Search for Exotic Physics Beyond the Standard Model with the ATLAS Detector

Yury Smirnov
(NRNU MEPhI, Moscow)
on behalf of the ATLAS Collaboration

17th Lomonosov Conference on Elementary Particle Physics
20-26 August 2015
Outline: ATLAS searches for Exotic physics

- Very extensive program: about 50 searches with full 2012 ($\sqrt{s} = 8$ TeV) dataset;

- Dibosons, multileptons, extra dimensions, heavy quarks, top, composite Higgs, jets + dark matter, unconventional signatures, exotic Higgs, W', Z', lepton flavor violation, …;

- Only the following searches are covered in this talk:

 - Photon+missing E_T
 - Heavy Majorana neutrino
 \[Z' \rightarrow \tau^+ \tau^- \]
 - Long-lived neutral particles → displaced lepton jets
 \[X \rightarrow t\bar{t} \rightarrow W^+bW^-\bar{b} \]
 \[H \rightarrow Z_{\text{dark}}Z_{\text{dark}} \rightarrow 4l^\pm \]
 - High-mass diphoton resonances
 - Multi-charged particles
 - Low-scale gravity signatures

 | Searches with slight excesses in Run-I data: |
 | Events with b-jets and pair of same-sign leptons |
 | \[X \rightarrow WW/WZ ZZ \rightarrow jj \] |

 | Several preliminary plots from early Run-II searches |
- General-purpose detector with near 4π coverage in solid angle;
- Inner tracking detector, calorimeters system, muon spectrometer;
- Physics with final states: e^\pm, μ^\pm, jets, γ, missing transverse momentum (E_T), …
γ+MET search

- Search for events with a high-p_T photon and large E_T with no e^\pm or μ^\pm;
- Main background source is $Z(\to \nu\bar{\nu}) + \gamma_{ISR}$;
- Results are interpreted in terms of limits on the parameters of large extra dimension theories, WIMP dark matter and supersymmetric quarks.

\[y \]

\begin{align*}
\text{ATLAS} & \\
\text{Data} & \\
\gamma + Z(\to \nu\bar{\nu}) & \\
\gamma + W(\to \ell\nu) & \\
W/Z + \text{jet}, \text{top}, \text{diboson} & \\
\gamma + Z(\to \ell\ell) & \\
\gamma + \text{jet} & \\
\text{uncertainty} & \\
\end{align*}

\begin{align*}
\text{ATLAS} & \\
\text{ADD model, 95\% CL limit} & \\
\text{observed limit (± 1 σ)} & \\
\text{expected ± 1σ} & \\
\text{expected ± 2σ} & \\
\end{align*}

Yury Smirnov
August 20-26 2015
Lomonosov-2015
Heavy Majorana neutrino search

- $\nu \equiv \bar{\nu}$?
- Search for events with exactly two same-sign same-flavor leptons and at least two jets;
- Main background source is WZ and ZZ events; processes with two opposite-sign leptons with the charge of one of them incorrectly measured in the detector: $t\bar{t}$, $W^\pm W^\mp$, Z;
- Results are interpreted in terms of limits on mixing parameters between heavy neutrinos and SM neutrinos (mTISM model) and limits on heavy Majorana neutrino masses (LRSM model).
$Z' \to \tau^+ \tau^-$ search

- Two final state channels: $\tau^\pm \to l^\pm \nu \bar{\nu}$ (leptonic channel, τ_{lep}) and hadronic channel (τ_{had});
- For both channels, the dominant background source is $Z/\gamma^* \to \tau\tau$, estimated from simulation and validated using Z/γ^* decays to electrons and muons in data;
- Limits on the Z' mass for the Sequential Standard Model and non-universal $G(221)$ model.

