Quarkonium Production in pp and $p+Pb$ Collisions with ATLAS at the LHC

Qipeng Hu

on Behalf of the ATLAS Collaboration

University of Science and Technology of China (USTC)
Quarkonium suppression in A-A collisions due to color screening provides signature of formation of deconfined QGP.

Quarkonium suppression is also observed in p-A collisions due to Cold Nuclear Matter (CNM) effects. The CNM effects must be understood before suppression in A-A collisions can be fully understood.

CNM effects:

- Shadowing + other gluon PDF modification
- Medium-induced gluon radiation
- Absorption of the QQ pair
The ATLAS Detector

Event trigger: di-muon trigger with 2 GeV p_T threshold

Muon candidates:
Successful combinations of ID and MS tracks.

$p+$Pb @ 5.02 TeV, $\int \mathcal{L} dt = 28$ nb$^{-1}$ in 2013
pp @ 2.76 TeV, $\int \mathcal{L} dt = 4.0$ pb$^{-1}$ in 2013

Recent ATLAS Heavy Ion $p+$Pb quarkonium results:
$p+$Pb J/ψ

ψ(nS)$\rightarrow\mu^+\mu^-$

Y(nS)$\rightarrow\mu^+\mu^-$

New ψ(nS)$\rightarrow\mu^+\mu^-$

Revised ψ(nS)$\rightarrow\mu^+\mu^-$

Y(nS)$\rightarrow\mu^+\mu^-$
Correct every event for acceptance and efficiencies.

Prompt \(\psi(nS)\):
- Direct production
- Feed-down contribution

Non-prompt \(\psi(nS)\):
- Decays from B hadrons

\[
\tau = \frac{L_{xy} m_{\mu\mu}}{p_T^{\mu\mu}}
\]

\(Y(2S)\) and \(Y(3S)\) are combined as \(Y(2S+3S)\).
Forward to Backward Ratio

ATLAS
2013 p+Pb, 28.1 nb⁻¹
$|S_{NN}| = 5.02$ TeV

Prompt J/ψ
$8 < p_T < 30$ GeV

Nonprompt J/ψ
$8 < p_T < 30$ GeV

- **(Left)** Prompt J/ψ R_{FB}
- **(Right)** Non-prompt J/ψ R_{FB}

Prompt J/ψ R_{FB} is compatible with both EPS09 models.

$R_{FB}(p_T, y^*) \equiv \frac{d^2\sigma(p_T, y^* > 0)/dp_Tdy^*}{d^2\sigma(p_T, y^* < 0)/dp_Tdy^*}$.

y^*: CM rapidity being positive in forward (proton beam direction)
Nuclear Modification Factor — $\psi(nS)$

$$R_{pPb} = \frac{1}{A_{pPb}} \frac{d^2\sigma_{\psi}^{p+Pb}}{dy^* dp_T} / \frac{d^2\sigma_{\psi}^{pp}}{dy dp_T},$$

pp reference is constructed using interpolations

- **(Top)** Prompt J/ψ
- **(Middle)** Non-Prompt J/ψ
- **(Bottom)** Prompt $\psi(2S)$

No significant suppression or enhancement for the kinematics range of $|y^*| < 1.5$ and $10 < p_T < 30$ GeV
Nuclear Modification Factor — $\Upsilon(1S)$

Left $\Upsilon(1S) \ R_{pPb}$ vs. p_T.

Compatible with inclusive $J/\psi \ R_{pPb}$ at low p_T (ALICE) and prompt $J/\psi \ R_{pPb}$ at higher p_T (ATLAS)

Right $\Upsilon(1S) \ R_{pPb}$ vs. y^*

In comparison with ALICE and LHCb results. Provide constrains for models at central rapidity.
• (Left) Prompt charmonium double ratio
• (Right) Bottomonium double ratio

No obvious p_T and rapidity dependence

$$\frac{[\Upsilon(2S + 3S)/\Upsilon(1S)]_{pPb}}{[\Upsilon(2S + 3S)/\Upsilon(1S)]_{pp}}$$

$pp @ 2.76$ TeV
Centrality in $p+Pb$

FCal sum E_T in Pb beam direction

\Rightarrow Centrality $\Rightarrow \langle N_{part} \rangle$

Two models:
- Glauber Model
- Glauber-Gribov Color fluctuation (GGCF) Model

Only focus on the Glauber model in this talk.

