Angular momentum in quantum mechanics

by

A. R. Edmonds
CERN 55 - 1 Rapports aux Membres, présents par le Secrétariat Général du Conseil Européen pour la Recherche Nucléaire (CERN, organisation temporaire 192 - 1954)

CERN 55 - 2 M. Pilet L'oeuvre et les activités de CERN 1931 - 1934

CERN 55 - 3 Hellin, B Design of CERN synchro-electron magnet

CERN 55 - 4 d'Espagnet, B États excités à très courte vie moyenne et invariance de charge

CERN 55 - 5 d'Espagnet, B et Preitti, J Remarques sur les états excités à vie moyenne brève et la production des mesons

CERN 55 - 6 Bohr, A, Fröman, P.O. and Mottelson, B.R On the fine structure in alpha decay
Repr from K. Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser, 22 (19), p 1 - 26, 1955

CERN 55 - 7 Bohr, A and Mottelson, B R Collective nuclear motion and the unified model
Repr from Siegbahn, K (ed) Beta and gamma ray spectroscopy, Amsterdam, North-Holland Publ Co, 1955, p 468 - 493

CERN 55 - 8 Haag, R On quantum field theories
Repr from K. Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser, 22 (19), p 1 - 37, 1955

CERN 55 - 9 Mottelson, B.R and Nilsson, S.G On the magnetic moment and rotational spectrum of thulium

CERN 55 - 10 Jankovac, Z A contribution to the theory of nuclei with a diffuse surface
Repr from Philosophical Magazine, 46, p 376 - 380, 1955

CERN 55 - 11 d'Espagnet B et Preitti J A mathematical formulation of the Gell-Mann new particles model

CERN 55 - 13 Foldy, L and Eriksson, E Vacuum polarization and proton-proton scattering

CERN 55 - 14 Sigurgeirsson, T Foucussing in a synchrotron with periodic field Perturbation treatment

CERN 55 - 15 Umezawa, H and Visconti, A General theory of propagators

CERN 55 - 16 Alder, K and Wither, A Matrix elements between states in the Coulomb field

CERN 55 - 17 Killam, G and Sabry, A Fourth order vacuum polarization
Repr from K. Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser, 22 (17), p 1 - 20, 1955

CERN 55 - 18 Bloch F, Arnold J T, and Anderson W A A contribution to the study of nuclear magnetism Three studies

CERN 55 - 19 Möller, C Pseudoscalar meson theory
Angular momentum in quantum mechanics

by

A.R. Edmonds
The following lecture notes were originally issued in mimeographed form in Copenhagen in January 1954 (CERN-T/AREI).

I have tried throughout these notes to make clear where arbitrary choices of phase of matrix components have been made, and to follow these choices consistently. I would refer the reader to p.xiii of Condon and Shortley's Theory of Atomic Spectra (1935) for a comment of the importance of these questions of phase. The experiment made in the first edition of these notes, in which un-orthodox, but perhaps more logical, choices of phase for the vector-coupling coefficients were made, has been abandoned in favour of orthodoxy. The conservatism of what would appear to be the majority of physicists working in this field has, in this regard at least, been respected. The reader will nevertheless find a few definitions which may be unfamiliar.

This edition contains an outline of the subject of Euler angles and matrix elements of finite rotations, with definitions adhering closely to the common practice of physicists. However this has involved deviating from the familiar formulae of Wigner (1931), since his results were based on a left-handed frame of reference. (cf. Rose (1955) for a different solution of this difficulty).

A number of errors in the first edition have been corrected. I hope that only a few new errors have crept into this one.

A.R. Edmonds
Contents

Preface ... 3
1.1 Definition of angular momentum 7
1.2 The Euler angles 8
1.3 Angular momentum of a system of particles 9
1.4 Representations of angular momentum operators 11
1.5 The angular momentum eigenvectors 12
2.1 The combination of angular momenta 14
2.2 The vector-coupling coefficients 16
2.3 The symmetry relations of the vector-coupling coefficients 18
2.4 The Wigner 3-j symbol 19
2.5 Computation of vector-coupling coefficients .. 21
2.6 Complex conjugate of eigenvectors resulting from vector-coupling 22
2.7 Vector-coupling coefficient with two large and one small j-values 23
3.1 The matrices of finite rotations 23
3.2 The symmetries of the matrix elements of finite rotations 26
3.3 Connection of the $\mathcal{D}(j)_{nm}$ with the associated Legendre functions 27
3.4 The phases of the $\mathcal{D}(j)_{nm}(\alpha,\beta,\gamma)$ 28
3.5 Integrals and other expressions involving the $\mathcal{D}(j)_{nm}(\alpha,\beta,\gamma)$ 28
3.6 Recursion relation for the $\mathcal{D}(j)(\beta)$ 30
3.7 Computation of the $\mathcal{D}(j)(\beta)$ 31
3.8 The symmetric top in quantum mechanics 32
4.1 The compounding of vector-coupling coefficients 33
4.2 Symmetries of the 6-j symbol 37
4.3 Transformations between different coupling schemes of three angular momenta 37
4.4 Algebraic relations between 6-j symbols and between 6-j and 3-j symbols 39
4.5 Relations between the 6-j symbol and other notations ... 42
4.6 Computation of numerical values of 6-j symbols .. 42
4.7 The 9-j symbol 46
5.1 Tensor operators 51
5.2 Factorisation of the matrix elements of tensor operators .. 52
5.3 Tensor products of tensor operators 55
5.4 Definition of Hermitian tensor operators........ 55
5.5 Matrix elements of products of tensor operators 56

Table I Relations between different notations for V-C coefficients 61
Table II Formulae for comutation of 3-j symbols .. 63
Table III Notations relating to tensor operators and reduced matrix elements 66
Table IV Matrix elements of finite rotation (\(\frac{\pi}{2}\)o) 69
Table V Formulae for computation of 6-j symbols .. 71
Table VI Spherical and solid harmonics 74

References ...

Bibliography (Applications of methods discussed)
Angular momentum in quantum mechanics

by

A.R. Edmonds

1.1 Definition of angular momentum

In classical mechanics the angular momentum of a particle about a point \(0 \) is

\[
\vec{L} = \vec{r} \times \vec{p}
\]

where \(\vec{r} \) is the position vector and \(\vec{p} \) the linear momentum of the particle with respect to \(0 \).

In quantum mechanics we take the well-known commutation relations for the components of position \& momentum and obtain the commutation relations for the components of \(\vec{L} \) :

\[
[L_x, L_y] = i\hbar L_z; \quad [L_y, L_z] = i\hbar L_x; \quad [L_z, L_x] = i\hbar L_y
\]

In the Schrödinger representation we have

\[p_x = -i\hbar \frac{\partial}{\partial x} \text{ etc., giving} \]

\[
L_x = -i\hbar \left(y \frac{\partial}{\partial z} - z \frac{\partial}{\partial y} \right)
\]

\[
L_y = -i\hbar \left(z \frac{\partial}{\partial x} - x \frac{\partial}{\partial z} \right)
\]

\[
L_z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)
\]
and in spherical polar coordinates

\[L_x = \imath \hbar \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right) \]
\[L_y = \imath \hbar \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right) \]
\[L_z = -\imath \hbar \frac{\partial}{\partial \phi} \]

The square of the total angular momentum

\[L^2 = L_x^2 + L_y^2 + L_z^2 \]

commutes with \(L_x, L_y \) and \(L_z \), as may be shown by use of (1.1.2). It is given in terms of the spherical differential operators by

\[L^2 = -\hbar^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right] \]

1.2 The Euler angles

Before we consider the angular momentum of a system of \(n \) \((n > 1)\) particles we need to define the Euler Angles, which represent parametrically the displacement of a rigid body due to a rotation about a fixed point.

We suppose a right-handed frame of axes \(S \) fixed in the body. A positive rotation about an axis is a rotation undergone by a right-handed screw moving in the positive direction along that axis.

Any displacement about a fixed point may be obtained by performing three rotations successively: -
(1) a rotation $\alpha (0 \leq \alpha < 2\pi)$ about the z-axis, bringing the frame S into the position S'.

(2) a rotation $\beta (0 \leq \beta < \pi)$ about the y-axis of the frame S', bringing the frame into the position S''.

(3) a rotation $\gamma (0 \leq \gamma < 2\pi)$ about the z-axis of the frame S'', bringing the body into the final position. The set of three Euler angles $\alpha \beta \gamma$ may frequently be symbolised by ω. This convention for the definition of the Euler angles is the same as that normally used in the theories of molecular spectra (Herzberg 1939) and the collective model of the nucleus (Bohr 1952). It differs, for example, from the conventions of Whittaker (1917), Casimir (1931), and Wigner (1931).

We shall not always adhere to the limits on the values of $\alpha \beta$ and γ imposed above; we shall however assume that similar limits are imposed such that a 1:1 correspondence between the parameters $\alpha \beta \gamma$ and the actual rotations is preserved.

1.3. Angular momentum of a system of particles

This is given classically by

\begin{equation}
\vec{L} = \sum_{i=1}^{n} \vec{r}_i \times \vec{p}_i
\end{equation}

where \vec{r}_i and \vec{p}_i are the position vector and momentum of the ith particle. Since the operators belonging to different particles commute,
we have in quantum mechanics the same commutation relations for the components of \mathbf{L} as those in (1.1.2).

We may choose in some way a frame of axes which moves about its origin and follows the motion of the particles; for example, this frame might be defined by the position vectors of the first and second particles. The system is then described by the $(3n - 3)$ coordinates of the particles with respect to the moving frame and by the three Euler angles which give the displacement of the frame from some fixed frame with the same origin.

It may be shown (cf. Kemble 1937) that the components of \mathbf{L} in the Schrödinger representation are given in terms of the Euler angles by

\begin{align*}
\mathbf{L}_x &= -\hbar \left\{ -\cos \alpha \cot \beta \frac{\partial}{\partial \alpha} - \sin \alpha \frac{\partial}{\partial \beta} + \cos \beta \frac{\partial}{\partial \gamma} \right\} \\
\mathbf{L}_y &= -\hbar \left\{ -\sin \alpha \cot \beta \frac{\partial}{\partial \alpha} + \cos \alpha \frac{\partial}{\partial \beta} + \sin \beta \frac{\partial}{\partial \alpha} \right\} \\
\mathbf{L}_z &= -\hbar \frac{\partial}{\partial \alpha}
\end{align*}

There remains of course the angular momentum of the particles with respect to the moving frame, which is given by expressions containing the previously mentioned $(3n - 3)$ coordinates.

