise Pascal, CNRS/IN2P3, Clermont, France
11LPSC, Université Joseph Fourier Grenoble I, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble, France
12CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille, France
13LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
14LPNHE, Universités Paris VI and VII, CNRS/IN2P3, Paris, France
15CEA, Ifsa, SPP, Saclay, France
16IPHC, Université de Strasbourg, CNRS/IN2P3, Strasbourg, France
17IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, France and Université de Lyon, Lyon, France
18III. Physikalisches Institut A, RWTH Aachen University, Aachen, Germany
19Physikalisches Institut, Universität Freiburg, Freiburg, Germany
20H. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
21Institut für Physik, Universität Mainz, Mainz, Germany
22Ludwig-Maximilians-Universität München, München, Germany
23Panjab University, Chandigarh, India
24Delhi University, Delhi, India
25Tata Institute of Fundamental Research, Mumbai, India
26University College Dublin, Dublin, Ireland
27Korea Detector Laboratory, Korea University, Seoul, Korea
28CINVESTAV, Mexico City, Mexico
29Nikhef, Science Park, Amsterdam, the Netherlands
30Radboud University Nijmegen, Nijmegen, the Netherlands
31Joint Institute for Nuclear Research, Dubna, Russia
32Institute for Theoretical and Experimental Physics, Moscow, Russia
33Moscow State University, Moscow, Russia
34Institute for High Energy Physics, Protvino, Russia
35Petersburg Nuclear Physics Institute, St. Petersburg, Russia
36Institució Catalana de Recerca i Estudis Avançats (ICREA) and Institut de Física d’Altes Energies (IFAE), Barcelona, Spain
37Uppsala University, Uppsala, Sweden
38Taras Shevchenko National University of Kyiv, Kiev, Ukraine
39Lancaster University, Lancaster LA1 4YB, United Kingdom
40Imperial College London, London SW7 2AZ, United Kingdom
41University of Arizona, Tucson, Arizona 85721, USA
42Florida State University, Tallahassee, Florida 32306, USA
43University of California Riverside, Riverside, California 92521, USA
44Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
45University of Illinois at Chicago, Chicago, Illinois 60607, USA
46Northern Illinois University, DeKalb, Illinois 60115, USA
47Northwestern University, Evanston, Illinois 60208, USA
48Indiana University, Bloomington, Indiana 47405, USA
49University of Notre Dame, Notre Dame, Indiana 46556, USA
50Iowa State University, Ames, Iowa 50011, USA
51University of Kansas, Lawrence, Kansas 66045, USA
52Louisiana Tech University, Ruston, Louisiana 71272, USA
53Northeastern University, Boston, Massachusetts 02115, USA
54University of Michigan, Ann Arbor, Michigan 48109, USA
55Michigan State University, East Lansing, Michigan 48824, USA
56University of Mississippi, University, Mississippi 38677, USA
We present the first search for CPT-violating effects in the mixing of B^0_s mesons using the full Run II data set with an integrated luminosity of 10.4 fb$^{-1}$ of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. We measure the CPT-violating asymmetry in the decay $B^0_s \rightarrow \mu^+\mu^-$ as a function of celestial direction and sideral phase. We find no evidence for CPT-violating effects and place limits on the direction and magnitude of flavor-dependent CPT- and Lorentz-invariance violating coupling coefficients. We find 95% confidence intervals of $\Delta a_\perp < 1.2 \times 10^{-12}$ GeV and $(-0.8 < \Delta m - 0.396\Delta a_\perp < 3.9) \times 10^{-13}$ GeV.

PACS numbers: 11.30.Cp, 13.20.He, 14.40.Nd

Lorentz invariance requires that the description of a particle is independent of its direction of motion or boost velocity. The Standard Model Extension (SME) provides a framework for potential Lorentz and CPT invariance violation (CPTV), suggesting that such violations can occur at the Planck scale but still result in potentially observable effects at currently available collider energies. The process of neutral meson oscillations is described by a 2×2 effective Hamiltonian with mass eigenvalues of the propagating particles having very small differences between them that drive the oscillation probability. For the B^0_s-\bar{B}^0_s system, the fractional difference between the eigenvalues is of the order of 10^{-12}. Due to this, B^0_s-\bar{B}^0_s oscillations form an interferometric system that is very sensitive to small couplings between the valence quarks and a possible Lorentz-invariance violating field, making it an ideal place to search for new physics.