Centrality Bias: hard scatterings are often correlated with a larger transverse energy of the underlying event.

How would the bias correction factor work for quarkonium production?
J/ψ R_{pPb} VS. $\langle N_{\text{part}} \rangle$

J/ψ to Z boson yield ratio can serve as a baseline.

No obvious centrality dependence of J/ψ production.

$R_{pPb} = \frac{1}{\langle T_{pPb} \rangle_{\text{cent}}} \frac{1/N_{\text{evt}} d^2 N^{p+Pb}_{\psi} / dy d\eta} {d^2 \sigma^{pp}_{\psi} / dy d\eta},$

Biased corrected R_{pPb} gives expected trend.

The bias correction works for quarkonium.
$\psi(2S)$ and $\Upsilon(1S)$ R_{pPb} vs. $\langle N_{\text{part}} \rangle$

Prompt $\psi(2S)$ to Z boson yield ratio

- $10 < p_T^\psi < 30 \text{ GeV}$
- $-1.5 < y_\psi^* < 1.5$
- $-3.0 < y_Z^* < 2.0$

ATLAS Preliminary
$p+Pb \sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$
Prompt $\psi(2S)$ to Z ratio

Bias corrected $\Upsilon(1S)$ R_{pPb} is consistent with being constant.

- Evident decrease trend as $\langle N_{\text{part}} \rangle$ or ΣE_T increases for prompt $\psi(2S)$ production.
- Suppressed in more central collisions wrt. more peripheral collisions.
Double Ratio vs. FCal ΣE_T

- (Left) Prompt charmonium double ratio
- (Right) Bottomonium double ratio

Both show sizable ΣE_T dependence. Excited states ($\psi(2S)$ and $\Upsilon(2S+3S)$) are more suppressed wrt. ground states in more central collisions in a similar way.
Self-normalized Ratio (I)

Y yields are binned in centrality according to E_T of Υ events.

$$\frac{\Upsilon}{\langle \Upsilon \rangle} = \frac{N_{cen}^{0-90\%}}{N_{evt}^{0-90\%}}$$

$$\frac{\sum E_T^{FCal, cen}}{\langle \sum E_T^{FCal} \rangle^{0-90\%}}$$

Obtained from MinBias events

Obtained from MinBias events

$\sum E_T / \langle \sum E_T \rangle < 2.3$

Self-normalized Υ yields are consistent with the unitarily sloped line. Compatible with CMS.

$\sum E_T / \langle \sum E_T \rangle = 3.1$

2σ deviated from line at for both $\Upsilon(1S)$ and $\Upsilon(2S+3S)$.

\[p+Pb \sqrt{s_{NN}} = 5.02 \text{ TeV} \]

\[\text{ATLAS } \langle \Upsilon(1S) \rangle, |y^*| < 1.20 \]

\[\text{ATLAS } \langle \Upsilon(2S+3S) \rangle, |y^*| < 1.20 \]

\[\text{CMS } \langle \Upsilon(1S) \rangle, |y^*| < 1.93 \]
Self-normalized Ratio (II)

\[\frac{\gamma}{\langle \gamma \rangle} = \frac{N_{\gamma}^{cen}/N_{\text{evt}}^{cen}}{N_{\gamma}^{0-90\%}/N_{\text{evt}}^{0-90\%}} \]

Self-normalized ratio still suffers centrality bias by definition.

- **(Left)** Uncorrected self-normalized ratio for charmonium and Z.
 Consistent with line when \(\Sigma E_T / \langle \Sigma E_T \rangle < 2.3 \), more than \(3\sigma \) deviated from line at \(\Sigma E_T / \langle \Sigma E_T \rangle = 3.1 \).

- **(Right)** Bias corrected ratios. More significant deviations.
Summary

• Charmonia and bottomonia production in pp and $p+$Pb collisions are presented.