The expression in the scheme (1.3.2) which corresponds to (1.1.6) is

\begin{align*}
\mathbf{L}^2 &= -\frac{\partial^2}{\partial \beta^2} - \cot \beta \frac{\partial}{\partial \beta} - \frac{1}{\sin^2 \beta} \left(\frac{\partial^2}{\partial \alpha^2} + \frac{\partial^2}{\partial \gamma^2} \right) + \frac{2 \cos \beta}{\sin^2 \beta} \frac{\partial^2}{\partial \alpha \partial \gamma}
\end{align*}
1.4 Representations of the angular momentum operators

As is well known, if we start from the commutation relations (1.1.2) as a definition of the angular momentum operators rather than from the classical definition (1.1.1), we obtain the spin representations as well as those corresponding to the classical or orbital angular momentum. The components of this generalized angular momentum are designated by J_x, J_y and J_z; we may where necessary use the notation

$$J_+ = J_x + i J_y; \quad J_- = J_x - i J_y,$$

The representations may be derived by the method given by, for example, Dirac (1947) and Schiff (1949).

The angular momentum eigenvectors are defined as simultaneous eigenvectors of \vec{J}^2 and J_z:

$$\vec{J}^2 \psi(jm) = \hbar^2 j (j + 1) \psi(jm); \quad J_z \psi(jm) = \hbar m \psi(jm)$$

The quantity j takes the values $\frac{1}{2}, 1, \frac{3}{2}, 2, \ldots$; m takes the values $-j$, $-j + 1$, \ldots, $j-1$, j. j and m are referred to loosely as the eigenvalues of $\psi(jm)$.

In such a representation the matrices of J_+, J_-, J_x, J_y are not diagonal. They are given by

$$J_+ \psi(jm) = e^{i\delta} \hbar \left[(j + m)(j \pm m + 1) \right]^{\frac{1}{2}} \psi(jm \pm 1)$$

(1.4.4) The phase $e^{i\delta}$ is arbitrary; we shall follow Condon and Shortley* (1935) and take it to be $+1$;

* This work will be referred to henceforth as TAS.
the positive value of the square root is assumed throughout.

We have therefore for the non-zero matrix elements of \(J_x \) and \(J_y \):

\[
(y_{jm+1} | J_x | y_{jm}) = \frac{\hbar}{2} \left[(j-m) (j+m+1) \right]^{1/2}
\]

\[
(y_{jm-1} | J_x | y_{jm}) = \frac{\hbar}{2} \left[(j+m) (j-m+1) \right]^{1/2}
\]

\[(1.4.5) \]

\[
(y_{jm+1} | J_y | y_{jm}) = -i \frac{\hbar}{2} \left[(j-m) (j+m+1) \right]^{1/2}
\]

\[
(y_{jm-1} | J_y | y_{jm}) = i \frac{\hbar}{2} \left[(j+m) (j-m+1) \right]^{1/2}
\]

where \(\gamma \) symbolises the eigenvalues of a set of operators \(\Gamma \) which forms a complete commuting set with \(J^2 \) and \(J_z \).

In the representation \(j = \frac{1}{2} \) we have the Pauli spin matrices:

\[(1.4.6) \]

\[
J_x \sim \begin{pmatrix}
- \frac{1}{2} + \frac{1}{2} & 0 & \frac{\hbar}{2} \\
\frac{\hbar}{2} & 0 & 0
\end{pmatrix}
\]

\[
J_y \sim \begin{pmatrix}
- \frac{1}{2} + \frac{1}{2} & 0 & -i \frac{\hbar}{2} \\
-\frac{\hbar}{2} & 0 & 0
\end{pmatrix}
\]

\[
J_z \sim \begin{pmatrix}
- \frac{1}{2} + \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{\hbar}{2} \\
0 & \frac{\hbar}{2} & 0
\end{pmatrix}
\]

1.5. The angular momentum eigenvectors

In the integer representations \((j=0, 1, 2, \ldots)\) the eigenvectors \(\psi(\epsilon m) \) are the solutions of the eigenvalue equations

\[
- \frac{1}{\sin \theta} \left(\frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right) \psi = \epsilon (\epsilon + 1) \psi
\]

\[
- i \frac{\partial}{\partial \phi} \psi = m \psi
\]
They are therefore, apart from normalisation, the spherical harmonics. We write the eigenfunction \(\psi(\ell m) \) as

\[
(1.5.1) \quad \psi(\ell m) = Y_{\ell m}(\theta \phi) = \Theta(\ell m) \Phi(m)
\]

where \(\Theta \) and \(\Phi \) are functions of \(\theta \) and \(\phi \) respectively. The normalisation is such that

\[
(1.5.2) \quad \int_0^{\pi} [\Theta(\ell m)]^2 \sin \theta \, d\theta = 1 \quad \cdot \int_0^{2\pi} \Phi^*(m) \Phi(m) \, d\phi = 1
\]

We have

\[
(1.5.3) \quad \Theta(\ell m) = (-1)^\ell \left[\frac{(2\ell + 1)(\ell + m)}{2(\ell - m)} \right]^{1/2} \frac{1}{2\ell + 1} \frac{1}{\sin \theta} \frac{d^{\ell - m}}{d \cos \theta} \sin^{2\ell} \theta
\]

i.e. in terms of the associated Legendre function (Ferrers' definition)

\[
(1.5.4) \quad \Theta(\ell m) = (-1)^m \left[\frac{2\ell + 1(\ell - m)}{2(\ell + m)} \right]^{1/2} \frac{1}{\pi} p^m_\ell (\cos \theta)
\]

Also

\[
(1.5.5) \quad \Phi(m) = [2\pi]^{-1/2} e^{im\phi}
\]

The definition of the angular momentum eigenfunction \(Y_{\ell m} \) involves, in addition to a choice of normalisation, a choice of an arbitrary phase. We have followed above the convention of Condon and Shortley (1935); this implies the symmetry property

\[
(1.5.6) \quad \Theta(\ell m) = (-1)^m \Theta(\ell - m) \quad \text{or} \quad Y_{\ell m} = (-1)^m Y_{\ell - m}^*
\]

It is sometimes useful to use another convention (cf. Biedenharn and Rose (1953), namely

\[
(1.5.7) \quad \hat{Y}_{\ell m} = i Y_{\ell m}^*
\]
The symmetry property is then

\[(1.5,8) \quad \hat{Y}_{\ell m} = (-1)^{\ell + m} \hat{Y}_{\ell - m}\]

The eigenfunctions corresponding to the representation (1.3.2), (1.3.3) (the spherical top eigenfunctions) are discussed in the chapter on the matrix elements of finite rotations.

2.1 The combination of angular momenta.

Suppose we have a system composed of two parts 1 and 2. It is easily shown that, as in classical mechanics, the angular momentum of the whole system is given in terms of the angular momenta of the parts by \(\mathbf{J} = \mathbf{J}_1 + \mathbf{J}_2 \), \(\mathbf{J}_\kappa = \mathbf{J}_{1\kappa} + \mathbf{J}_{2\kappa} \) where \(\kappa = x, y, z \).

\(J^2 = J_x^2 + J_y^2 + J_z^2 \) commutes with \(J_x, J_y \) and \(J_z \), also with \(J_1^2 \) and \(J_2^2 \).

Now a state of the system may be given by a linear combination of simultaneous eigenvectors of the complete set of commuting operators \(\Gamma, \mathbf{J}_1, \mathbf{J}_{1z}, \mathbf{J}_2, \mathbf{J}_{2z} \) where \(\Gamma \) includes all other operators of the system needed to give a complete set. However, if there is interaction between the parts 1 and 2, the individual angular momenta will not be constants of the motion; but the total angular momentum may be. In this case it is advantageous to go over to the complete set

\(\Gamma, \mathbf{J}_1, \mathbf{J}_2, \mathbf{J}, \mathbf{J}_z \).\)
Suppose we are given the eigenvectors of the set $\Gamma, J_1, J_1, J_2, J_Z$ each of which is labelled by the eigenvalues $\gamma j_1 m_1 j_2 m_2$ (we shall write always j, m as abbreviations for the eigenvalues $\hbar^2 j (j + 1), \hbar m$). It is of interest to find the unitary transformation which expresses the eigenvectors of $\Gamma, J_1^2, J_2^2, J_Z^2, J_Z$ in terms of these given eigenvectors.

\[(2.1.1) \]
\[\psi(y j_1 j_2 jm) = \sum_{m_1 m_2} (j_1 j_2 jm | j_1 j_2 m_1 m_2) \phi(y j_1 j_2 m_1 m_2) \]

It may be shown (see TAS p. 58) that any eigenvector $\phi(y j_1 j_2 m_1 m_2)$ may be split into a sum of the type

\[(2.1.2) \]
\[\phi(y j_1 j_2 m_1 m_2) = \sum_{a\beta} \phi_1(\alpha j_1 m_1) \phi_2(\beta j_2 m_2) \]

where J_1 operates only on ϕ_1, J_2 only on ϕ_2.

We may look at the problem in hand in a different way; namely from the point of view of the transformations of the eigenvectors under rotation of the coordinate system. Let us consider in the original representation all eigenvectors with a given γ, j_1, and j_2. These will span a $(2j_1 + 1)(2j_2 + 1)$-dimensional space, and will form a basis of a product representation of the group $SO(3)$ of proper rotations in 3 dimensions, that is they will be transformed among themselves by rotation of the coordinate system. This representation is however reducible, and may be shown to be the direct sum of a number of irreducible representations $D(j)$, where $|j_1 - j_2| < j < j_1 + j_2$. That is, the representation space splits up into a number of invariant irreducible subspaces, each corresponding to one of the above values of j and
of dimension \(2j + 1\).

The problem is thus to find a transformation to a new representation basis so that each basis element (eigenvector) belongs to a definite irreducible representation of \(SO(3)\).

This process is known as the finding of the Clebsch-Gordan series (Weyl 1931 p. 123) and the transformation coefficients are called Clebsch-Gordan or vector-coupling coefficients.

There exist many notations for these coefficients; several of these notations are displayed and compared in table I (see p. 61).

2.2 The vector-coupling coefficients

The rules of angular momentum combination in quantum mechanics (cf. TAS, Dirac (1935) etc.) tell us that the possible values of \(j\) and \(m\) arising from the combination of two systems with eigenvalues \(j_1, m_1, j_2, m_2\) are:

\[m = m_1 + m_2\]

(2.2.1)

\[j = |j_1 - j_2|, \quad |j_1 - j_2| + 1, \ldots, j_1 + j_2 - 1, \text{ or } j_1 + j_2.\]

It follows that the vector coupling coefficients will be zero unless these conditions are satisfied.

The unitary nature of the transformation under consideration is expressed by

\[
\sum_{jm}(j_1, j_2, m_1, m_2 | j_1 j_2 jm)(j_1, j_2, j, m | j_1, j_2 m_1 m_2) = \delta_{m_1 m'_1} \delta_{m_2 m'_2}.
\]

(2.2.2)

* The second equation of (2.2.1) will be referred to frequently as the triangular condition on \(j_1, j_2\) and \(j\).
(2.2.3)

\[\sum_{m_1, m_2} \langle j_1 j_2 j_m | j_1 j_2 m_1 m_2 | j_1 j_2 j_{m'} \rangle = \delta_{j j'} \delta_{m m'} \delta(j_1 j_2 j) \]

where \(\delta(j_1 j_2 j) = 1 \) if \(j \) takes one of the values in (2.2.1) \(= 0 \) otherwise.