The measurement of the like-sign dimuon asymmetry by the D0 Collaboration shows evidence of anomalously large CP-violating effects. This is currently one of the few significant deviations from the standard model of particle physics. One of the interpretations of this effect could be a CPT-invariant CP violation (CPTV) in neutral B-meson mixing. The propagating “light” (L) and “heavy” (H) mass eigenvalues of the B^0_s-\bar{B}^0_s system can be written as:

$$|B_{sL}\rangle \propto p\sqrt{1-\xi_s}|B^0_s\rangle + q\sqrt{1+\xi_s}|\bar{B}^0_s\rangle,$$

$$|B_{sH}\rangle \propto p\sqrt{1+\xi_s}|B^0_s\rangle - q\sqrt{1-\xi_s}|\bar{B}^0_s\rangle.$$

If the complex parameter ξ_s is zero, CPT is conserved and CPV is due to $|q/p| \neq 1$ so that the oscillation probability $P(B^0_s \rightarrow \bar{B}^0_s)$ is different from $P(B^0_s \rightarrow B^0_s)$. An alternative interpretation is that the asymmetry could arise from T-invariant CPV in B^0_s-\bar{B}^0_s mixing where $|q/p| = 1$, but ξ_s is non-zero so that the probability of non-oscillation or oscillation back to the original state $P(B^0_s \rightarrow B^0_s)$ is different from $P(B^0_s \rightarrow \bar{B}^0_s)$. By integrating these two probabilities in time the asymmetry \mathcal{A}_{CPT} between B^0_s and \bar{B}^0_s meson decays can be investigated. It can be shown that the CPV contributions to the 2×2 effective Hamiltonian governing B^0_s-\bar{B}^0_s oscillations depend on the difference between the diagonal mass and decay rate terms:

$$\xi_s = \frac{(M_{11} - M_{22}) - \frac{1}{2}(\Gamma_{11} - \Gamma_{22})}{-\Delta m_s + i\Delta\Gamma_s/2} \approx -\beta^\mu\frac{\Delta a_\mu}{\Delta m_s + i\Delta\Gamma_s/2},$$

where Δa_μ is a four vector direction and magnitude in space-time characterizing Lorentz-invariance violation which in the SME is given by $\Delta a_\mu = r_\mu a_\mu^H - r_\mu a_\mu^L$ where a_μ^H are Lorentz-violating coupling constants for the two valence quarks in the B^0_s meson, and where the factors r_μ allow for quark-binding or other normalization effects. The four-velocity of the B^0_s meson is given by $\beta^\mu = \gamma(1, \vec{\beta})$, $\beta^\mu \Delta a_\mu$ is the difference between the diagonal elements of the effective Hamiltonian, and the mass and decay rate differences of the mass eigenstates are $\Delta m_s = m_H - m_L$, and $\Delta\Gamma_s = \Gamma_L - \Gamma_H$. The small fractional values of Δm_s and $\Delta\Gamma_s$ make the B^0_s system sensitive to CPTV effects. In the underlying theory, spontaneous Lorentz symmetry breaking generates constant background ex-
pectation values for the quark fields that are Lorentz vectors represented by Δa_{μ} or tensors instead of scalars [3].

Any observed CPT violation should vary in the frame of the detector denoted with indices (t, x, y, z). The period will be one sidereal day (≈ 0.99727 solar days) as the direction of the proton beam follows the Earth’s rotation with respect to the distant stars [4]. In the SME the variation would depend on CPT- and Lorentz-invariance violation coupling coefficients Δa_{μ} with indices (T, X, Y, Z). We choose (T, X, Y, Z) as coordinates in the standard Sun-centered frame with the rotation axis of the Earth taken as the Z-axis and $X(Y)$ is at right ascension 0° (90°) [2] (see [8] for a diagram of the coordinate system). If CPT in $B_0^0-B_0^\mp$ oscillations is allowed, then $A_{\text{CPT}} = (\Delta m_s/\Gamma_s)\text{Im}(\xi_s)$ if ξ_s is small. By translating from the Sun-centered frame to the detector frame we have [4]

$$A_{\text{CPT}} = -\frac{\Delta \Gamma \gamma^{B_0^0}}{\Gamma_s \Delta m_s} [\Delta a_T - C_a S_{\chi} \beta \Delta a_Z$$

$$+ \sqrt{C_a^2 S_{\chi}^2 + S_{\chi}^2} \sin(\Omega \hat{t} + \delta + \kappa) \beta \Delta a_Z],$$

