Forward production of Υ mesons in pp collisions at $\sqrt{s} = 7$ and 8 TeV

Alexander Artamonov 1, on behalf of LHCb Collaboration
1 Institute for High Energy Physics, Protvino, Russia
Presented at The Third Annual Large Hadron Collider Physics Conference (LHC2015)

1. Introduction

Studies of heavy quarkonium systems, such as the Υ(1S), Υ(2S) and Υ(3S), probe the dynamics of the colliding partons providing insight into the non-perturbative regime of quantum chromodynamics (QCD). Despite many models that have been proposed, a complete description of heavy quarkonium production is still not available. The study of production of heavy quarkonia could help to shed light on this long-standing question.

In this paper we report on the measurement of the inclusive production cross-sections of the Υ states at $\sqrt{s} = 7$ and 8 TeV and of their ratios. The existing LHCb measurements of these quantities were performed at $\sqrt{s} = 7$ TeV with a data sample collected in 2010 corresponding to 25 pb$^{-1}$ [1], and at $\sqrt{s} = 8$ TeV for early 2012 data using about 50 pb$^{-1}$ [2]. Both measurements were differential in p_T and y of the Υ mesons in the ranges 2.0 $< y <$ 4.5 and $p_T <$ 15 GeV/c. Based on these data, an increase of the production cross-section in excess of 30% between $\sqrt{s} = 7$ TeV and 8 TeV was observed, which is larger than the increase observed for other quarkonium states such as the $J/$ψ [2,3] and larger than the expectations from NR QCD [4].

2. Dataset and selection

- Run-I dataset with $\sqrt{s} = 7$ TeV (2011) & 8 TeV (2012)
- Reconstructed using $\Upsilon(nS) \rightarrow \mu^+\mu^-$ decay mode, selected in 2.0 $< y <$ 4.5 and $p_T <$ 30 GeV/c
- Measurement performed in bins of p_T and y

$\Upsilon(nS)$ signal extraction performed by unbinned extended maximum likelihood weighted fit (baseline method), crosschecked by the method used in [5] based on the νPilot technique.

3.1 Differential cross-sections

Figure: Double differential cross-sections for $\sqrt{s} = 7$ TeV (left) and $\sqrt{s} = 8$ TeV (right) data

Rapidity ranges: 2.0 $< y <$ 2.5, 2.5 $< y <$ 3.5

4. Production ratios

Figure: The production ratios $R_{3,1}$ and $R_{2,1}$ for \sqrt{s} = 7 TeV (left) and \sqrt{s} = 8 TeV (right) data. The fitted lines show the fit results with the colour-octet model predictions in 2.5 $< y <$ 4.0 and dashed lines show extrapolation to the full range \sqrt{s} = 7 TeV.

5. Ratios of cross-sections

Figure: Ratios of differential cross-sections (left) and (right) at \sqrt{s} = 7 TeV for Υ(1S), Υ(2S) and Υ(3S). The left plot, the results of the fits with a linear function are shown. In the same plot, the NR QCD (QCD model predictions) are shown as a thick line. On the right plot, the results of the fits with the colour-octet model predictions are shown for Υ(1S) and Υ(3S).

6. References

[8] LHCb collaboration, R. Aaij et al. (2011) 118206