The values of the vector-coupling coefficients may be determined by use of the unitary condition and of two recursion relations. These recursion relations are derived from the identities \(J_+ = J_{1+} + J_{2+} \) and \(J_- = J_{1-} + J_{2-} \) and from the expression (1.4.3). They are:

\[[(j-m)(j+m+1)]^{\frac{1}{2}} (m_1 m_2 | j m+1) = \]

\[= [(j_1+m_1)(j_1-m_1+1)]^{\frac{1}{2}} (m_1 -1 m_2 | j m) + [(j_2+m_2)(j_2-m_2+1)]^{\frac{1}{2}} (m_1 m_2 -1 | j m) \]

\[(2.2.5) \]

\[[(j+m)(j+m-1)]^{\frac{1}{2}} (m_1 m_2 | j m-1) = \]

\[= [(j_1-m_1)(j_1+m_1+1)]^{\frac{1}{2}} (m_1 +1 m_2 | j m) +[(j_2-m_2)(j_2+m_2+1)]^{\frac{1}{2}} (m_1 m_2 +1 | j m) \]

The quantum numbers \(j_1, j_2 \) in the \(V-C \) coefficients have been omitted for simplicity.

The above relations enable us to compute all the \(V-C \) coefficients; we must however make two arbitrary choices of phase in the calculation:

\[(2.2.6) \] All matrix elements of \(J_{1z} \) in the scheme \((y j_1 j_2 j m) \) which are non-diagonal are real and non-negative.

\[(2.2.7) \] The identical states \(\psi(y j_1 j_2 j m) \) and \(\phi(y j_1 j_2 m_1 m_2) \) have the same phase; i.e.,

\[\psi(y j_1 j_2 j m) = \phi(y j_1 j_2 m_1 m_2) \]

These choices are the same as made in TAS. We obtain the result: --
\[(2.2.8) \quad (j_1, j_2, m_1, m_2 | j_1, j_2, jm) =
\]
\[
= \delta(m_1 + m_2, m) \left[\frac{(2j_1+1)(j_1+j_2-j)!(j_1-m_1)!(j_2-m_2)!}{(j_1+j_2+j+1)!} \right] \frac{1}{(j_1-j_2+j)!(j_1+m_1)!(j_2+m_2)!} \times
\]
\[
\times \sum_s (-1)^{s+j_1-m_1} \frac{(j_1+m_1+s)!}{s!(j_1-m_1-s)!(j_2-j+m_2+s)!} \frac{(j_1+j_2-j-m_1-s)!}{s!(j_1-m_1-s)!(j_2-j+m_2+s)!}
\]

Note that the coefficient is always real.

We may follow the method of Racah (1942) to get a more symmetric expression:

\[(2.2.9) \quad (j_1 j_2 m_1 m_2 | j_1 j_2 jm) =
\]
\[
= \delta(m_1 + m_2, m) \left[\frac{(2j_1+1)(j_1+j_2-j)!(j_1-j_2+j)!(j_1+j_2+j)!}{(j_1+j_2+j+1)!} \right] \frac{1}{(j_1-j_2+j)!(j_1+m_1)!(j_2+m_2)!} \times
\]
\[
\times \left[\frac{(j_1+m_1)!}{(j_1-m_1)!(j_2-m_2)!} \frac{(j_1+1+m_1)!}{(j_1+1-m_1)!(j_2+1-m_2)!} \right] \frac{1}{(j_1-j_2+m_1+z)!(j_1-m_1-z)!(j_2+1-m_2-z)!} \frac{1}{(j_1+1-m_1-z)!(j_2+1-m_2-z)!}
\]
\[
\times \sum_z (-1)^z \frac{1}{z!(j_1+j_2-j-z)!(j_1-m_1-z)!(j_2+m_2-z)!(j-j_1-n_2+z)!}
\]

2.3. The symmetry properties of the vector-coupling coefficients.

The following properties may be demonstrated by reference to the recursion relations (2.2.4), (2.2.5) or by consideration of the effects of the appropriate replacements on the formula (2.2.9).

\[(2.3.1) \quad (j j m - m | j j 0 0) = (-1)^{j-m} (2j+1)^{-\frac{1}{2}}
\]
\[(2.3.2) \quad (j 0 m 0 | j 0 j m) = 1
\]
\[(2.3.3) \quad (j_1 j_2 m_1 m_2 | j_1 j_2 jm) = (-1)^{j_1+j_2-j} (j_2 j_1 m_2 m_1 | j_2 j_1 jm)
\]
(2.3.4)
\((j_1 j_2 m_1 m_2 | j_1 j_2 j_3 -m) = (-1)^{j_1 + j_2 - j} (j_1 j_2 m_1 m_2 | j_1 j_2 j m) \)

(2.3.5)
\((j_1 j_2 m_1 m_2 | j_1 j_2 j_3 m_3) = (-1)^{j_2 + m_2} \left(\frac{2j_3 + 1}{2j_1 + 1} \right)^{1/2} (j_2 j_3 - m_2 m_3 | j_2 j_3 j_1 m_1) \)

(2.3.6)
\((j_1 j_2 m_1 m_2 | j_1 j_2 j_3 m_3) = (-1)^{j_1 - m_1} \left(\frac{2j_3 + 1}{2j_2 + 1} \right)^{1/2} (j_3 j_1 m_3 - m_1 | j_3 j_1 j_2 m_2) \)

2.4. The Wigner 3-j symbol

This quantity is defined in terms of the vector-coupling coefficient with the chosen phases by

(2.4.1)
\(\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{j_1 - j_2 - m_3} (2j_3 + 1)^{-1/2} (j_1 j_2 m_1 m_2 | j_1 j_2 j_3 - m_3) \)

Its properties are easily deduced from those of the V-C coefficient; its main virtue is the high degree of symmetry exhibited. It is clearly zero unless

(2.4.2)
\[m_1 + m_2 + m_3 = 0 \]

\[j_a = |j_b - j_c|, |j_b - j_c| + 1, \ldots, j_b + j_c - 1, \text{ or } j_b + j_c. \]

where \(a, b, c \) are any permutation of 1, 2, 3.

* Wigner (1951)
We get the result that an even permutation of the order of \(j_1, j_2 \) and \(j_3 \) leaves the value of the symbol unaltered, while an odd permutation has the effect of multiplying the original value by \((-1)^{j_1+j_2+j_3}\).

That is, we have the relations

\[
(2.4.3) \quad \left(\begin{array}{ccc} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{array} \right) = \left(\begin{array}{ccc} j_2 & j_3 & j_1 \\ m_2 & m_3 & m_1 \end{array} \right) = \left(\begin{array}{ccc} j_3 & j_1 & j_2 \\ m_3 & m_1 & m_2 \end{array} \right)
\]

\[
(2.4.4) \quad \left(\begin{array}{ccc} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{array} \right) = (-1)^{j_1+j_2+j_3} \left(\begin{array}{ccc} j_2 & j_1 & j_3 \\ m_2 & m_1 & m_3 \end{array} \right) = (-1)^{j_1+j_2+j_3} \left(\begin{array}{ccc} j_1 & j_3 & j_2 \\ m_1 & m_3 & m_2 \end{array} \right)
\]

\[
= (-1)^{j_1+j_2+j_3} \left(\begin{array}{ccc} j_3 & j_2 & j_1 \\ m_3 & m_2 & m_1 \end{array} \right)
\]

Following from the orthogonality of the V-G coefficients (2.2.2 and 2.2.3) the 3-j symbols satisfy the equations

\[
(2.4.5) \quad \sum_{j_3 m_3} (2j_3 + 1) \left(\begin{array}{ccc} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{array} \right) \left(\begin{array}{ccc} j_1 & j_2 & j_3 \\ m_1' & m_2' & m_3' \end{array} \right) = \delta_{m_1 m_1'} \delta_{m_2 m_2'}
\]

\[
(2.4.6) \quad \sum_{m_1 m_2} \left(\begin{array}{ccc} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{array} \right) \left(\begin{array}{ccc} j_1 & j_2 & j_4 \\ m_1 & m_2 & m_4 \end{array} \right) = (2j_3 + 1)^{-1} \delta_{j_3 j_4} \delta_{m_3 m_4} \delta(j_1 j_2 j_3)
\]

where \(\delta(j_1 j_2 j_3) = 0 \) unless \(j_1, j_2 \) and \(j_3 \) satisfy the triangular condition, when it is unity.

The expression corresponding to (2.3.4) is

\[
(2.4.7) \quad \left(\begin{array}{ccc} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{array} \right) = (-1)^{j_1+j_2+j_3} \left(\begin{array}{ccc} j_1 & j_2 & j_3 \\ -m_1 & -m_2 & -m_3 \end{array} \right)
\]
2.5. Computation of vector–coupling coefficients

It is usually easier to obtain numerical values from tables of the type given in TAS, where \(j_2 \) takes a value \(\frac{1}{2}, 1, \frac{3}{2} \) or 2. The general formula (2.2.9) is too clumsy for most purposes. The greater symmetry of the 3–j symbol is often helpful; formulae for this quantity, similar to those of TAS for the V–C coefficient, are given in Table II. (see p. 63)

A table for the V–C coefficient with \(j_2 = 3 \) has been published by Falkoff et al. (1952). Numerical tables have been given by Alder (1952) and Simon (1954).