where $C_x = \cos(x)$, $S_x = \sin(x)$, \hat{t} is elapsed time with respect to the vernal equinox of the year 2000, $\Omega = 2\pi$ rad/sidereal day, $\gamma^{B_0^0} = \beta^{B_0^0} \cos \theta$ is the velocity β of the B_0^0 meson in the detector frame projected onto the z-axis (proton beam direction) of the D0 detector, θ is the polar angle between the B_0^0 momentum and the proton beam direction, $\gamma^{B_0^0} = 1/\sqrt{1-(\beta^{B_0^0})^2}$, χ is the colatitude of the D0 detector, α is the orientation of the z-axis of the detector in the earth’s coordinate system, where the proton beam has a bearing of 219.53$^\circ$, $\Delta a_T = \sqrt{\Delta a_{\chi}^2 + \Delta a_{\tau}^2}$ is the transverse and Δa_Z the longitudinal components of Δa_{μ}, $\delta = \tan^{-1}(\Delta a_Y/\Delta a_X)$, $\kappa = \tan^{-1}(-S_{\chi}/C_{\chi} C_{\alpha})$ and Δa_T is the time component of the Δa_{μ} four-vector. A variation with sidereal time could arise from the rotation of $\beta^{B_0^0}$ with respect to Δa. In this Letter we place limits on Δa_T and $\Delta a_T - C_a S_{\chi} \beta \Delta a_Z$.

Past experiments and analyses have placed constraints on the flavor-dependent Δa_{μ} of the near neutral meson oscillating systems: K^0-\bar{K}^0 [9], D^0-\bar{D}^0 [10], and B^0-\bar{B}^0 [11], as well as indirect limits for B_0^0-\bar{B}_0^0 [5].

This article presents a search for CPT and Lorentz violation using the decay $B_0^0 \rightarrow \mu^+ D^+_x X$ events where $\text{sgn}(\cos \theta)Q > 0$ $[\text{sgn}(\cos \theta)Q < 0]$ which results from the $\beta^{D_x} = \beta^{D_0} \cos \theta$ terms in Eq. [1] and Q is the charge of the muon. The direction of the $\mu^+ D^+_x$ system differs from that of the parent B_0^0 due to the missing neutrino. However, the migration between $N_+ \text{ and } N_-$ terms near $\theta = \pi/2$ causes a negligible correction to the measured asymmetry. The initial state at production is not flavor tagged in our study, but after experimental selection requirements, the B_0^0 system is fully mixed, so that the probability of observing a B_0^0 or B_0^\mp is essentially equal regardless of the flavor at production. We assume no CP violation in mixing [12], so only about half of the observed B_0^0 have the same flavor as they had at birth. We assume no CP violation, so those observed B_0^\mp mesons which have changed their flavor do not contribute to CPTV, leading to a 50% dilution in the measured asymmetry. In the presence of CPT violation, the asymmetry is expected to have a period of one sidereal day, so a search is made for variations of the form

$$A(t) = A_0 - A_1 \sin(\Omega \hat{t} + \phi),$$

where A_0, A_1 and $\phi = \delta + \kappa$ are constants and are extracted by measuring the asymmetry A in Eq. [5] in bins of the sidereal phase $\Omega \hat{t}$, and fitting to the value in each bin with Eq. [9]. Measurements of A_0 and A_1 are then interpreted as limits on Δa_{μ} from $B_0^0-B_0^\mp$ oscillations. A non-zero value of Δa_{μ} and Δa_T would lead to a CPTV asymmetry that does not vary with sidereal time.

The data selection and the signal extraction are identical to those used in Ref. [13]. The main details of the data selection using the D0 detector are described here.

The data are collected with a suite of single and dimuon triggers. The selection and reconstruction of $\mu^+ D^+_x X$ decays require tracks with at least two hits in both the central fiber tracker and the silicon microstrip tracker. The muon track segment outside the calorimeter has to be matched to a particle found in the central track detector. The muon track segment outside the calorimeter is reconstructed by assuming the two decay particles are kaons, requiring $p > 0.7$ GeV, opposite charges, and $M(K^+K^-) < 1.07$ GeV. The charge of the third particle, assumed to be the charged pion, must have charge opposite to that of the muon and $0.5 < p_T < 25$ GeV. The three tracks are combined to create a common D^+_x decay vertex using the algorithm described in Ref. [15]. The reconstructed $\mu^+ D^+_x$ candidate is required to pass several kinematic selection criteria and satisfy likelihood ratio criteria that are identical to those described in Ref. [13].