• Charmonia (J/ψ and $\psi(2S)$):
 • Charmonia R_{pPb} shows no obvious p_T and rapidity dependence.
 • J/ψ R_{pPb} shows no centrality dependence.
 • Prompt $\psi(2S)$ is more suppressed in more central collisions wrt. more peripheral collisions.

• Bottomonia ($\Upsilon(1S)$ and $\Upsilon(2S+3S)$):
 • $\Upsilon(1S)$ R_{pPb} is compatible with prompt J/ψ R_{pPb}.
 • $\Upsilon(1S)$ R_{pPb} shows no centrality dependence.
 • $\Upsilon(2S+3S)$ states are more suppressed in more central collisions.

Thank you!
ありがとう
Backup
The proton-nucleon center of mass (CM) frame has a shift of 0.465 in rapidity in the proton beam direction.

\[y^* = - (y_{lab} + 0.465) \quad \text{p+Pb run period A} \]

\[y^* = y_{lab} - 0.465 \quad \text{p+Pb run period B} \]
Table 2: Probability density functions for individual components in the fit model used to extract the prompt (P) and non-prompt (NP) contributions for the J/ψ and the $\psi(2S)$ signal (S) and background (Bkg). The index, i, runs from 1 to 7 for 7 different components. The composite pdf terms are defined as follows: CB - Crystal Ball; G - Gaussian; $E(\tau)$ - single sided exponential; $E(|\tau|)$ - double sided exponential; δ - delta function. The parameter ω is the fraction of CB function in the signal.
Table 1: Functional forms of individual components in the central fit model. The composite pdf terms are defined as follows: G - single Gaussian function, CB - Crystal Ball function, erf - error function, E - exponential function, P - 2nd order polynomial function. The parameter ω is the fraction of the Gaussian function in the signal.
Selected $\psi(2S)$ fits

ATLAS Preliminary

- $8.5 < p_T < 30$ GeV
- $-1.5 < y < 1.5$

Data
Fit Model
Prompt Signal
Non-Prompt Signal
Prompt Bkg
Non-Prompt Bkg

ATLAS Preliminary

- $p+Pb \sqrt{s_{NN}} = 5.02$ TeV

- $8.5 < p_T < 30$ GeV
- $-1.5 < y^* < 1.5$

Entries / (20 MeV)

$ATLAS$ Preliminary

$spp \sqrt{s} = 2.76$ TeV

$spp \sqrt{s} = 2.76$ TeV

$m_{\mu\mu}$ [GeV]
Three interpolation functions used to calculate pp reference at 5.02 TeV, central values obtained from power law function.

\[
\sigma(\sqrt{s}) = \begin{cases}
p_0 + \sqrt{s}p_1 & \text{linear} \\
(\sqrt{s}/p_0)^{p_1} & \text{power law} \\
p_0(1 - \exp(-\sqrt{s}/p_1)) & \text{exponential}
\end{cases}
\]

Three points for charmoina interpolation
Two points for bottomoina interpolation
Non-prompt fraction

ATLAS Preliminary

ATLAS 13 TeV, 6.4 pb⁻¹, |y| < 0.75
ATLAS 7 TeV, 2.1 fb⁻¹, 0.25 < |y| < 0.50
ATLAS 2.76 TeV, 4 pb⁻¹, |y| < 0.75
CDF (p+p) 1.96 TeV, 39.7 pb⁻¹, |y| < 0.60

ATLAS 2013 p+Pb, 28.1 nb⁻¹
√s_{NN} = 5.02 TeV

Non-prompt fraction

Non-prompt fraction

y*
Update 7 and 8 TeV results used in the interpolation
$E_T / \langle E_T \rangle$ Scale Factor

ATLAS definition:

$$\frac{\Sigma E_T^{FCal,cen}}{\langle \Sigma E_T^{FCal} \rangle_{0-90\%}}$$

- Obtained from MinBias events
- Obtained from MinBias events

CMS proposed definition:

$$\frac{\Sigma E_T^{FCal,cen}}{\langle \Sigma E_T^{FCal} \rangle_{0-90\%}}$$

- Obtained from Dimuon events
- Obtained from MinBias events