Tracking performance in ATLAS for Run-2

Alejandro Alonso (Niels Bohr Institute) on behalf of the ATLAS Collaboration

LHCP2015
31 August - 5 September 2015
The ATLAS Detector

- Muon chambers
- Solenoid magnet
- Transition radiation tracker
- Semiconductor tracker
- Pixel detector
- LAr electromagnetic calorimeters
- LAr hadronic end-cap and forward calorimeters
- Tile calorimeters
- Toroid magnets

Dimensions:
- 44m
- 25m
The Inner Detector (ID)

- Reconstruction of charged particles with $|\eta| < 2.5$
 - New Insertable-B layer (IBL)
 - 6.02 M channels
 - Resolution: 8x40 μm (pixel size 50x250 μm)
 - Silicon Pixel detector (Pixel)
 - ~80M channels
 - Resolution: 10x115 μm (pixel size 50x400 μm)
 - Semiconductor tracker (SCT)
 - Silicon microstrip
 - 6M channels
 - Resolution: 17x580 μm
 - Transition Radiation Tracker (TRT)
 - 2mm radius drift tubes + Transition radiation
 - ~350k channels
 - Resolution ~130 μm
 - 2T axial B-field
ID Upgrades

New insertable B-layer (IBL)
- Inner most additional pixel layer (4th) at radius 33 mm from the beam line
- New beampipe
- Preserve tracking with increased luminosity
- Improves vertexing, impact parameter resolution and b-tagging
- 14 staves overlapping in the r - \(\phi\) plane of length 332 mm with 130nm CMOS modules with 2 technologies:
 - 12 planar and 2 x 4 3D modules

Triggers (TRT):
- Gas leaks for the end-caps repaired, new firmware to operate at 100kHz, validity gate, PID optimised

Software:
- Simplified data model, use of EIGEN. Speed up: 4x Run-1

New Diamond Beam monitors (DBM) installed in the Pixel volume
Alignment

- **Track based algorithm**
- **March alignment:** Correct relative movement of big structures
- **June alignment:** Very close to expected performance
 - Beam-spot constraint
 - Improve impact parameter resolution
 - Focused on IBL and Pixel alignment
- **Future plans:**
 - Study weak modes using resonances

ATLAS Preliminary

IBL Planar sensors

\(\sqrt{s} = 13 \text{ TeV} \)

Pixel Barrel

\(\sqrt{s} = 13 \text{ TeV} \)

SCT barrel

\(\sqrt{s} = 13 \text{ TeV} \)
ID performance

✦ IBL simulation in good agreement with data
✦ Pixel, SCT and TRT also in great agreement
Methods:

- **SCT extension Efficiency:**
 Material between SCT and Pixel

- **Photon conversions**
 Sensitive to radiation lengths

- **Hadronic interactions**
 Sensitive to interaction lengths

 Very good position resolution

Studies are progressing rapidly to provide a new detector geometry

IDTR-2015-003 IDTR-2015-004
Impact parameter resolution

- D_0 and Z_0 resolution improved:
 - New IBL
 - Material reduction in the pixel boundaries

- Improved discrimination between primary and secondaries
 - See Minimum Bias results:

The impact parameter resolution has been unfolded to remove the contribution from the vertex resolution.
Vertex efficiency

- Ratio between events with a reconstructed vertex and events with at least 2 tracks
- Beam-induced-background extracted
Vertex resolution

- Estimated by Data/MC studies, differences due to:
 - Description of the sub-detector hit errors
 - Multiple scattering, ionization energy losses
 - Residual misalignment

Primary vertex resolution (x-direction)

Primary vertex resolution (z-direction)

ATLAS Preliminary

$\sqrt{s} = 13$ TeV, 216.9 μb$^{-1}$

Data 15, low-μ

Monte Carlo

ATL-PHYS-PUB-2015-026

IDTR-2015-005
Tracking inside jets

- **Improved during LS1:** tracking in dense environments
- **Neural network** to identify clusters *shared* by more than 1 particle, split them and estimate the position of each one
 - NN introduced in run-1, in run-2 use of NN information use was optimised
- Promising data/MC agreement
- *b*-tagging and τ reconstruction
b-tagging improvements

New multivariate tagger (MV2)

- BDT to combine:
 - Impact parameter
 - Secondary vertex finding algorithm
 - Decay chain multivertex

Better light and c-flavour rejection:

- Low p_T: IBL
- High p_T:
 - Improved reconstruction inside jets
 - b-tagging algorithms optimization

| MV2c20: | Run-2 BDT |
| MV1c: | Run-1 NN |
| Both trained with: |
signal:	b-jets
background:	80% light jets
	20% c-jets

ATL-PHYS-PUB-2015-022

Alejandro Alonso (Niels Bohr Institute)
b-tagging in early data

- Commissioning ongoing with early Run-2 data.
- The modelling of the b-tagging is cross-checked in e-μ ttbar events, with ~70% b-jet purity.
- Jet selection: \(p_T > 20 \text{ GeV}, |\eta| < 2.5 \), leading two jets
- Quite good control of our modelling, so our expectations are close to the reality.

