Dark Matter searches at ATLAS
IX International Conference on Interconnections between Particle Physics and Cosmology
Dark Matter

• ample evidence for existence of dark matter

• stable, neutral and weakly interacting massive particle (WIMP) might be best candidate
 → need to go beyond Standard Model

• no unambiguous direct evidence so far

• complement direct detection limits at the LHC
ATLAS searches

- **general mono-X+ E_T^{miss} strategy**
 - invisible DM particles escape detection
 - tag events using recoil object(s) X (Standard Model particle from ISR)
 - measure E_T^{miss}
 → infer DM candidate
 - variety of X’s under investigation
ATLAS searches

- **general mono-X + E_T^{miss} strategy**
 - effective field theory (EFT)
 - approximation of contact $qq\chi\chi$ interaction through heavy mediator
 - agnostic search, suited for comparison to other searches
 - poor approximation when interaction’s momentum transfer larger than intermediate state’s mass
 - results parameterised by DM scale (M_χ) and interaction strength (M^*)

- different recoil objects probe different operators

<table>
<thead>
<tr>
<th>Name</th>
<th>Operator</th>
<th>Type of interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>$\frac{m_q^2}{M_*^2}\bar{\chi}q\hat{q}q$</td>
<td>Scalar, WIMP-quark</td>
</tr>
<tr>
<td>D5</td>
<td>$\frac{1}{M_*^2}\bar{\chi}\gamma^\mu q\gamma^\mu q$</td>
<td>Vector</td>
</tr>
<tr>
<td>D8</td>
<td>$\frac{1}{M_*^2}\bar{\chi}\gamma^\mu\gamma^5 q\gamma_\mu\gamma^5 q$</td>
<td>Axial-vector</td>
</tr>
<tr>
<td>D9</td>
<td>$\frac{1}{M_*^2}\bar{\chi}\sigma^{\mu\nu} q\sigma_{\mu\nu} q$</td>
<td>Tensor</td>
</tr>
<tr>
<td>D11</td>
<td>$\frac{\alpha_s}{(4\pi M_*^2)^3}\bar{\chi}q G_{\mu\nu} \bar{G}_{\mu\nu}$</td>
<td>Scalar, WIMP-gluon</td>
</tr>
<tr>
<td>C1</td>
<td>$\frac{m_q^2}{M_*^2}\bar{\chi}q\hat{q}q$</td>
<td>Scalar, WIMP-quark</td>
</tr>
<tr>
<td>C5</td>
<td>$\frac{\alpha_s}{4M_*^2}\bar{\chi}\gamma^\mu q G_{\mu\nu} \bar{G}_{\mu\nu}$</td>
<td>Scalar, WIMP-gluon</td>
</tr>
</tbody>
</table>
ATLAS searches

- **mono-jet + \text{E}_T^{\text{miss}}** \textcolor{red}{(arXiv:1502.01518, submitted to EPJC)}
 - event selection
 - central leading jet with \(p_T > 120 \) GeV and \(p_T > 0.5 \cdot \text{E}_T^{\text{miss}} \)
 - 9 signal regions with \(\text{E}_T^{\text{miss}} \) thresholds from 150 to 700 GeV
 - jet and \(\text{E}_T^{\text{miss}} \) back to back / recoiling
 \(\Delta \phi(\text{sel. jets, E}_T^{\text{miss}}) > 1.0 \)
 - lepton and isolated track veto
 - main background
 - \(Z(\nu\nu) + \) jets, constrained using
 \(W(l\nu) \) and \(Z(l\ell) \) control regions
 - \(W(l\nu) + \) jets, mostly when \(l=\tau \)
ATLAS searches

- **mono-jet + E_T^{miss}** (arXiv:1502.01518, submitted to EPJC)
 - all measurements are consistent with SM
 - limits for six EFT operators (D1, D5, D8, D9, D11, C5)
 - most sensitive signal region is used in each case
 - truncation procedure applied to ensure EFT validity (simplest: only use events where $Q_{\text{tr}} < M_{\text{med}}$)
 - complementarity of direct/indirect detection and colliders → each experiment has its strength
ATLAS searches

- **mono-jet + \(E_T \text{miss} \)** (arXiv:1502.01518, submitted to EPJC) (ATL-PHYS-PUB-2014-007)
 - simplified model results also available
 - more model parameters
 - complete description for physics at the LHC

- improved sensitivity expected with first months of LHC run 2
- stronger focus on simplified models in run 2
ATLAS searches

