Abstract

A scale invariant Goldstino theory coupled to supergravity is obtained as a standard supergravity dual of a rigidly scale–invariant higher–curvature supergravity with a nilpotent chiral scalar curvature. The bosonic part of this theory describes a massless scalaron and a massive axion in a de Sitter Universe.
1 Introduction

Motivated by single–field inflationary scenarios [1], several sgoldstinoless [2–5] supergravity extensions of inflationary models were recently considered [6–11] (for a recent review see [12]). Interestingly enough, in [7,11] many of these models were linked to pure higher–derivative supergravity with a nilpotency constraint on the scalar curvature chiral superfield R. These include the Volkov–Akulov–Starobinsky model [7] and the pure Volkov–Akulov theory coupled to supergravity [7]. Recently, the full component form of the latter theory was presented in [13,14].

Along these lines, various authors considered R^2 theories of gravity [15] and their supergravity embeddings [15,16], which possess a rigid scale invariance and naturally accommodate a de Sitter Universe. It is the aim of this note to give the sgoldstinoless version of these theories, which naturally combines an enhanced rigid scale invariance and a de Sitter geometry. This theory also emerges as a limiting case of the inflationary scenario.

2 Scale–Invariant Nilpotent Supergravity

The superspace action density of the scale–invariant theory that we consider is

$$\mathcal{A} = \frac{\mathcal{R}\mathcal{R}}{g^2} \bigg|_D + \sigma \mathcal{R}^2 S_0 \bigg|_F ,$$

where g is a dimensionless parameter, is invariant under the rigid scale transformations

$$\mathcal{R} \to e^{-\lambda} \mathcal{R} , \quad S_0 \to e^{-\lambda} S_0 , \quad \sigma \to e^{\lambda} \sigma .$$

This theory is equivalent to the theory considered in [16], supplemented with the nilpotency constraint

$$\mathcal{R}^2 = 0 ,$$

which is enforced by the chiral Lagrange multiplier σ present in the second term of eq. (2.1).

Using manipulations similar to those originally introduced in [17], we can now turn this model into a scale–invariant version of the Volkov–Akulov model coupled to standard supergravity. To this end, we first use the superspace identity

$$\sigma \mathcal{R}^2 S_0 + h.c. \bigg|_F = \left(\sigma \frac{\mathcal{R}}{S_0} + \sigma \frac{\mathcal{R}}{S_0} \right) S_0 \overline{S}_0 \bigg|_D + \text{tot. deriv.} ,$$

We use throughout the conventions of [1].
and then introduce two Lagrange chiral superfield multipliers \(T \) and \(S \) according to

\[
A = \left(\sigma S + \bar{\sigma} \bar{S} + \frac{SS}{g^2} \right) S_0 \bar{S}_0 \bigg|_D - T \left(\frac{R}{S_0} - S \right) S_0^3 + \text{h.c.} \bigg|_F .
\]

(2.5)

The final result is the standard supergravity action density

\[
A = - \left(T + \bar{T} - \sigma S - \bar{\sigma} \bar{S} - \frac{SS}{g^2} \right) S_0 \bar{S}_0 \bigg|_D + T S S_0^3 + \text{h.c.} \bigg|_F + \text{tot. deriv.}
\]

(2.6)

A final shift and a redefinition according to

\[
T \rightarrow T + \sigma S , \quad X = \frac{S}{g}
\]

(2.7)

yield the standard supergravity action density

\[
A = - (T + \bar{T} - X \bar{X}) S_0 \bar{S}_0 \bigg|_D + W(T, X) S_0^3 + \text{h.c.} \bigg|_F ,
\]

(2.8)

where

\[
W(T, X, \sigma) = g T X + g^2 \sigma X^2 .
\]

(2.9)

This is tantamount to the scale–invariant superpotential

\[
W(T, X) = g T X ,
\]

(2.10)

where \(X \) is subject to the nilpotency constraint

\[
X^2 = 0 ,
\]

(2.11)

so that \(X \) describes the goldstinoless Volkov–Akulov multiplet \([2–5] \). The corresponding bosonic Lagrangian,

\[
\mathcal{L} = \frac{R}{2} - \frac{3}{(T + \bar{T})^2} |\partial T|^2 - g^2 \frac{|T|^2}{3(T + \bar{T})^2} ,
\]

(2.12)

is a special case of the result displayed in \([7]\), so that it describes an \(SU(1,1)/U(1) \) Kählerian model of curvature \(-2/3\) with a scale–invariant positive potential. As a result, in terms of the canonical variable

\[
T = e^{\phi} \sqrt[3]{\frac{2}{3}} + i a \sqrt[3]{\frac{2}{3}} ,
\]

(2.13)

one finds

\[
\mathcal{L} = \frac{R}{2} - \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} e^{-2\phi} \sqrt[3]{\frac{2}{3}} (\partial a)^2 - \frac{g^2}{12} - \frac{g^2}{18} e^{-2\phi} \sqrt[3]{\frac{2}{3}} a^2 .
\]

(2.14)

Note that in the Einstein frame the metric is inert under the scale transformation corresponding to eq. \([22]\), while

\[
\phi \rightarrow \phi + \gamma , \quad a \rightarrow e^\gamma \sqrt[3]{\frac{2}{3}} a .
\]

(2.15)
3 de Sitter Vacuum Geometry

Since a is stabilized at zero, this model results in a de Sitter vacuum geometry, with a corresponding scale–invariant realization of supersymmetry breaking induced by the non–linear sgoldstinoless multiplet. The supersymmetry breaking scale M_s^2 is

$$M_s^2 = \frac{g}{2\sqrt{3}} M_{\text{Planck}}^2,$$ \hfill (3.1)

up to a conventional numerical factor. Eq. (2.8) describes the minimal supergravity model that embodies a scale–invariant goldstino interaction and leads unavoidably to a de Sitter geometry. This model involves a single dimensionless parameter g, which determines its positive vacuum energy according to

$$V = \frac{g^2}{12} M_{\text{Planck}}^4.$$ \hfill (3.2)

In contrast, the Volkov–Akulov model coupled to supergravity, depends on the two parameters f and W_0, and consequently leads to a vacuum energy

$$V = \frac{1}{3} |f|^2 - 3 |W_0|^2$$ \hfill (3.3)

of arbitrary sign.

Acknowledgments

We would like to thank I. Antoniadis, E. Dudas, R. Kallosh, A. Kehagias, A. Linde and A. Van Proeyen for collaboration on related issues. S.F. is supported in part by INFN (I.S. GSS). M.P. is supported in part by NSF grant PHY–1316452, while A.S. is supported in part by Scuola Normale and by INFN (I.S. Stefi).

References