Two recursion relations may be useful; the first is due to Wigner (1951).

\[
\begin{align*}
(2.5.1) & \\
\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} & = - \left[\frac{j_2 - m_2}{j + 1} \frac{(j_3 + m_3)}{(j - 2 j_1)} \right] \frac{1}{2} \left(j_1, j_2 - \frac{1}{2}, j_3 - \frac{1}{2} \right) \\
& + \left[\frac{j_2 + m_2}{j + 1} \frac{(j_3 - m_3)}{(j - 2 j_1)} \right] \frac{1}{2} \left(j_1, j_2 - \frac{1}{2}, j_3 + \frac{1}{2} \right)
\end{align*}
\]

\[
(2.5.2) & \\
\begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix} & = - \left[2(j + 1)(j - 2 j_1)(j - 2 j_2)(j - 2 j_3 + 1) \right]^{- \frac{1}{2}} \times \\
& \times \left\{ \left(\begin{array}{c} j_1 \ j_2 \ j_3 - 1 \\ m_1 \ m_2 - 1 \ m_3 + 1 \end{array} \right) \left[2(j_2 - m_2 + 1)(j_2 + m_2)(j_3 - m_3 - 1)(j_3 - m_3) \right] \right\}^{\frac{1}{2}} \\
& + \left(\begin{array}{c} j_1 \ j_2 \ j_3 - 1 \\ m_1 \ m_2 - 1 \ m_3 + 1 \end{array} \right) \left[8(j_3 + m_3)(j_3 - m_3)m_3^2 \right]^{\frac{1}{2}} \\
& - \left(\begin{array}{c} j_1 \ j_2 \ j_3 - 1 \\ m_1 \ m_2 + 1 \ m_3 - 1 \end{array} \right) \left[2(j_2 - m_2)(j_2 + m_2 + 1)(j_3 + m_3)(j_3 + m_3 - 1) \right]^{\frac{1}{2}} \right\}
\]

In both expressions \(J = j_1 + j_2 + j_3 \).
The general formula simplifies in certain cases:

\[
(2.5.3) \quad (j_1 j_2 j_3)_{j_1 m_2 - j_1 - m_2} = (-1)^{j_2 - 2j_1 - m_2} \frac{\left(2j_1 \right) ! \left(-j_1 + j_2 + j_3 \right) ! \left(j_2 - m_2 \right) ! \left(j_3 + j_1 + m_2 \right) !}{\left(j_1 + j_2 + j_3 + 1 \right) ! \left(j_1 - j_2 + j_3 \right) ! \left(j_1 + j_2 - j_3 \right) ! \left(j_3 - j_1 - m_2 \right) ! \left(j_2 + m_2 \right) !} \]

\[
(2.5.4) \quad (j_1 j_2 j_1 + j_2)_{m_1 m_2 - m_1 - m_2} = (-1)^{j_2 - j_1 + m_1 + m_2} \frac{\left(2j_1 \right) ! \left(2j_2 \right) ! \left(j_1 + j_2 + m_1 + m_2 \right) ! \left(j_1 + j_2 - m_1 - m_2 \right) !}{\left(2j_1 + 2j_2 + 1 \right) ! \left(j_1 + m_1 \right) ! \left(j_1 - m_1 \right) ! \left(j_2 + m_2 \right) ! \left(j_2 - m_2 \right) !} \]

2.6. Complex conjugate of eigenvectors resulting from vector-coupling

We vector-couple two angular momentum eigenvectors of the type \(\hat{Y}_{\ell m} \) (cf. (1.5.7)) to form an allowed eigenvector \(\psi(\epsilon m) \):

\[
(2.6.1) \quad \psi(\epsilon m) = \sum_{m_1, m_2} (\ell_1, \ell_2 \epsilon m_1 \ell_1, \ell_2 m_1 m_2) \hat{Y}_{\ell_1 m_1} \hat{Y}_{\ell_2 m_2}
\]

It is easy to show from the properties of the V-C coefficients that \(\psi(\epsilon m) \) also has the symmetry (1.5.8), i.e.

\[
(2.6.2) \quad \psi(\epsilon m) = (-1)^{\epsilon + m} \psi^{*(\epsilon - m)}
\]

On the other hand, a \(\psi(\epsilon m) \) built up from the \(Y_{\ell m} \) does not have the symmetry (1.5.6).

These facts will be of importance when we come to
discuss Hermitian tensor operators and the tensor product of tensor operators (see § 5.4)

2.7. Vector-coupling coefficient with two large and one small j-values.

Consider the coefficient $(\kappa \mu \tau \mu - \kappa \mu \tau \mu)$ where κ, μ, τ are small with respect to ϵ. Write $\cos \theta = \frac{m}{\epsilon}$, so that $\cos^2 \theta = \left[\frac{\epsilon - m}{2 \epsilon} \right]^\frac{1}{2}$, $\sin^2 \theta = \left[\frac{\epsilon + m}{2 \epsilon} \right]^\frac{1}{2}$.

Substitution of these into (2.2.9) gives an approximate expression for the V-C coefficient as a matrix element of the finite rotation θ:

\begin{equation}
(2.7.1)
(\kappa \mu \tau \mu - \kappa \mu \tau \mu) \approx (-1)^{\kappa - \tau} J^{(k)}_{\mu \tau}(\theta)
\end{equation}

(cf. (3.1.7))

\textbf{N.B.} This relation is satisfied more accurately if we take $\cos \theta = \frac{m}{[\epsilon(\epsilon+1)]^\frac{1}{2}}$

3.1 The matrices of finite rotations.

We shall consider the transformations induced on angular momentum eigenvectors due to rotations about the origin of the frame of axes to which these eigenvectors are referred.

The coordinates of a fixed point P in the rotated frame of axes may be expressed in terms of the coordinates of that point in the original frame; in the same way a function of the coordinates of P in the rotated frame may be expressed in terms of functions of
the coordinates of P in the original frame. It is well known that angular momentum eigenvectors with a given j are transformed into eigenvectors with the same j under such transformations. We write in general

\[\psi_{jm'}(\theta', \phi') = \sum_{m} \psi_{jm}(\theta, \phi) D_{mm'}^{(j)}(\alpha \beta y) \]

where \(\psi_{jm}(\theta, \phi) \) is a function of the coordinates \(\theta, \phi \) of a fixed point P in the original frame, and \(\psi_{jm'}(\theta', \phi') \) is a function of the coordinates \(\theta', \phi' \) of the P in the frame obtained by a rotation about the origin described by the Euler angles \(\alpha \beta y \) (cf. 1.2). The coefficient \(D_{mm'}^{(j)}(\alpha \beta y) \) are the matrix elements in the \(j \)-representation of the finite rotation \(\alpha \beta y \).

The effect of a finite rotation may be considered to be equivalent to the effect of the iteration of an infinitesimal rotation; if we represent by \(D(\omega) \) the operator corresponding to a finite rotation of \(\omega \) of the frame of axes about a given axis, and by \(J \) the angular momentum operator corresponding to this axis, it may be shown that

\[D(\omega) = \exp -\frac{i\omega}{\hbar} J. \]

The negative sign follows from the fact that \(D(\omega) \) represents a rotation of the frame of coordinates. (Note that our definition differs from those of Wigner (1931), Rose (1955)).

We obtain further for a general rotation \(\alpha \beta y \),

\[D(\alpha \beta y) = \exp -\frac{i\gamma}{\hbar} J_{x} \cdot \exp -\frac{i\phi}{\hbar} J_{y} \cdot \exp -\frac{i\alpha}{\hbar} J_{z} \]

where \(J_{x}, J_{y} \) and \(J_{z} \) are defined in the frames \(S, S' \) and \(S'' \) (cf. 1.2). It is convenient to write
\(D(a \beta \gamma) \) in terms of operators defined in the original frame \(S \). Similarity transformations on the \(J'_y \) and \(J'_z \) give

\[
(3.1.4) \quad D(a \beta \gamma) = \exp \left(\frac{i \alpha}{\hbar} J_z \right) \exp \left(\frac{i \beta}{\hbar} J_y \right) \exp \left(\frac{i \gamma}{\hbar} J_z \right).
\]

Now the matrices of \(J_z \) are assumed diagonal; we obtain therefore for the matrix elements of \(D(a \beta \gamma) \)

\[
(3.1.5) \quad \mathcal{D}^{(j)}_{mm'}(a \beta \gamma) = e^{-i m \alpha} \mathcal{D}^{(j)}_{mm'}(\beta) e^{-i m' \gamma}
\]

where \(\mathcal{D}^{(j)}_{mm'}(\beta) = \mathcal{D}^{(j)}_{mm'}(0 \beta 0) = (jm| \exp \left(\frac{i \beta}{\hbar} J_y | jm' \right) \)

remains to be computed.

Now it is a straightforward matter to find \(\mathcal{D}^{\frac{1}{2}}(\beta) \) from the Pauli matrix for \(J_y(1.4.6) \); we have

\[
(3.1.6) \quad \mathcal{D}^{\frac{1}{2}}(\beta) = -\frac{1}{2} \begin{array}{cc}
\cos \beta/2 & \sin \beta/2 \\
\sin \beta/2 & \cos \beta/2
\end{array} + \frac{1}{2}
\]

The angular momentum eigenvectors for general \(j \) may be expressed as symmetric functions of spinors (see Weyl(1931) etc.). We may obtain the general matrix elements by consideration of the transformations of such functions when the spinors undergo \((3.1.6)\); -

\[
(3.1.7) \quad \mathcal{D}^{(j)}_{mm}(\beta) = \\
= [(j+m)! (j-m)! (j+m')! (j-m')!]^{\frac{1}{2}} \sum_{\sigma} \frac{(j-m-\sigma)! [\cos \frac{\beta}{2}]^{2\sigma+m+m'} [\sin \frac{\beta}{2}]^{2j-m-m'} (-1)^{2j-m-m' - 2\kappa}}{(j-m-\sigma)! (j+m+\sigma)! (j+m')! (j-m')!}
\]
(3.1.7) gives us, for example, in the case \(j = 1 \), the matrix \(\mathcal{D}^{(1)}(\beta) : - \\

\begin{array}{ccc}
-1 & 0 & +1 \\
-1 & \frac{1}{2}(1 + \cos \beta) & \frac{1}{2}\sin \beta & \frac{1}{2}(1 - \cos \beta) \\
0 & -\frac{1}{2}\sin \beta & \cos \beta & \frac{1}{2}\sin \beta \\
+1 & \frac{1}{2}(1 - \cos \beta) & -\frac{1}{2}\sin \beta & \frac{1}{2}(1 + \cos \beta)
\end{array}

These matrix elements may be expressed in terms of Jacobi polynomials (cf. Szegő (1939), Erdélyi (1953))

\[
\mathcal{D}^{(j)}_{\nu \mu', \nu'}(\beta) = \frac{((j+m)!(j-m)!)^{1/2}}{((j+\nu')!(j+\mu')!)^{1/2}} \left[\cos \beta \right]^{\nu + \mu'} \left[-\sin \beta \right]^{\nu - \mu'} \left[\sin \beta \right]^{m+\mu'} \frac{\sin (m+\mu')}{\sin (j+\mu')} (\cos \beta)^{m+\mu'}
\]

if \(m + \mu' > 0 \); a similar expression exists for \(m + \mu' < 0 \).

3.2. The symmetries of the matrix elements of finite rotations.

(3.2.1) \(\mathcal{D}^{(j)}_{\nu \mu', \nu'}(-\beta) = \mathcal{D}^{(j)}_{\nu \mu', \nu'}(\beta) \)

This follows from the facts (i) \(\mathcal{D}(-\beta) = \mathcal{D}^{-1}(\beta) \); (ii) the matrices are unitary; (iii) the \(\mathcal{D}^{(j)}_{\nu \mu', \nu'}(\beta) \) are real.

(3.2.2)

\(\mathcal{D}^{(j)}_{\nu \mu', \nu'}(\pi) = (-1)^{j+\mu'} \delta_{\nu, -\mu'}; \mathcal{D}^{(j)}_{\nu \mu', \nu'}(-\pi) = (-1)^{j-\mu} \delta_{\nu, -\mu'} \)

- special cases of (3.1.7)*

* Note that \(\mathcal{D}(\pi) \cdot \mathcal{D}(\pi) \neq \mathcal{D}(0) \) for the spin \((\frac{1}{2}, \text{odd integer}) \) representations.
(3.2.3) \[\mathcal{D}^{(j)}_{mm'}(\beta + \pi) = (-1)^{j+m} \mathcal{D}^{(j)}_{-m'-m}(\beta) \]

(3.2.4) \[\mathcal{D}^{(j)}_{mm'}(\pi - \beta) = (-1)^{j+m} \mathcal{D}^{(j)}_{m'-m}(\beta) \]

following from the application of (3.2.2) to the relations \(D(\beta + \pi) = D(\beta) \cdot D(\pi) \) etc.