The effective $K^+ K^- \pi^\pm$ mass distribution is fitted using bins of 6 MeV over a range of $1.7 < M(K^+ K^- \pi^\pm) < 2.3$ GeV, and the number of signal and background events is extracted by a χ^2 fit of an empirical model to the data. The D^+_x meson mass distribution is well modeled by two
Gaussian functions constrained to have the same mean, but with different widths and normalizations. There is negligible peaking background under the D^\pm peak. A second peak in the $M(K^+K^-\pi^\pm)$ distribution corresponding to the Cabibbo-suppressed $D^\pm \rightarrow \phi\pi^\pm$ decay is also modeled by two Gaussian functions with widths set to those of the D^\pm meson model scaled by the ratio of the fitted D^\pm and D^\pm_s masses. The combinatoric background is modeled by a 5th-order polynomial function. Partially reconstructed decays such as $D^\pm_s \rightarrow \phi\pi^\pm\pi^0$ where the π^0 is not reconstructed are modeled with a threshold function that extends to the D^\pm_s mass after the π^0 mass has been subtracted, given by $T(m) = \tan^{-1}[p_1(m c^2 - p_2)] + p_3$, where p_i are fit parameters.

The raw asymmetry (Eq. 5) is extracted by fitting the $M(K^+K^-\pi^\pm)$ distribution of the $\mu^\pm D^\pm_s$ candidates using a χ^2 minimization. The fit is performed simultaneously, using the same models, on the sum and the difference of the $M(K^+K^-\pi^\pm)$ distribution of N_+ candidates and N_- candidates. The functions used to model the two distributions are

$$W_{\text{sum}} = W_{D_+} + W_D + W_{cb} + W_{pt}$$

$$W_{\text{diff}} = A W_{D_+} + A_D W_D + A_{cb} W_{cb} + A_{pt} W_{pt}$$

where $W_{D_+}, W_D, W_{cb},$ and W_{pt} describe the distribution of the D^+_s and D^\pm mass peaks, the combinatorial background, and the partially reconstructed events, respectively, and the A factors are the corresponding asymmetries which are extracted from the fit. The number of signal events in the sample is $N(D^\pm_s) = 205,865 \pm 626$.

Following previous conventions [16] we shift the origin of the time coordinate to correspond to the vernal equinox of the year 2000. The value of A_1 is extracted by dividing the data into n data sets, each containing a fraction f_i of the data based on the sidereal phase $\Omega\hat{t} + \phi$. In the fit, the parameters that describe the mass distributions W_{sum} and W_{diff} are the same for all sidereal bins, except for A and A_D which may vary with sidereal phase.

The number of sidereal bins used to extract the asymmetry is determined by finding the smallest uncertainty on A_1. By using MC input of asymmetries from 0% to 2% we find that the optimum number of bins is eleven. One of the eleven distributions produced in the fit to the data is shown in Fig. [1].

Systematic uncertainties of the fitting method on the extracted values of A in sidereal bin i, $A(i)$, are evaluated by varying the fitting procedure and are assigned to be half of the maximal variation in the asymmetry. The mass range of the fit is shifted from $1.700 < M(K^+K^-\pi^\pm) < 2.300$ GeV to $1.724 < M(K^+K^-\pi^\pm) < 2.270$ GeV in steps of 6 MeV resulting in an absolute uncertainty on the measured asymmetries of 0.035%. The width of the mass bins is changed between 1 and 12 MeV resulting in an absolute uncertainty of 0.071%. The functions modelling the signal are modified to fit the D^\pm_s and D^\pm mass peaks by single Gaussian functions, the background is fitted by varying between a fourth- and seventh-order polynomial function, and the parameter p_1 in the threshold function is allowed to vary. As a test, the fraction of data in each sidereal bin, f_i, is fixed to exactly 1/11. These variations of the signal modelling yield an absolute uncertainty on the asymmetry of 0.085%. The uncertainty for each of these sources is added in quadrature, to give the total systematic uncertainty of the fitting procedure of 0.12%. This uncertainty on the measured values of $A(i)$ is found to be independent of sidereal bin, and is added in quadrature to the statistical uncertainty to extract the CPT-violating parameters by fitting to Eq. [4] (see Table I). The measured values of the asymmetries, $A(i)$, are plotted in Fig. [2] and are tabulated in [8].

