Abstract

- Many proofs of the dark matter (DM) existence; its nature and interactions with Standard Model (SM) particles are still unknown
- At colliders, dark matter particles could be produced in pair and be probed through the production of an associated SM particle with high transverse momentum (p_T)
- Leading to different final states: photon / jet / l^+l^- / Z^0 / Higgs / heavy flavour + missing transverse energy (E_T^{miss})
- Complementary way to probe DM: compare with results from direct and indirect DM searches
- Various models: effective field theories (EFT), simplified model or complete theories e.g. supersymmetry (SUSY)

Three Analyses as Examples

Mono-jet
- Large E_T^{miss} with one central high-p_T jet, well separated from E_T^{miss}
- Lepton veto

Mono-γ
- Large E_T^{miss} with one central high-p_T photon, well separated from E_T^{miss}
- Lepton veto

Mono-Z(II)
- Large E_T^{miss} with a well-identified Z(II), well separated from E_T^{miss}
- Jet veto

Free parameters:
- M and m_h
- Electroweak coupling strengths $k_{1,2}$
- Heavy boson mass m_H
- Mediator type and its parameter: mass M and Γ (related to g_2, g_3)

Simplified Model

Explicit mediator: such as a Z'-like vector mediator

For a given effective operator

Hypothesis:
- $g_2 < M_{med} = M(g_2, g_3)^{1/2}$, where g_2, g_3 are coupling strengths

Remove problem of validity

- m_H and g_2, g_3 need to be tuned

EFT validity truncation:
- Remove events not satisfying $Q_2 < M(g_2, g_3)^{1/2}$

Towards 13 TeV

- LHC started to run at 13 TeV in June
- Studies are ongoing:
 - Mono-γ: Trigger fully efficient in the SR
 - Mono-jet: Good data/MC agreement on E_T^{miss} in CR

General EFT Model

- Define Signal enriched Region (SR)
- Define Control Regions (CR) with certain background processes enriched in order to normalize the MC expectation in the SR
- Validate the background estimation technique in a Validation Region (VR)

Un-blind data in SR to check if a significant excess is observed
- Good data/MC agreement on E_T^{miss} in SR
- Validate the background estimation technique in a Validation Region (VR)

Lightest Neutralino in SUSY: Compelling Candidate to DM

- R-parity conserving simplified SUSY model, mass degenerate 1st and 2nd generation squarks \tilde{q}
- $\Delta M_{\chi_1^0} < 10$ GeV $\rightarrow X + E_T^{miss}$

An EFT Model Inspired by Fermi-LAT Spectrum

- A tentative DM signal at 130 GeV seen in 2012 Fermi-LAT public data
- ATLAS, the nature of this signal can be probed by:
 1. $\geq 200 \text{ GeV}$
 2. High Missing transverse energy
 3. Dominant lepton veto

Various models: effective field theories (EFT), simplified model or complete theories e.g. supersymmetry (SUSY)

Explicit mediator: such as a Z'-like vector mediator

For a given effective operator

Hypothesis:
- $Q_2 < M_{med} = M(g_2, g_3)^{1/2}$, where g_2, g_3 are coupling strengths

Remove problem of validity

- m_H and g_2, g_3 need to be tuned

EFT validity truncation:
- Remove events not satisfying $Q_2 < M(g_2, g_3)^{1/2}$

Towards 13 TeV

- LHC started to run at 13 TeV in June
- Studies are ongoing:
 - Mono-γ: Trigger fully efficient in the SR
 - Mono-jet: Good data/MC agreement on E_T^{miss} in CR