In a similar way we may obtain

(3.2.5) \[\mathcal{D}^{(j)}_{mm'}(\beta) = (-1)^{m-m'} \mathcal{D}^{(j)}_{-m'-m}(\beta) \]

(3.2.6) \[\mathcal{D}^{(j)}_{mm'}(\beta) = (-1)^{m-m'} \mathcal{D}^{(j)}_{m'-m}(\beta) \]

It is easy to extend the symmetry relations to include the complete matrix elements \(\mathcal{D}^{(j)}_{mm'}(a \beta \gamma) \) by use of (3.1.5). For example, we have

\[\mathcal{D}^{(j)}_{mm'}(a \beta \gamma) = (-1)^{j} \mathcal{D}^{(j)}_{m-m'}(a - \pi, \pi - \beta, \gamma) \]

3.3. Connection of the \(\mathcal{D}^{(j)}_{mm'} \) with the associated Legendre functions.

The matrix elements are simplified when one or both of \(m, m' \) is zero. We may use the properties of the Jacobi polynomials (cf. Szegö loc. cit.) to show that

(3.3.1) \[\mathcal{D}^{(j)}_{\mu \nu}(\beta) = \left[\frac{(\ell - m)}{(\ell + m)} \right]^{1/2} (-1)^m \frac{\ell^m}{\ell} (\cos \beta) \]

i.e.

(3.3.2) \[\mathcal{D}^{(j)}_{\mu \nu}(a \beta \gamma) = \left(\frac{4 \pi}{2 \ell + 1} \right)^{1/2} Y_{\ell m}^*(\beta, \gamma) \]
In particular,

\[(3.3.3) \quad J^{(\epsilon)}_{\alpha\beta}(\alpha\beta\gamma) = P^{(\gamma)}_{\epsilon}(\cos\beta)\]

3.4. The phases of the $J^{(j)}_{\mu\nu}(\alpha\beta\gamma)$

The phases depend on (i) the convention adopted in defining the Euler angles; (ii) the nature of the transformation which the J^\primes are supposed to represent, i.e. whether one supposes a rotation of the frame of axes or of the field; (iii) the choice of phases of the non-diagonal matrix elements of J_y.

Our matrix elements differ from those of, for example, Wigner (1931), since he adopted a left-handed frame of axes; however our matrices $J^{(j)}(\beta)$ are numerically equal to the transpose of the corresponding matrices of Wigner.

3.5. Integrals and other expressions involving the $J^{(j)}_{\mu\nu}(\alpha\beta\gamma)$

The orthogonality and normalisation of the $J^{(j)}_{\mu\nu}$ is easily checked by reference to the properties of the Jacobi polynomials (Szegö 1939). We obtain

\[(3.5.1) \quad \frac{1}{8\pi^2} \int_0^{2\pi} \int_0^{2\pi} \int_0^\pi J^{(j_1)}(\alpha\beta\gamma) J^{(j_2)}(\alpha\beta\gamma) \sin\beta \, d\beta \, d\gamma = \delta_{m_1 m_2} \delta_{m_1 m_2} \delta_{j_1 j_2} \cdot \frac{1}{2j_1 + 1}\]

Products of the matrix elements may be reduced
by use of the vector-coupling coefficients; it is
easily shown by consideration of the angular momentum
eigenvectors implicitly involved that

\[(3.5.2) \quad \mathcal{D}(j_1)(\omega) \mathcal{D}(j_2)(\omega) = \]

\[= \sum_{jmm'} (j_1 j_2 m_2 | j_1 j_2 jm) \mathcal{D}(j_1)(\omega) (j_1 j_2 jm' | j_1 j_2 m_2) \]

where \((\omega)\) symbolises \((\alpha \beta \gamma)\).

This may be usefully expressed in terms of 3-j
symbols \((2.4.1)\) : -

\[(3.5.3) \quad \mathcal{D}(j_1)(\omega) \mathcal{D}(j_2)(\omega) = \]

\[= \sum_{jmm'} (2j+1) \begin{pmatrix} j_1 j_2 j \\ m_1 m_2 m \end{pmatrix} \mathcal{D}(j_1)(\omega) \begin{pmatrix} j_1 j_2 j' \\ m_1' m_2' m' \end{pmatrix} \]

Then \((3.5.1)\) and \((3.5.3)\) give the value of the
integral over a product of 3 \(\mathcal{D}\)'s : -

\[(3.5.4) \quad \frac{1}{8\pi^2} \int_0^{2\pi} \int_0^\pi \mathcal{D}(j_1)(\alpha \beta \gamma) \mathcal{D}(j_2)(\alpha \beta \gamma) \mathcal{D}(j_3)(\alpha \beta \gamma) \sin \delta d\beta d\delta dy \]

\[= \begin{pmatrix} j_1 j_2 j_3 \\ m_1 m_2 m_3 \end{pmatrix} \begin{pmatrix} j_1 j_2 j_3 \\ m_4 m_5 m_6 \end{pmatrix} \]

This integral may be specialised by means of \((3.3.2)\) and
\((3.3.3)\), giving the useful results : -

\[(3.5.5) \quad \int_0^{2\pi} \int_0^\pi Y_{\ell_1 m_1}(\theta \phi) Y_{\ell_2 m_2}(\theta \phi) Y_{\ell_3 m_3}(\theta \phi) \sin \theta d\theta d\phi \]

\[= \left[\frac{(2\ell_1+1)(2\ell_2+1)(2\ell_3+1)}{4\pi} \right] \frac{1}{2} \begin{pmatrix} \ell_1 \ell_2 \ell_3 \\ m_4 m_5 m_6 \end{pmatrix} \begin{pmatrix} \ell_1 \ell_2 \ell_3 \\ 0 0 0 \end{pmatrix} \]
\begin{align*}
\frac{1}{2} \int_0^\pi P_{\ell_1}(\cos \theta) \ P_{\ell_2}(\cos \theta) \ P_{\ell_3}(\cos \theta) \ \sin \theta \ d\theta &= (\ell_1 \ell_2 \ell_3)_{0}^{0}^{0}^{0}^{0}^{0}^{0}^{2} \\
\text{The 3-j symbols with } m_1 = m_2 = m_3 = 0 \text{ may be evaluated by} \\
\text{the formula in table II.}
\end{align*}

A similar modification of (3.5.2) gives an expression for the product of two spherical harmonics of the same angles:

\begin{align*}
(3.5.7) \quad & Y_{\ell_1 m_1}(\Theta \phi) \ Y_{\ell_2 m_2}(\Theta \phi) \\
& = \sum_{\ell m} \left[\frac{(2\ell_1 + 1)(2\ell_2 + 1)(2\ell + 1)}{4\pi} \right]^\frac{1}{2} \left(\ell_1 \ell_2 \ell \atop m_1 m_2 m \right) Y^*_{\ell m}(\Theta \phi) \left(\ell_1 \ell_2 \ell \atop 0 \atop 0 \atop 0 \atop 0 \atop 0 \atop 0 \right)
\end{align*}

If the rotation \(\omega \) is the result of performing successively the rotations \(\omega_1 \) and \(\omega_2 \) (in that order), we have

\[\sum_{m'} D_{\ell m_1 m_2 m'}(\omega_2 \omega_1) = D_{\ell m m'}(\omega) \]

We set \(j = \ell = \text{integer} \) and \(m = m' = 0 \) and obtain the spherical harmonic addition theorem:

\begin{align*}
(3.5.8) \quad & \frac{4\pi}{2\ell + 1} \sum_{m} Y_{\ell m}^*(\Theta \phi) \ Y_{\ell m}(\Theta \phi') = P_{\ell}(\cos \beta) \\
\text{where } \cos \beta &= \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos (\phi - \phi')
\end{align*}

\subsection*{3.6. Recursion relation for the \(D_{mn}(\beta) \).}

The relation is obtained from an expression similar to (3.5.2); the 3-j symbols arising are evaluated by use of table II. (see p. 65).
\begin{align*}
\mathcal{D}_{nm'}(\beta) &= \\
&= \left(\frac{j-m}{j-m'}\right)^{1/2} \mathcal{D}_{m+1/2}^{(j+1)}(\beta) \cdot \cos \beta / 2 - \left(\frac{j+m}{j-m'}\right)^{1/2} \mathcal{D}_{m'-1/2}^{(j-1)}(\beta) \cdot \sin \beta / 2
\end{align*}

The relation is of course useless when \(n' = j \); in this case we evaluate \(\mathcal{D}_{-m-j}(\beta) \), using (3.2.5).

3.7. Computation of the \(\mathcal{D}_{nm'}(\beta) \)

A similarity transformation may be employed to express a \(D(0 \beta 0) \) in terms of a rotation about the \(z \)-axis, i.e. a \(D(\beta 0 0) \), which is diagonal in our representations:

\begin{align*}
(3.7.1) \quad D(0 \beta 0) &= D(-\frac{\pi}{2} 0 0) D(0 0 0) D(\beta 0 0) D(0 0 0) D(0 0 0) D(0 0 0).
\end{align*}

Thus the problem of computing any matrix \(\mathcal{D}(j)(\beta) \) is reduced to the problem of computing the one matrix \(\mathcal{D}(j)(\frac{\pi}{2}) \), which we symbolise by \(\Delta(j) \). These matrices \(\Delta(j) \) are easily built up by use of (3.6.1), and a number of them are exhibited in table IV (see p. 69).

We now have from (3.7.1) that

\begin{align*}
\mathcal{D}_{nm'}(\beta) &= \sum_{m''} e^{im\pi/2} \Delta_{m'm}^{(j)} e^{-im''\beta} \Delta_{m''m'}^{(j)} e^{-im'\pi/2} \\
&= \Delta_{om}^{(j)} \Delta_{om'}^{(j)}(o) + 2 \sum_{m'' > 0} \Delta_{m'm}^{(j)} \Delta_{m'm'}^{(j)}(m''\beta)
\end{align*}

* based on method of Wigner (1951)
where \(\kappa(x) = \cos x \) if \(m-m' = 0 \pmod{4} \)
\[= \sin x = 1 \pmod{4} \]
\[= -\cos x = 2 \pmod{4} \]
\[= -\sin x = 3 \pmod{4} \].

3.8. The symmetric top in quantum mechanics.

Consider a rigid body with an axis of symmetry, which is free to rotate about a point on this axis, which may be supposed to coincide with the z-axis of the frame of axes fixed in the body. The moment of inertia about the z-axis is represented by \(I_3 \), and that about any axis perpendicular to it by \(I_1 \).