The limits on Δa_μ are extracted using:

$$A_1 \sin(\Omega\hat{t} + \phi) = \frac{F_{B^0}^{\text{non-osc}} \Delta \Gamma_{s}(\gamma^{\text{do}})_{\beta_\perp}}{\Gamma_{s} \Delta m_s} \times \sqrt{C_1^2 C_2^2 + S_1^2 S_2^2} \sin(\Omega\hat{t} + \delta + \kappa) \Delta a_\perp$$

$$A_0 = -\frac{F_{B^0}^{\text{non-osc}} \Delta \Gamma_{s}(\gamma^{\text{do}})_{\beta_\parallel}}{\Gamma_{s} \Delta m_s} \left[\Delta a_T - C_\alpha S_{\chi}(\beta^\text{do})_z \Delta a_Z \right]$$

where angle brackets denote average values. The $F_{B^0}^{\text{non-osc}}$ are the raw asymmetry (Eq. 5) is extracted by fitting the $M(K^+K^-\pi^\pm)$ distribution of the $\mu^\pm D^\pm_s$ candidates using a χ^2 minimization. The fit is performed simultaneously, using the same models, on the sum and the difference of the $M(K^+K^-\pi^\pm)$ distribution of N_+ candidates and N_- candidates. The functions used to model the two distributions are

$$W_{\text{sum}} = W_{D_+} + W_D + W_{cb} + W_{pt}$$

$$W_{\text{diff}} = A W_{D_+} + A_D W_D + A_{cb} W_{cb} + A_{pt} W_{pt}$$

where $W_{D_+}, W_D, W_{cb},$ and W_{pt} describe the distribution of the D^+_s and D^\pm mass peaks, the combinatorial background, and the partially reconstructed events, respectively, and the A factors are the corresponding asymmetries which are extracted from the fit. The number of signal events in the sample is $N(D^\pm_s) = 205,865 \pm 626$.

Following previous conventions [16] we shift the origin of the time coordinate to correspond to the vernal equinox of the year 2000. The value of A_1 is extracted by dividing the data into n data sets, each containing a fraction f_i of the data based on the sidereal phase $\Omega\hat{t} + \phi$. In the fit, the parameters that describe the mass distributions W_{sum} and W_{diff} are the same for all sidereal bins, except for A and A_D which may vary with sidereal phase.

The number of sidereal bins used to extract the asymmetry is determined by finding the smallest uncertainty on A_1. By using MC input of asymmetries from 0% to 2% we find that the optimum number of bins is eleven. One of the eleven distributions produced in the fit to the data is shown in Fig. [1].

Systematic uncertainties of the fitting method on the extracted values of A in sidereal bin i, $A(i)$, are evaluated by varying the fitting procedure and are assigned to be half of the maximal variation in the asymmetry. The mass range of the fit is shifted from $1.700 < M(K^+K^-\pi^\pm) < 2.300$ GeV to $1.724 < M(K^+K^-\pi^\pm) < 2.270$ GeV in steps of 6 MeV resulting in an absolute uncertainty on the measured asymmetries of 0.035%. The width of the mass bins is changed between 1 and 12 MeV resulting in an absolute uncertainty of 0.071%. The functions modelling the signal are modified to fit the D^\pm_s and D^\pm mass peaks by single Gaussian functions, the background is fitted by varying between a fourth- and seventh-order polynomial function, and the parameter p_1 in the threshold function is allowed to vary. As a test, the fraction of data in each sidereal bin, f_i, is fixed to exactly 1/11. These variations of the signal modelling yield an absolute uncertainty on the asymmetry of 0.085%. The uncertainty for each of these sources is added in quadrature, to give the total systematic uncertainty of the fitting procedure of 0.12%. This uncertainty on the measured values of $A(i)$ is found to be independent of sidereal bin, and is added in quadrature to the statistical uncertainty to extract the CPT-violating parameters by fitting to Eq. [4] (see Table I). The measured values of the asymmetries, $A(i)$, are plotted in Fig. [2] and are tabulated in [8].