![Graph and diagram](image-url)
Search for long-lived neutral particles decaying into displaced lepton jets (LJs)

- Unstable hidden states → hidden particles (γ_{dark}) with non-negligible lifetime due to their weak interaction → visible final states (collimated jet-like structures containing pairs of e^\pm or μ^\pm or π^\pm);

- Background:
 - SM processes w/ or w/o jets: $W +$ jets, $Z +$ jets, $t\bar{t}$, ... ⇒ data-driven matrix method;
 - Cosmic-ray muons + detector material → background to LJ TYPE1 and TYPE2 ⇒ empty bunches analysis;

- Limits on $\sigma \times BR$ for non-SM Higgs boson decays to dark photons and LJs (FRVZ model); limits on kinetic mixing parameter ϵ as $f(m_{\gamma_{dark}})$.

Yury Smirnov
August 20-26 2015
Lomonosov-2015
Top quarks: the most massive SM fundamental particles, can have large coupling to heavy Higgs bosons;

General search; composite Higgs and topcolour-assisted technicolor scenarios propose mechanisms for EWSB, incorporating X with large coupling to $t\bar{t}$ (w.r.t. lighter quarks);

One W boson decays leptonically, the other one decays hadronically \Rightarrow “lepton-plus-jets events”;

Events signature: 1 isolated e^\pm/μ^\pm, E_T, hadronic jets consistent with having originated from a b-quark;

Background to the $m_{t\bar{t}}$ spectrum: $W +$ jets and $t\bar{t}$ processes \Rightarrow data- and MC-driven estimations;

Results are interpreted as mass limits on the Z', heavy Kaluza-Klein gluons, Kaluza-Klein excitations of the graviton, and color-singlet scalar particles.
Search for new light gauge bosons

in $H \rightarrow Z_{dark}Z_{[dark]} \rightarrow 4l^\pm (e^\pm$ or μ^\pm)

- $H \rightarrow Z_{dark}Z$ search: test for excess an invariant mass spectrum of two leptons, not associated with Z; backgrounds are ZZ^*, $t\bar{t}$ and $Z +$ jets ⇒ data-driven methods;

- $H \rightarrow Z_{dark}Z_{dark}$ search: look for a small difference in invariant masses of pairs of two same-flavor opposite-charge leptons; backgrounds are $H \rightarrow ZZ^* \rightarrow 4l$, $ZZ^* \rightarrow 4l$, WW, WZ, $t\bar{t}$ and $Z +$ jets processes ⇒ estimated from simulation;

- Interpretation in terms of limits on $\frac{BR(H \rightarrow Z_{dark}Z \rightarrow 4l^\pm)}{BR(H \rightarrow ZZ^* \rightarrow 4l^\pm)}$ vs. m_{Z_d} and 95% CL upper bound on the branching ratio of $H \rightarrow Z_{dark}Z_{dark}$ in the combined $4e + 2e2\mu + 4\mu$ final state;

- $H \rightarrow Z_{dark}Z_{dark}$ search: no significant excess, but two events did pass tight requirements.
Search for high-mass diphoton resonances

- Randall-Sundrum model: solving the SM hierarchy problem assuming an extra spatial dimension; its compactification leads to a Kaluza-Klein tower of gravitons excitations G^*.
- Model phenomenology: the mass of the lightest KK graviton excitation m_{G^*} and the dimensionless coupling to the SM fields k/M_{Pl}.
- Diphoton trigger and two isolated high-E_T photons.
- Dominant background is SM processes with prompt $\gamma\gamma$ production: events with $\gamma +$ jet or jet+jet, where one or two jets are reconstructed as photons. Irreducible bkg contribution is obtained from MC, a reducible one – from data.

- Limits on $\sigma \times BR(G^* \rightarrow \gamma\gamma)$ and m_{G^*}.