The kinetic energy \(T \) is given in terms of the Euler angles describing the orientation of the body by *:

\[
T = \frac{1}{2} \left\{ I_1 (\dot{\beta}^2 + \dot{\alpha}^2 \sin^2 \beta) + I_3 (\dot{\gamma}^2 + \dot{\alpha} \cos \beta)^2 \right\}
\]

The Schrödinger equation obtained by replacing the generalised momenta \(p_\alpha = \frac{\partial T}{\partial \dot{\alpha}} \) etc. in the Hamiltonian by \(-i\hbar \frac{\partial}{\partial \alpha}\) etc. is:

\[
-\frac{\hbar^2}{2I_1} \left\{ \frac{\partial^2}{\partial \beta^2} + \cot \beta \frac{\partial}{\partial \beta} + \left(\frac{I_1}{I_3} + \cot^2 \beta \right) \frac{\partial^2}{\partial \gamma^2} + \frac{1}{\sin^2 \beta} \frac{\partial^2}{\partial \alpha^2} \right\} \psi(\alpha \beta \gamma) = E \psi(\alpha \beta \gamma)
\]

If we set \(I_1 = I_3 \), this equation reduces to the form

* cf. Klein and Sommerfeld (1914), Reiche and Rademacher (1926), Casimir (1931).
$L^2 \Psi (a\beta y) = \lambda \Psi (a\beta y)$

where L^2 is given by (1.3.3).

It may be shown that the eigenfunctions of this equation are in fact the $\mathcal{J}^{(j)}_{\text{mm}}(a\beta y)$. We may effect a separation of (3.8.2) even when $I_1 \neq I_3$; we write $\Psi(a\beta y) = B(\beta) \exp i(m \alpha + k \gamma)$.

The equation in β still gives us $\mathcal{J}^{(e)}_{\text{mk}}(\beta)$; however the energies corresponding to the triads e, m, k are now different from the case of $I_1 = I_3$.

4.1. The compounding of vector-coupling coefficients.

We find frequently in quantum mechanical problems that we have to deal with the addition of a number of angular momenta; this involves the summation of products of vector-coupling coefficients, the summation being over the magnetic quantum numbers m. Now the vector-coupling coefficients are not invariant under rotations of the physical system (we shall see shortly exactly how they transform); but the quantities which we wish to compute -- such as energies and transition probabilities -- are usually scalars. It follows that the vector-coupling coefficients are associated in such a way that they form scalars, and it will be our purpose to describe how this happens. The most important result of this study is that in practice the tedious computation of masses of vector-coupling coefficients is replaced by the evaluation of relatively few invariant quantities.

It is easy to show from the definition of the 3-j symbol (2.4.1) that the expression

$$\sum_{m_1, m_2, m_3} \psi(j_1, m_1) \psi(j_2, m_2) \psi(j_3, m_3) \begin{pmatrix} j_1 & j_2 & j_3 \\ m_1 & m_2 & m_3 \end{pmatrix}$$

is invariant under all rotations of the frame of coordinates.
It follows that the set of \((2j_1+1)(2j_2+1)(2j_3+1)\) 3-j symbols with given values of \(j_1, j_2\) and \(j_3\) and all possible values of \(m_1, m_2\) and \(m_3\) consistent with them may be regarded as a tensor which transforms under rotations contragrediently to the set of products \(\psi(j_1m_1)\psi(j_2m_2)\psi(j_3m_3)\). In analogy with the conventional tensor theory, we may define a metric tensor and a corresponding contraction process. The metric tensor is obtained by considering the coupling of two equal angular momenta to give resultant zero:

\[
\sum_m \psi_1 jm)\psi_2 (j-m)(-1)^{j-m} = (2j+1)^{1/2} \psi(00)
\]

(cf. (2.3.1)). Hence if we define

\[
(4.1.1) \binom{j}{m \ m'} = (-1)^{j+m} \delta_{m_2-m'}
\]

we have

\[
\sum_{mm'} \psi_1 jm) \psi_2 (jm') \binom{j}{m \ m'} = \text{invariant}.
\]

This quantity \(\binom{j}{m \ m'}\) thus behaves as a metric tensor (but only in the \((2j+1)\)-dimensional space of the eigenvectors \(\psi(jm), -j \leq m \leq j\)). We may use the contragredient tensor (which is identical with \(\binom{j}{mm'}\)) to carry out contractions of the indices — the magnetic quantum numbers — in products of 3-j symbols. We must remember that the contractions may only occur between 3-j symbols which contain the same \(j\) values. The simplest process of this kind is the contraction of a 3-j symbol with another identical symbol:

\[
\sum_m \binom{j_1\ j_2 \ j_3}{m_1\ m_2\ m_3} \binom{j_1\ j_2 \ j_3}{m_4\ m_2\ m_3} = 1
\]

Now we ask, what is the next combination of products of 3-j symbols in which contractions may be carried out to give a resultant scalar? We represent a 3-j symbol by
a point which is the vertex of 3 lines, each of which represents a j-value. Each of these j-values must be contracted with a similar j from another $3-j$ symbol; i.e. each line must terminate at another vertex. It is clear that, apart from the trivial case mentioned above, the simplest diagram satisfying the conditions is a tetrahedron. That is, we may make a sum of products of 4 $3-j$ symbols, which contain among them 6 different j-values, and the summation may be carried out over the possible m-values in such a way that a scalar quantity is the result.

Let us then draw a tetrahedron, and associate with each vertex a $3-j$ symbol, and with each edge a j-value (Fig. 1). The 3 j-values of each $3-j$ symbol are the j-values of the edges meeting at the vertex in question.

We may construct an alternative diagram, in which the j-values associated with each $3-j$ symbol occupy the edges of a face (Fig. 2). Since the $3-j$ symbols are only non-zero when the corresponding j-values form triangles, Fig. 2 has a metrical significance; the quantity we are constructing is only non-zero when the 6 j-values chosen correspond to the lengths of the sides of a tetrahedron. This type of diagram is, however, of no use when we come to consider the $9-j$ symbol.

The contraction process is
carried out by a definite convention; a different convention would give a similar quantity which might differ by a sign from the one which we construct. The result of this contraction process, which is a scalar quantity, is called a 6-j symbol*, and is defined by

\[
\begin{align*}
\left\{ j_1 j_2 j_3 \mid \ell_1 \ell_2 \ell_3 \right\} &= \\
&= \sum_{\text{all lower indices}} \left(j_1 j_2 j_3 \right) \left(j_1 \ell_2 \ell_3 \right) \left(j_1 j_2 \ell_3 \right)
\end{align*}
\]

\times \left(j_1 j_2 j_3 \right) \left(j_1 j_2 j_3 \right)

\times (-1)^{j_1+j_2+j_3+\ell_1+\ell_2+\ell_3+\lambda_1+\lambda_2+\lambda_3}

\]

Note the convention by which the contraction is carried out for half odd integer \(j \) the metric tensor is skew-symmetric and the indices may not be permuted without a change of sign.

Use of (2.4,2) and the fact that one of the indices of summation is free makes it possible to replace the summation over 6 indices in (4.1,2) by a summation over 2. The 6-j symbol is then given in terms of the V-C coefficients by means of (2.4,1)

\[
\begin{align*}
\left\{ j_1 j_2 j_3 \mid \ell_1 \ell_2 \ell_3 \right\} &= \\
&= \frac{(-1)^{j_1+j_2+\ell_1+\ell_2}}{(2\ell_3+1)(2\ell_3+1)} \sum_{m_1 m_2} \left(j_1 m_1, j_2 m_2 \mid j_1 j_2 \right) \left(j_1 m_1, j_2 m_2 \right) \left(j_3 m_1, m_2 \right) \left(j_3 m_1, m_2 \right) \times
\end{align*}
\]

\times \left(j_2 m_2, m_1, m_2 \right) \left(j_2 m_2, m_1, m_2 \right) \times \left(j_1 m_1, m_2, m_1 \right) \left(j_1 m_1, m_2, m_1 \right) \times \left(j_1 m_1, m_2, m_1 \right)

\]

* Wigner (1951); with a different phase it is known as a Racah, or \(W \)-coefficient (cf. §4.5) (Racah 1942)
where \(-\ell_2 \leq m \leq \ell_2\).

4.2 Symmetries of the 6-j symbol.

It follows from the symmetry properties of the 3-j symbols that

\[
\begin{align*}
\begin{bmatrix} j_1, j_2, j_3 \\ \ell_1, \ell_2, \ell_3 \end{bmatrix} & = \begin{bmatrix} j_2, j_3, j_1 \\ \ell_2, \ell_3, \ell_1 \end{bmatrix} = \begin{bmatrix} j_3, j_1, j_2 \\ \ell_3, \ell_1, \ell_2 \end{bmatrix} \\
& = \begin{bmatrix} j_2, j_1, j_3 \\ \ell_2, \ell_1, \ell_3 \end{bmatrix} = \begin{bmatrix} j_1, j_3, j_2 \\ \ell_1, \ell_3, \ell_2 \end{bmatrix} = \begin{bmatrix} j_1, j_2, j_3 \\ \ell_1, \ell_2, \ell_3 \end{bmatrix}
\end{align*}
\]

I.e. the 6-j symbol is left invariant by any interchange of the columns. We have also that the 6 j symbol is invariant against interchange of the upper and lower arguments in each of any two columns.

E.g.

\[
\begin{align*}
\begin{bmatrix} j_1, j_2, j_3 \\ \ell_1, \ell_2, \ell_3 \end{bmatrix} & = \begin{bmatrix} j_1, \ell_2, \ell_3 \\ \ell_1, j_2, j_3 \end{bmatrix}
\end{align*}
\]

In fact there are 24 operations generated by interchanges of type (4.2.1) or (4.2.2) which leave a 6-j symbol invariant, and these form a group isomorphic with the symmetry group of a regular tetrahedron. Any of these operations corresponds to a rotation and/or reflection of the tetrahedron whose sides correspond to the 6 values of \(j\).

4.3 Transformations between different coupling schemes of three angular momenta.

The states of a system built up from two parts
whose states are labelled by quantum numbers \(\gamma_1, j_1, m_1 \) and \(\gamma_2, j_2, m_2 \) are completely specified by \(\gamma_1, \gamma_2, j_1, j_2, j m \), where \(j \) and \(m \) are obtained by the usual vector addition process. However if we put together three parts, several states may occur with the same eigenvalues of the operators associated with the total angular momentum of the system, and a complete characterisation of the states requires the specification of the type of coupling carried out, and of the eigenvalues of the intermediate states.