The limits on Δa_μ are extracted using:

$$A_1 \sin(\Omega\hat{t} + \phi) = \frac{F_{B^0}^{\text{non-osc}} \Delta \Gamma_{s}(\gamma^{\text{do}})_{\beta_\perp}}{\Gamma_{s} \Delta m_s} \times \sqrt{C_1^2 C_2^2 + S_1^2 S_2^2} \sin(\Omega\hat{t} + \delta + \kappa) \Delta a_\perp$$

$$A_0 = -\frac{F_{B^0}^{\text{non-osc}} \Delta \Gamma_{s}(\gamma^{\text{do}})_{\beta_\parallel}}{\Gamma_{s} \Delta m_s} \left[\Delta a_T - C_\alpha S_{\chi}(\beta^\text{do})_z \Delta a_Z \right]$$

where angle brackets denote average values. The $F_{B^0}^{\text{non-osc}}$
factor is the fraction of $D^\pm \to \phi \pi^\pm$ decays for which an observed B_s^0 has the same flavor as at birth \cite{11}. Combining the fraction of B_s^0 decays in the sample and the 50% dilution factor described earlier gives $F_{\text{mono-osc}} = 0.465$. Limits are extracted from the probability distribution which is given by $\exp(-\chi^2/2)$ where χ^2 is the chi-square as a function of A_1, A_0 and δ using Eq. 6. Since we are setting limits, the probability distribution will be characterized by two quantities, the most probable value of A_1 and the 95% upper limit (UL) which is extracted by integrating the normalized probability distribution at the value of δ that gives the most conservative limit. To extract limits, we measure the average values of $\langle \gamma_{00} \rangle = (E_{p0})/m_{p0}, \langle \delta_{00} \rangle = (p_z), \langle \delta_{00} \rangle = (p_z)/m_{p0}$ where $\langle p_z \rangle$ is the average momentum in the z-direction and $\langle E_{p0} \rangle$ is the average energy of the B_s^0 meson. The average momentum of the μD_s^+ candidates is measured using sidereal subtraction. The signal region is $1.92 < M(K^+K^-\pi^-) < 2.00$ GeV and the sideband regions are $1.75 < M(K^+K^-\pi^-) < 1.79$ GeV and $2.13 < M(K^+K^-\pi^-) < 2.17$ GeV, and the average is $\langle p \rangle = 21.41 \pm 0.03$ GeV. This momentum needs to be corrected for the missing neutrino in the decay using a k-factor correction. These k-factors are taken from Ref. 17 and applied to give a momentum of $\langle p \rangle = 25.3$ GeV. The systematic uncertainty on $\langle p \rangle$ of 1.6 GeV is obtained from the difference between the momentum extracted using sidereal subtraction and using a weighted average of the number of signal events in momentum bins which is then added in quadrature to the uncertainty due to the k-factors. The effect of possible reconstruction variations in the x and y directions are found to be less than 1%. If we vary the number of sidereal bins the most probable value of A_1 varies by 8%. These variations are added in quadrature as the relative systematic uncertainty on the value of A_1.

The final results are obtained by scaling the probability distributions obtained for A_0, A_1 with the multiplicative factors given in Table I. The systematic uncertainties on the multiplicative factors, the number of sidereal bins, and reconstruction effects are included by convoluting the probability distribution with a Gaussian function with the width given by the sum in quadrature of the systematic uncertainties. We obtain a 95% upper limit (UL) of $\Delta a_\perp < 1.2 \times 10^{-12}$ GeV. The most probable values of δ and Δa_\perp are $\delta = 4.901$ and $\Delta a_\perp = 5.7 \times 10^{-13}$ GeV.

The limit on $\Delta a_T - C_\alpha S_\chi \beta_{\bar{\alpha}0}^0 \Delta a_Z$ is obtained from a fit to the asymmetries using Eq. 6. This results in a value of $A_0 = (-0.40 \pm 0.31)\%$. In this case the systematic uncertainties on the measured values of $A(i)$ are assumed to be 100% correlated between sidereal bins to obtain the most conservative limits and are added to the statistical uncertainty obtained from the fit. Using Eq. 10, we obtain $\Delta a_T - C_\alpha S_\chi \beta_{\bar{\alpha}0}^0 \Delta a_Z = \Delta a_T - 0.396 \Delta a_Z = (1.5 \pm 1.2) \times 10^{-13}$ GeV resulting in a two sided 95% confidence interval $-0.8 < \Delta a_T - 0.396 \Delta a_Z < 3.9 \times 10^{-13}$ GeV.

We did a cross check using the periodogram methodology \cite{19} which sees no anomalous behavior for the frequency 1/sidereal day \cite{8}.