 - event selection
 - high-energy photon
 - large E_T^{miss}
 - no leptons, at most one jet
 - main background
 - $Z(\nu\nu) + \gamma$
 - $W\gamma$ / $Z\gamma$ with lost leptons
 - W / Z with leptons / jets misidentified as γ
 - estimated via dedicated control regions
ATLAS searches

 - all measurements are consistent with SM
 - truncation procedure applied to ensure EFT validity
 - limits for three EFT operators \((D5, D8, D9)\)
ATLAS searches

 - simplified model with Z'-like mediator
ATLAS searches

 - event selection
 - very central, large-radius jet with $p_T > 250$ GeV, 50 GeV < m_j < 120 GeV, momentum balance of subjets
 - two signal regions with $E_{T\text{miss}} > 350 / 500$ GeV
 - max. one narrow jet with $p_T > 40$ GeV
 - lepton and photon veto
 - main background
 - $Z(\nu\nu) +$ jets
 - $Z(ll) +$ jets and $W(l\nu) +$ jets, with lost lepton
ATLAS searches

 - all measurements are consistent with SM
 - limits for four EFT operators (C1, D1, D5, D9)
ATLAS searches

mono-W/Z boson (leptonic)
- event selection W
 - one high-p_T lepton
 - E_T^{miss}
 - large m_T, incompatible with directly produced W
- event selection Z
 - two leptons with invariant mass consistent with Z
 - large E_T^{miss}
 - jet and third-lepton vetoes

(arXiv:1404.0051, PRD 90, 012004 (2014))
Dark Matter searches at ATLAS

IX International Conference on Interconnections between Particle Physics and Cosmology

ATLAS searches

 - main background
 - \(W: \ W(l\nu) \) tail, \(Z(ll) \) lost lepton, leptonic taus in \(W(\tau\nu), \ Z(\tau\tau), \) diboson
 - \(Z: \) diboson

\[\int L \, dt = 20.3 \text{ fb}^{-1} \]

\[L = 20.3 \text{ fb}^{-1} \]

\[\ell s = 8 \text{ TeV} \]

\[m_{\tau} = 200 \text{ GeV} \]

Data/MC

\[E_{T}^{\text{miss}} \text{ [GeV]} \]

\[50 \text{ GeV} \]

\[0 \text{ to } 500 \text{ GeV} \]
ATLAS searches

- all measurements are consistent with SM
- limits for three EFT operators (D₁, D₅(c/d), D₉)
ATLAS searches

 - simplified model with “b-flavoured” DM proposed to explain gamma ray excess from galactic centre seen by Fermi-LAT and interpreted as DM annihilating to b quark pairs

- **event selection**
 - four signal regions with varying jet/b-jet multiplicity, 0/1 lepton, \(E_T^{\text{miss}} > 200 - 300 \) GeV, kinematic cuts to reduce SM top pairs

- **main background**
 - top-antitop-quark pairs estimated using dedicated control regions
 - single top production, W/Z + jets
ATLAS searches

 - all measurements are consistent with SM
 - limits for three EFT operators (C_1, D_1, D_9)
 - D_1 limits in top-quark SR better than in mono-jet, as scalar operators proportional to quark mass
 - simplified model excludes mediator masses between 300 and 500 GeV for WIMP mass around 35 GeV
ATLAS searches

- **Higgs (invisible)**
 - $V(jj/ll) + H^{inv}$
 - Higgs can decay into pair of DM particles if kin. allowed
 - selecting hadronic $W/Z + \text{large } E_T^{\text{miss}}$
 - six SRs in #jets (2/3) and #b-tags (0/1/2)
 - upper limit on BR H^{inv} set at 78% for $V(jj)$ and 75% for $V(ll)$
 - **VBF H^{inv}**
 - more sensitive
 - selecting two separated jets + E_T^{miss}
 - upper limit on BR H^{inv} set at 29%

(\text{arXiv:1504.04324}, \text{submitted to EPJC})
(\text{arXiv:1402.3244}, \text{submitted to PRL})
(\text{ATLAS-CONF-2015-004})
Conclusion

- broad variety of DM searches in ATLAS

- all data consistent with SM expectations
 ➔ limits on New Physics using both EFT approach and simplified models

- “Mono-X” searches set upper limits on effective scale of the DM-SM interaction as function of WIMP mass
 (for given operators limits range up to above 1 TeV for low WIMP mass)

- strong limits, compared to direct detection experiments, for low WIMP masses in the spin-independent case, and over the whole covered mass range for the spin-dependent case

- sensitivity increases significantly with 13 TeV