We may for instance couple first \(j_1 \) and \(j_2 \) giving a resultant \(j' \) and couple \(j_3 \) to this. The eigenvectors of \(j, m \) are then

\[
\psi(j, j_2(j'), j_3jm) = \sum_{m_3,m'} \psi(j, j_2 j'm') \phi(j_3 m_3)(j', j_3 m_3 m') j', j_3 jm
\]

\[
= \sum_{m_1,m_2,m_3} \phi(j_1 m_1) \phi(j_2 m_2) \phi(j_3 m_3) (j_1 j_2 m_1 m_2 | j_1 j_2 j'm') (j_3 m_3 | j', j_3 jm)
\]

On the other hand we may add \(j_1 \) to the resultant \(j'' \) of coupling \(j_2 \) and \(j_3 \), giving

\[
\psi(j_1, j_2 j_3(j''), jm) = \sum_{m_1,m_2,m_3,m''} \phi(j_1 m_1) \phi(j_2 m_2) \phi(j_3 m_3)
\]

\[
* (j_2 j_3 m_2 m_3 | j_2 j_3 j'' m'') (j_1, j_1 m_1 m'' | j_1, j'' jm)
\]

These two schemes of eigenvectors are connected by a unitary transformation which is independent of the z-component \(m \) of the total angular momentum \(j \).
\[(4.3.3) \quad (j_1 j_2 \theta') j_3 j \mid j_1 j_2 j_3 (j^\nu) \mid j) = \]
\[\sum_{m_1 m_2 m_3 m} (j' j_3 j m \mid j' j_3 m' m_3) (j_1 j_2 j' m' \mid j_1 j_2 m_1 m_2) (j_2 j_3 m_2 m_3 \mid j_2 j_3 j^\nu m^\nu) (j_1 j^\nu m^\nu \mid j_1 j^\nu j m)\]

Use of (2.4.1) and (4.1.2) gives us the transformation coefficients in terms of 6-\(j\) symbols.

\[(4.3.4) \quad (j_1 j_2 (j') j_3 j \mid j_1 j_2 j_3 (j^\nu) \mid j) = (-1)^{j_1 + j_2 + j + j_3} [(2j' + 1)(2j^\nu + 1)]^{\frac{1}{2}} \left[\begin{array}{c} j_1 j_2 j' \\ j_3 j \end{array} \right]^{j^\nu} \]

If the order of the angular momenta is changed instead we get in the same way

\[(4.3.5) \quad (j_1 j_2 (j') j_3 j \mid j_1 j_2 j_3 (j^\nu) \mid j) = (-1)^{j_2 + j_3 + j' + j^\nu} [(2j' + 1)(2j^\nu + 1)]^{\frac{1}{2}} \left[\begin{array}{c} j_3 j j' \\ j_2 j_1 \end{array} \right]^{j^\nu} \]

Similar formulae are given by Racah (1943) p. 368.

4.4 Algebraic relations between 6-\(j\) symbols and between 6-\(j\) and 3-\(j\) symbols.

We may make use of the defining equation (4.1.2) for the 6-\(j\) symbol and the symmetry and orthogonality relations of the 3-\(j\) symbols (2.4.3), (2.4.4), (2.4.5) and (2.4.6) to obtain relations between 6-\(j\) symbols.

Using the orthogonality of the 3-\(j\) symbols, we may write (4.1.2) as
(4.4.1) \[\sum_{m' \mu'} \binom{j_1 j_2 j'}{m_1 m_2 m'} \binom{j_3 j_4 j'}{m_3 m_4 m} \binom{j'}{m' \mu'} = \]

\[= \sum_{j m \mu} (-1)^{2 j' + (2 j + 1)} \binom{j_1 j_2 j'}{j_2 j_4 j} \binom{j_3 j_4 j}{(m_3 m_4 m)} \binom{j_1 j_4 j}{m \mu} \]

If we interchange the indices 1 and 3 in (4.4.1), we may show by comparison of the original equation and the new one, that

(4.4.2)

\[\sum_{j} (2j+1)(2j''+1) \binom{j_1 j_2 j'}{j_3 j_4 j} \binom{j_3 j_4 j}{j_1 j_4 j''} = \delta_{j' j''} \]

It follows from (4.2.2) that

(4.4.3) \[[(2j+1)(2j'+1)]^{1/2} \binom{j_1 j_2 j'}{j_3 j_4 j} \]

forms a real orthogonal matrix, rows and columns being labelled by \(j \) and \(j' \).

In a similar way we get the relation

(4.4.4)

\[\sum_{j} (-1)^{j+j'+j''} (2j+1) \binom{j_1 j_2 j'}{j_3 j_4 j} \binom{j_3 j_4 j}{j_1 j_4 j''} = \binom{j_2 j_4 j'}{j_3 j_4 j''} \]

Another useful relation is (cf. Elliott 1953):

(4.4.5)

\[\binom{j_1 j_2 j_3}{\ell_1 \ell_2 \ell_3} \binom{j_1 j_2 j_3}{\ell_4 \ell_5 \ell_6} = \sum_{\kappa} (-1)^{j_1+j_2+j_3+\ell_1+\ell_2+\ell_3+\ell_4+\ell_5+\ell_6+\ell+\kappa} (2\kappa+1) \times \]

\[\times \binom{\ell_1 \kappa \ell_1'}{\ell_4 j_2 \ell_3} \binom{\ell_1 \kappa \ell_1'}{\ell_4 j_3 \ell_1} \binom{\ell_3 \kappa \ell_3'}{\ell_5 j_1 \ell_2} \]
Wigner (1951) gives another expression for the product of two 6-j symbols:

\[(4.4.6) \begin{pmatrix} j_1 j_2 j_3 \\ \ell_1 \ell_2 \ell_3 \end{pmatrix} \begin{pmatrix} j_1 j_2 j_3 \\ \ell_4 \ell_5 \ell_6 \end{pmatrix} = \]

\[= \sum_{\kappa \ell} (-1)^{j_1+2\ell}(2\kappa+1)(2\ell+1) \begin{pmatrix} j_1 \ell_2 \ell_3 \\ \kappa \ell \ell_4 \ell_5 \end{pmatrix} \begin{pmatrix} j_4 \ell_5 \ell_6 \\ \kappa \ell \ell_2 \ell_3 \end{pmatrix} \begin{pmatrix} \ell_1 \ell_4 \ell_5 \\ \ell_1 \ell_2 \ell_3 \end{pmatrix} \begin{pmatrix} \ell_1 \ell_4 \ell_5 \\ \ell_1 \ell_2 \ell_3 \end{pmatrix} \begin{pmatrix} \ell_1 \ell_4 \ell_5 \\ \ell_1 \ell_2 \ell_3 \end{pmatrix} \]

The relation (4.4.1) may be written more conveniently as

\[(4.4.7) \sum_{m'} (-1)^{j' + m'} \begin{pmatrix} j_1 j_2 j' \\ m_1 m_2 m' \end{pmatrix} \begin{pmatrix} j_3 j_4 j' \\ m_3 m_4 -m' \end{pmatrix} = \]

\[= \sum_{j m} (-1)^{j+2m} (2j+1) \begin{pmatrix} j_1 j_2 j' \\ j_3 j_4 j \end{pmatrix} \begin{pmatrix} j_3 j_4 j \\ m_3 m_4 m \end{pmatrix} \begin{pmatrix} j_1 j_2 j' \\ m_1 m_2 -m \end{pmatrix} \]

We conclude this section with an expression for a certain sum of products of three 3-j symbols:

\[(4.4.8) \sum_{\mu_1 \mu_2 \mu_3} (-1)^{\ell_2+\ell_3+\mu_1+\mu_2+\mu_3} \begin{pmatrix} j_1 \ell_2 \ell_3 \\ m_1 \mu_2 -\mu_3 \end{pmatrix} \begin{pmatrix} \ell_1 \ell_2 \ell_3 \\ -\mu_1 \mu_2 \mu_3 \end{pmatrix} \begin{pmatrix} \ell_1 \ell_2 \ell_3 \\ \mu_1 -\mu_2 \mu_3 \end{pmatrix} = \]

\[= \begin{pmatrix} j_1 j_2 j_3 \\ m_1 m_2 m_3 \end{pmatrix} \begin{pmatrix} j_1 j_2 j_3 \\ \ell_1 \ell_2 \ell_3 \end{pmatrix} \]
4.5 Relations between the 6-j symbol and other notations.

\[
(4.5.1) \quad
\frac{j_1 j_2 j_3}{\ell_1 \ell_2 \ell_3} = (-1)^{j_1 + j_2 + \ell_1 + \ell_2} \ \mathcal{W}(j_1 j_2 \ell_2 \ell_1; j_3 \ell_3) \quad \text{(Racah 1942)}
\]

\[
(4.5.2) \quad = (-1)^{j_1 + j_2 + \ell_1 + \ell_2} \ \frac{U(j_1 j_2 \ell_2 \ell_1; j_3 \ell_3)}{[(2j_3+1)(2\ell_3+1)]^{1/2}} \quad \text{(Jahn 1951)}
\]

Wigner's choice of phase of the 6-j symbol has the advantage that the resulting quantity has a much greater symmetry than those defined otherwise (cf. Racah, Jahn loc. cit.). A related coefficient, used in angular distribution problems, is defined by Biedenharn, Blatt and Rose (1952). It is

\[
(4.5.3) \quad Z(abcd; ef) = i^{f-a+e}\frac{1}{(2a+1)(2b+1)(2c+1)(2d+1)}\mathcal{W}(abcd;ef)(ae00|ae00)
\]

4.6 Computation of numerical values of 6-j symbols

6-j symbols occur frequently in the final form of physical calculations. It is therefore important to have methods for numerical computation of these quantities. The general formula may be obtained by substituting the expression (2.2.9) for the V-C coefficients into the defining equation (4.1.2).

A tedious calculation (cf. Racah (1942)) gives us
\[(4.6)\]

\[\begin{align*}
\langle j_1 j_2 j_3 | \epsilon_1 \epsilon_2 \epsilon_3 \rangle &= \\
&= \Delta(j_1 j_2 j_3)\Delta(j_1 \epsilon_2 \epsilon_3)\Delta(\epsilon_1 j_2 j_3) w \bigg\{ j_1 j_2 j_3 \bigg\} \epsilon_1 \epsilon_2 \epsilon_3 \\
&= \Delta(abc) \left[\frac{(a+b-c)! (a-b+c)! (-a+b+c)!}{(a+b+c+1)!} \right]^{1/2}
\end{align*}\]

where \(\Delta(abc)\) is defined as:

\[\Delta(abc) = \left[\frac{(a+b-c)! (a-b+c)! (-a+b+c)!}{(a+b+c+1)!} \right]^{1/2}\]

and \(w \bigg\{ j_1 j_2 j_3 \bigg\} \epsilon_1 \epsilon_2 \epsilon_3 \) is:

\[\begin{align*}
w \bigg\{ j_1 j_2 j_3 \bigg\} \epsilon_1 \epsilon_2 \epsilon_3 &= \\
&= \sum_{z} \frac{(-1)^z}{(z-j_1-j_2-j_3)! (z-j_1-\epsilon_2-\epsilon_3)! (z-\epsilon_1-j_2-\epsilon_3)! (z-\epsilon_1-\epsilon_2-j_3) x} \\
&\quad \times (j_1+j_2+\epsilon_1+\epsilon_2+z)! (j_2+j_3+\epsilon_2+\epsilon_3-z)! (j_3+j_1+\epsilon_3+\epsilon_1-z)!
\end{align*}\]

where the sum is over positive integer values of \(z\) such that no factorial in the denominator has a negative argument.