For CPTV to explain the difference between the like-sign dimuon asymmetry \cite{23} and the SM requires that $(\Delta a_T - 0.396 \Delta a_Z)$ to be of the order of 10^{-12} GeV \cite{25}. These limits imply that CPT violation is unlikely to contribute a significant fraction of the observed dimuon charge asymmetry, and that other explanations need to be sought.

In conclusion, we have carried out the first search for CPT-violating effects exclusively in the $B_s^0 - \bar{B}_s^0$ oscillation system via semileptonic decays of the B_s^0 mesons. We find no significant evidence for CPT-violating effects.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
Parameter & Value & Ref. \\
\hline
A_0 & $(-0.40 \pm 0.31)\%$ & Eq. 6 \\
A_1 & $(0.87 \pm 0.45)\%$ & Eq. 6 \\
ϕ & -2.28 ± 0.51 & Eq. 6 \\
\hline
m_{p0}^2 & (5.36677 ± 0.00024) & GeV & Eq. 18 \\
Δm_s & $(17.761 \pm 0.022) \times 10^{12}$ & fs^{-1} & Eq. 18 \\
$\Delta \Gamma_s/\Gamma_s$ & (0.138 ± 0.012) & & Eq. 18 \\
$F_{\text{mono-osc}}^{B_s^0}$ & (0.465 ± 0.017) & & Eq. 13 \\
p_{α} & (17.8 ± 1.6) & GeV & & \\
p & (25.3 ± 2.3) & GeV & & \\
Proton beam dir$^n \alpha$ & 219.53$^\circ$ & & & \\
Colatitude χ & 48.17$^\circ$ & & & \\
\hline
\end{tabular}
\caption{Parameters and uncertainties in the extraction of the CPT-violating parameters. The uncertainties on A_0, A_1 and ϕ are fit uncertainties and are dominated by the statistical uncertainty of the raw asymmetries. All other uncertainties are systematic.}
\end{table}
and place limits on the size of the Lorentz violating effects, Δa_μ. These limits constrain a linear combination of the Lorentz-violating coupling constants a_μ^n for the b and s valence quarks in the B_s^0 meson that are different from the linear combinations of valence quarks in the B^0 [11] or K^0 [12] mesons, and therefore further constrain the possible separate values of the three coefficients a_μ^b, a_μ^s, and a_μ^d. We find 95% confidence intervals for the flavor-dependent coefficients $\Delta a_\mu < 1.2 \times 10^{-12}$ GeV and $-0.8 < \Delta a_T - 0.396 \Delta a_Z < 3.9 \times 10^{-13}$ GeV.

We thank A. Kostelecký for valuable conversations during the course of this work. We also thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission and National Center for Scientific Research/National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation, National Research Center “Kurchatov Institute” of the Russian Federation, and Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology and Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy and Department of Science and Technology (India); Administrative Department of Science, Technology and Innovation (Colombia); National Council of Science and Technology (Mexico); National Research Foundation of Korea (Korea); Foundation for Fundamental Research on Matter (The Netherlands); Science and Technology Facilities Council and The Royal Society (United Kingdom); Ministry of Education, Youth and Sports (Czech Republic); Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research) and Deutsche Forschungsgemeinschaft (German Research Foundation) (Germany); Science Foundation Ireland (Ireland); Swedish Research Council (Sweden); China Academy of Sciences and National Natural Science Foundation of China (China); and Ministry of Education and Science of Ukraine (Ukraine). We also acknowledge support from the Indiana University Center for Spacetime Symmetries (IUCSS).

[6] This is the convention of the definition of $\Delta \Gamma_s$ so that it is positive in the standard model.
AUXILIARY MATERIAL

To appear as an Electronic Physics Auxiliary Publication (EPAPS)

COORDINATE SYSTEM

We choose \((T, X, Y, Z)\) as coordinates in the standard Sun-centered frame with \(T\) being the time coordinate, the rotation axis of the Earth taken as the choice for the \(Z\)-axis and \(X(Y)\) is at right ascension 0\(^\circ\) (90\(^\circ\)) (c.f. Ref. [7] of the paper). This coordinate system is illustrated in Fig. 3.

MEASURED ASYMMETRIES

The measured asymmetries, \(A(i)\), used to extract the limits are given in Table II.