ATL-PHYS-PUB-2015-039/
The Muon Spectrometer

Detect muons with $|\eta| < 2.7$

- Momentum measurement: 3% resolution over a wide p_T range, up to 10% at $p_T \sim 1$ TeV.
- Muon Drift Chambers (MDT) 80 µm, Cathode Strip Chambers (CSC) 60 µm
- Triggering capabilities and 5-10 mm position resolution:
 - Resistive Plate chambers (RPC), Thin Gap Chambers (TGC)

Improvements for Run-2

- Completion and extension of initial design:
 - Added last missing MDTs in transition region: $1.0 < |\eta| < 1.4$
 - 4 supplementary MDT chambers equipped with RPCs to close coverage holes at the bottom of the detector.
- Software:
 - More robust against fakes, better background rejection early in the pattern recognition
 - Improved energy loss calculation in the calorimeters:
 Detailed geometry and improved tune
 20-30 MeV for muons with p_T of 50 GeV.
Muon efficiency

- Muon medium identification algorithm
 - Efficiency over 99%.
 - Excellent agreement with simulation.
 - To be updated with increased statistics

![Graphs showing efficiency and reconstruction efficiency with ATLAS Preliminary data and MC predictions.](image-url)
Muon resolution

MC: detailed material and geometry description. Second order effect corrections for momentum are applied (Derived in Run I and corrected Run 2)

Mass spectrum modelled by a Crystal-Ball convoluted with a Breit-Wigner:

✦ Gaussian component: Detector resolution
✦ Exponential component: Energy loss
✦ Breit-Wigner component: Width of the Z boson

Maximum Likelihood to estimate the mean (scale) and the resolution

ATL-PHYS-PUB-2015-037
Summary and Outlook

✧ IBL:
 ✧ Successfully installed, commissioned and great agreement with expectations

✧ ID Tracking:
 ✧ Improved track reconstruction in dense environments
 ✧ Improved impact parameter resolution
 ✧ Improved vertexing

✧ Flavour tagging:
 ✧ Improved b-tagging performance

✧ Muons:
 ✧ Very high efficiency. Resolution and scale well under control

✧ Detector understanding:
 ✧ Very good agreement in all areas for data and Monte Carlo
Related talks and poster at LCHP

✦ Poster Session:

✦ Yulia Rodina:
 b-tagging performance during LHC Run-II
 with the Insertable B-layer (IBL)

✦ Session SM - QCD - 3:

✦ Stewart Martin-Haugh:
 ATLAS soft QCD
Event Displays
Event display
Event display

First Stable Beams at 13 TeV
Event display
Event display

First Stable Beams at 13 TeV

Run: 266904
Event: 9886561
2015-06-03 10:49:54 CEST
Backup
The Insertable b-layer (IBL)
ID and MS status for Run-2

<table>
<thead>
<tr>
<th>Component</th>
<th>Run-2</th>
<th>Run-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixels</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>SCT</td>
<td>98</td>
<td>99</td>
</tr>
<tr>
<td>TRT</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>MDT</td>
<td>99</td>
<td>99</td>
</tr>
<tr>
<td>CSC</td>
<td>96</td>
<td>98</td>
</tr>
<tr>
<td>RPC</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>TGC</td>
<td>98</td>
<td>98</td>
</tr>
</tbody>
</table>

Approved Plots ATLAS Detector
Alignment

- **Track based algorithm**
- **March alignment**: Correct relative movement of big structures
- **June alignment**: Very close to expected performance
 - Beam-spot constraint
 - Improve impact parameter resolution
 - Focused on IBL and Pixel alignment
- **Future plans**:
 - Study weak modes using resonances
♦ D₀ and Z₀ resolution improved:
 ♦ New IBL
 ♦ Material reduction in the pixel boundaries

♦ Improved discrimination between primary and secondaries
 ♦ See Minimum Bias results:
 ATLAS-CONF-2015-028

♦ Discrepancies:
 ♦ Low p_T: IBL Material description
 ♦ High p_T: misalignments
 ♦ Resolution of individual measurements in the pixel:
 ♦ Longitudinal resolution in MC is superior due to the use of simplified energy deposit model
Vertex reconstruction

- Data recorded 3rd and 4th June 2015.
- ID fully operation
- Solenoid field on
- MBTS trigger used for low mu \((13.8 \text{ nb}^{-1})\)
- Random trigger for high mu \((177.4 \text{ nb}^{-1})\)
- Tracks:
 - \(p_T > 500 \text{ MeV}\)
 - \(|\eta| < 2.5\)
 - Nsilicon hits: 9 if \(|\eta| < 1.65\) or 11 if larger
 - IBL + B-layer hits > 0
 - Pixel holes = 0
 - SCT holes = 0
- 2 Tracks are required to form a vertex candidate

ATL-PHYS-PUB-2015-026
b-tagging improvements

Improved tracking in dense environments

New multivariate tagger (MV2)

- **BDT** to combine:
 - Impact parameter
 - Secondary vertex finding algorithm
 - Decay chain multivertex

Better light and c-flavour rejection:

- **IBL**

- Improved reconstruction inside jets

MV2c20:

- Run-2 BDT
- Trained:
 - signal: b-jets,
 - bkg: 80% light jets, 20% c-jets

MV1c:

- Run-1 NN algorithm

ATL-PHYS-PUB-2015-022