“Blue-sky” search for heavy long-lived particles with $2 \leq |q|/e \leq 6$;

Events with at least one muon-like particle with high ionization loss along its trajectory;

Main background: high-p_T muons \Rightarrow estimated with data-driven matrix method;

Limits on σ and mass as a function of charge.
Search for low-scale gravity signatures

- Quantum gravity \rightarrow hierarchy problem \rightarrow existence of non-perturbative gravitational states: micro black holes, string balls, higher-dimensional branes;

- Events with multiple high-p_T jets: scalar sum of p_T of the jets in the event $H_T > 1.5$ TeV & $N_{jet} \geq 3$;

- Background: small contribution from SM QCD processes like $t\bar{t}$, $\gamma/W/Z$+jets \Rightarrow fit-based data-driven technique;

- Upper limits on visible cross-section for different jet multiplicities and lower mass limits on black holes and string balls masses.
Analysis of events with b-jets and pair of same-sign leptons

- Sensitive to models postulating vector-like quarks existence, enhancement of $t\bar{t}t\bar{t}$ production cross-section, chiral 4th generation quarks existence, tt production;

- $t\bar{t}t\bar{t}$ cross-section enhancement: via sgluon pair production & pair production of Kaluza-Klein excitations of the photon decaying to $t\bar{t}$;

- ≥ 2 same-sign leptons, ≥ 2 jets (at least one should originate from a b-quark) and large \not{E}_T;

- Background: small SM yields from $W^\pm W^\pm jj$, $t\bar{t}W/Z$, $t\bar{t}W^+W^-$, $t\bar{t}H$, W/ZH, ... + instrumental ⇒ data-driven methods.
Search for $X \rightarrow WW/WZ/ZZ \rightarrow jj$

- Two specific benchmark models:
 - Extended Gauge Model (similar to the Sequential Standard Model) $W' \rightarrow WZ$;
 - Kaluza-Klein mode of the bulk Randall-Sundrum graviton $G_{RS} \rightarrow WW/ZZ$;

- Analysis feature: boson jet tagging;

- Analysis signature: two typically p_T-balanced large-radius jets with large momentum & $m_{jj} > 1.05$ TeV;

- Purely data-driven background estimation;

- Results: data excess in all three channels at around 2 TeV; global significance of the discrepancy in the WZ channel (largest deviation) is 2.5σ.

Excess in data!
First look at Run-II data

- Run-II ($\sqrt{s} = 13$ TeV data) is here!
- No complete analyses available yet, some representative plots instead.

Dimuon invariant mass (more info)

Diphoton invariant mass (more info)

Corresponding Run-I result: [arXiv:1504.05511](https://arxiv.org/abs/1504.05511)
First look at Run-II data

- Monojets: E_T in the $W \rightarrow \mu \nu$ CR (more info)
- e-u invariant mass ($Z' \rightarrow e\mu$) (more info)
- Transverse mass ($W' \rightarrow e\nu$) (more info)
- Mono-b: E_T in the $1\mu 0e$ CR (more info)

Corresponding Run-I result: arXiv:1503.04430
Corresponding Run-I result: arXiv:1407.0608
Corresponding Run-I result: arXiv:1407.7494
Corresponding Run-I result: arXiv:1410.4031
... and much more
Exotics “mass reach” summary plot (as of July 2015), …
... the vector-like B quarks search summary and the lifetime limits plots

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/EXOTICS/
THANKS!

And stay tuned for upcoming Run-II ATLAS Exotics results!
The vector-like T quarks search summary

ATLAS Preliminary
Status: March 2015
\[\sqrt{s} = 8 \text{ TeV}, \quad L = 20.3 \text{ fb}^{-1} \]

- 95% CL exp. excl.
- 95% CL obs. excl.

SU(2) (T, B) doub. \quad SU(2) singlet

\begin{align*}
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 350 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 350 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 400 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 400 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 450 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 450 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 500 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 500 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 550 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 550 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 600 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 600 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 650 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 650 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 700 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 700 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 750 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 750 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 800 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 800 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Ht} \\
\text{m}_T &= 850 \text{ GeV} \\
\text{Unphysical} \\
\text{BR} & \rightarrow \text{Wb} \\
\text{m}_T &= 850 \text{ GeV} \\
\text{Unphysical} \
\end{align*}