<table>
<thead>
<tr>
<th>Asymmetry</th>
<th>Sidereal Phase</th>
<th>Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(1))</td>
<td>0 (\rightarrow) 2(2(\pi))/11</td>
<td>+0.74 \pm 1.03</td>
</tr>
<tr>
<td>(A(2))</td>
<td>(2(\pi))/11 (\rightarrow) 2(2(\pi))/11</td>
<td>+0.15 \pm 1.03</td>
</tr>
<tr>
<td>(A(3))</td>
<td>2(2(\pi))/11 (\rightarrow) 3(2(\pi))/11</td>
<td>-0.20 \pm 1.02</td>
</tr>
<tr>
<td>(A(4))</td>
<td>3(2(\pi))/11 (\rightarrow) 4(2(\pi))/11</td>
<td>+0.23 \pm 1.01</td>
</tr>
<tr>
<td>(A(5))</td>
<td>4(2(\pi))/11 (\rightarrow) 5(2(\pi))/11</td>
<td>-0.86 \pm 1.02</td>
</tr>
<tr>
<td>(A(6))</td>
<td>5(2(\pi))/11 (\rightarrow) 6(2(\pi))/11</td>
<td>-1.14 \pm 1.02</td>
</tr>
<tr>
<td>(A(7))</td>
<td>6(2(\pi))/11 (\rightarrow) 7(2(\pi))/11</td>
<td>-0.45 \pm 1.02</td>
</tr>
<tr>
<td>(A(8))</td>
<td>7(2(\pi))/11 (\rightarrow) 8(2(\pi))/11</td>
<td>-1.93 \pm 1.03</td>
</tr>
<tr>
<td>(A(9))</td>
<td>8(2(\pi))/11 (\rightarrow) 9(2(\pi))/11</td>
<td>-0.55 \pm 1.03</td>
</tr>
<tr>
<td>(A(10))</td>
<td>9(2(\pi))/11 (\rightarrow) 10(2(\pi))/11</td>
<td>-1.11 \pm 1.03</td>
</tr>
<tr>
<td>(A(11))</td>
<td>10(2(\pi))/11 (\rightarrow) (2(\pi))</td>
<td>+0.68 \pm 1.03</td>
</tr>
</tbody>
</table>

PERIODOGRAM ANALYSIS

As a cross check to fitting the data for a periodic signal, we also use the periodogram [18] method to measure the spectral power of a signal over a large range of frequencies. The spectral power at a test frequency \(\nu\) is

\[
P(\nu) \equiv \frac{\left[\sum_{j=1}^{N} w_j \exp (-2\pi i \nu \hat{t}_j) \right]^2}{N \sigma_w^2},
\]

where the data has \(N\) measurements each of weight \(w_j\) where the weight is the probability that the event is a signal event with a variance \(\sigma_w\). The weight for each event depends on \(Q_j \cos \theta_j\) and \(M(K^+K^-\pi^{\pm})\) for the event and is based on the fit to Eq. 7: \(w_j = Q_j \cos \theta_j W_{D_j}[M(K^+K^-\pi^{\pm})]/W_{\text{sum}}[M(K^+K^-\pi^{\pm})]\). In the absence of an oscillatory signal, the probability that \(P(\nu)\) at frequency \(\nu\) would exceed an observed value \(S\) is \(P(\nu) > S = \exp(-S)\).

The spectral power of this data sample is \(P(\text{one sidereal day}) = 0.65\). The probability of obtaining a value of \(P\) greater than this is 52\% which is consistent with no signal. The spectral power values for periods from 0.5 to 1.5 solar days in steps of 1 solar day/1000 are shown in Fig. 3. Sixty percent of these measurements are greater than the spectral power at one sidereal day. The 95\% UL is obtained by injecting simulated signals into the data and determining the probability distribution of the spectral power as a function of the injected signal \(A_1\). The resulting 95\% UL on \(A_1\) is 1.03\%. This converts to a 95\% UL of \(\Delta m_{\perp} < 6.9 \times 10^{-13}\) GeV which is comparable to that obtained from the analysis of the amplitudes.
FIG. 3. Illustrations of the coordinate systems used in this analysis. (a) The small rectangle represents the position of the D0 detector on the earth. (b) Orbit of Earth in Sun-based frame (based on Fig. 1 from Ref. [7]).

FIG. 4. The periodogram for the B_0^s data sample over the range of 0.5 days to 1.5 days in steps of (1 day/1000). The red star indicates the spectral power calculated at one sidereal day.