A recursion relation may be obtained from \((4.4.3)\) by which we may build up 6-\(j\) symbols from ones with smaller arguments:

\[(4.6.2)\]

\[\begin{align*}
\begin{pmatrix} p & q & r \\ s & t & u \end{pmatrix} &= [(p+q+r+1)(q+r-p)(r+s+t+1)(r+s-t)]^{-1/2} \times \\
&\quad \times \left\{ -2r[(q+s+u+1)(q+s-u)]^{3/2} \begin{pmatrix} p & t & r-\frac{1}{2} \\ s & u & \frac{1}{2} \end{pmatrix} + [(p+q-r+1)(p+r-q)(s+t-r+1)(r+t-s)]^{3/2} \begin{pmatrix} p & q & r-1 \\ s & t & u \end{pmatrix} \right\}
\end{align*}\]

Other similar recursion relations may be obtained from the same formula \((4.4.5)\).
(4.6.3) If one argument vanishes, we have

\[
\begin{bmatrix}
 j_1 j_2 j_3 \\
 0 & j_3 j_2
\end{bmatrix} = (-1)^{j_1+j_2+j_3} [(2j_2+1)(2j_3+1)]^{-\frac{1}{2}}
\]

If one argument is \(\frac{3}{2} \), there are two possibilities:

(4.6.4)

\[
\begin{bmatrix}
 j_1 & j_2 & j_3 \\
 \frac{1}{2} & j_3 - \frac{1}{2} & j_2 + \frac{1}{2}
\end{bmatrix} = (-1)^{j_1+j_2+j_3} \left[\frac{(j_1+j_2-j_3)(j_1+j_2-j_3+1)}{(2j_2+1)(2j_2+2)2j_3(2j_3+1)} \right]^\frac{1}{2}
\]

(4.6.5)

\[
\begin{bmatrix}
 j_1 & j_2 & j_3 \\
 \frac{1}{2} & j_3 - \frac{1}{2} & j_2 - \frac{1}{2}
\end{bmatrix} = (-1)^{j_1+j_2+j_3} \left[\frac{(j_1+j_2+j_3+1)(j_3+j_2-j_1)}{2j_2(2j_2+1)2j_3(2j_3+1)} \right]^\frac{1}{2}
\]

When one of the triangles becomes a line, e.g. \(j_3 = \epsilon_1 + \epsilon_2 \),
the sum in (4.6.1) reduces to 1 term. We have therefore

(4.6.6)

\[
\begin{bmatrix}
 j_1 j_2 \epsilon_1 + \epsilon_2 \\
 \epsilon_1 & \epsilon_2 & \epsilon_3
\end{bmatrix} =
\]

\[
= (-1)^{j_1+j_2+\epsilon_1+\epsilon_2} \left[\frac{(2\epsilon_1)!2(2\epsilon_2)!((j_1+j_2+\epsilon_1+\epsilon_2+1)!((j_1+\epsilon_1+\epsilon_2-j_2)!(j_2+\epsilon_1+\epsilon_2-j_1)!
onumber
\frac{(j_1+\epsilon_1-\epsilon_2)!((j_2+\epsilon_1-\epsilon_1)!}{(\epsilon_1+j_2-\epsilon_3)!(\epsilon_1+\epsilon_2-\epsilon_3)!((\epsilon_1+\epsilon_2+\epsilon_3+1)!})} \right]^\frac{1}{2}
\]

Formulae are exhibited in Table V (see p. 71) which make possible
through the symmetry relations (4.2.1), (4.2.2.) the computation
of all 6-\(j \) symbols with one argument equal to 1, \(\frac{3}{2} \) or 2.
Similar expressions are given for the \(W \)-coefficients with one
argument taking values \(\frac{1}{2} \), 1, \(\frac{3}{2} \), and 2 by Jahn (1951), Biedenharn.
et al. (1952), Biedenharn (1952, and Simon et al. (1954).
The case of 5/2 is given by Edmonds and Flowers (1952).
Extensive numerical tabulations of the W-coefficients
have been made by Biedenharn (1952) and Simon et al.
(1954). In the first-mentioned reference the values
are given as square roots of fractions (i.e. exactly);
in the second they are given to 10 places of decimals.
The Z-coefficient (4.5.3) has been tabulated by
Biedenharn (1953).

For the case where we have two repeated
arguments, Biedenharn (1952) gives a special formula.
We put

\[(4.6.7)\]
\[
\binom{j_1 j_2 j_3}{k_1 k_2 k_3} (-1)^{j_1 + \gamma_1 + j_2} \frac{(2 j_1 - \kappa)! (2 j_2 - \kappa)!}{(2 j_1 + \kappa + 1)! (2 j_2 + \kappa + 1)!} \frac{1}{2} Y_{\kappa} (j_1, j_2)
\]

where the \(Y_{\kappa}\) are given by the recursion relation:

\[(4.6.8)\]
\[
Y_{\kappa+1} (j_1, j_2) = \binom{2\kappa+1}{\kappa+1} Y_{\kappa} (j_1, j_2) Y_{\kappa} (j_1, j_2) - (2\kappa + 1) Y_{\kappa} (j_1, j_2)
\]
\[
- \frac{2}{\kappa+1} (2 j_1 + 1 + \kappa)(2 j_1 + 1 - \kappa)(2 j_2 + 1 + \kappa)(2 j_2 + 1 - \kappa) Y_{\kappa-1} (j_1, j_2)
\]

We have, for example,

\[(4.6.9)\]
\[
Y_0 (j_1, j_2) = 1
\]
\[
Y_1 (j_1, j_2) = -2A
\]
\[
Y_2 (j_1, j_2) = 6 A(A+1) - 8 j_1 (j_1+1) j_2 (j_2+1)
\]

where
(4.6.10) \[A = j(j+1) - j_1(j_1+1) - j_2(j_2+1) \]

4.7 The 9-j symbol

Let us consider the next most complicated diagram of the type discussed in section 4.1. This would appear to be

However this diagram may be shown to be equivalent to the product of two 6-j symbols encountered in (4.4.5); the next really new invariant corresponds to the diagram

It corresponds to the contraction of products of 6 3-j symbols. There are nine different values of \(j \) involved and Wigner has called the invariant formed in this way a 9-j symbol.
The 9-j symbol is defined by the equation

\[(4.7.1)\]

\[
\begin{pmatrix}
J_{11} J_{12} J_{13} \\
J_{21} J_{22} J_{23} \\
J_{31} J_{32} J_{33}
\end{pmatrix} =
\sum_{\text{all } m's}
\begin{pmatrix}
J_{11} J_{12} J_{13} \\
J_{12} J_{22} J_{23} \\
J_{13} J_{23} J_{33}
\end{pmatrix}
\begin{pmatrix}
J_{11} J_{12} J_{13} \\
J_{12} J_{22} J_{23} \\
J_{13} J_{23} J_{33}
\end{pmatrix}
\begin{pmatrix}
J_{11} J_{12} J_{13} \\
J_{12} J_{22} J_{23} \\
J_{13} J_{23} J_{33}
\end{pmatrix}
\times
\begin{pmatrix}
J_{11} J_{12} J_{13} \\
J_{12} J_{22} J_{23} \\
J_{13} J_{23} J_{33}
\end{pmatrix}
\begin{pmatrix}
J_{11} J_{12} J_{13} \\
J_{12} J_{22} J_{23} \\
J_{13} J_{23} J_{33}
\end{pmatrix}
\begin{pmatrix}
J_{11} J_{12} J_{13} \\
J_{12} J_{22} J_{23} \\
J_{13} J_{23} J_{33}
\end{pmatrix}
\]

It will be seen that the triads of the 3-j symbols correspond to the j-values lying in the same row or the same column of the array.

The 9-j symbol is clearly zero unless all these triads satisfy the triangular condition (2.2.1).

The 9-j symbol has 72 symmetry relations which have been discussed by Jahn and Hope (1954). The operations are generated by (i) an odd permutation of the rows or columns, which multiplies the value of the symbol by \((-1)^{\Sigma}\) where \(\Sigma = \sum_{ij} j_{ij}\); (ii) a reflection of the symbol in either of the two diagonals, which leaves it invariant.

The expression (4.7.1) for the 9-j symbol in terms of 3-j symbols may be shown to be equivalent to the sum of products of three 6-j symbols:

\[(4.7.2)\]

\[
\begin{pmatrix}
J_{11} J_{12} J_{13} \\
J_{21} J_{22} J_{23} \\
J_{31} J_{32} J_{33}
\end{pmatrix} =
\sum_{K}(1)^{2K+1}
\begin{pmatrix}
J_{11} J_{21} J_{31} \\
J_{32} J_{33} K
\end{pmatrix}
\begin{pmatrix}
J_{12} J_{22} J_{32} \\
J_{21} K J_{23}
\end{pmatrix}
\begin{pmatrix}
J_{13} J_{23} J_{33} \\
\kappa J_{11} J_{12}
\end{pmatrix}
\]
If one of the arguments is zero the 9-j symbol reduces essentially to a 6-j symbol; the following relations cover all cases.

(4.7.3)
\[
\begin{align*}
\{a \ b \ c\} &= \{f \ d \ b\} = \{c \ f \ a\} = \{d \ c \ e\} = \{f \ b \ d\} = \{a \ e \ c\} = \{b \ d \ f\} = \{e \ 0 \ e\} \\
&= \{b \ a \ e\} = \{e \ d \ c\} = \{a \ b \ f\} = \frac{(-1)^{b+c+e+f}}{[(2e+1)(2f+1)]^2} \{d \ e \ f\}
\end{align*}
\]

In the same way as the 6-j symbol is related to the transformation between different schemes of coupling three angular momenta, so the 9-j symbol is related to the coupling of four angular momenta.

The transformation coefficient between the two schemes I and II is given in an obvious notation by

(4.7.4)
\[
\langle (j_{1,2})j_{1,2}(j_{3,4})j_{3,4}| (j_{1,3})j_{1,3}(j_{2,4})j_{2,4}\rangle = \\
= \frac{1}{[(2j_{1,2}+1)(2j_{3,4}+1)(2j_{1,3}+1)(2j_{2,4}+1)]^{1/2}} \frac{1}{[(2j_{1,3}+1)(2j_{2,4}+1)]^{1/2}} \{j_{1,2}j_{1,2}\}
\]
The 9-j symbol calculus is thus useful in the computation, for instance, of transformation coefficients between schemes of LS and jj-coupling (see Edmonds and Flowers 1952).

A function similar to the 9-j symbol was defined by Hope and Jahn (see Hope 1951, Jahn and Hope 1954). Other functions of this type have been considered by Schwinger (1952), Fano (1952) etc. These functions are related to the 9-j symbol by the relations:

\[(4.7.5)\quad [((2e+1)(2f+1)(2g+1)(2\kappa+1)] \frac{1}{2} \left\{ \begin{array}{ccc} a & b & e \\ c & d & f \\ g & h & \kappa \end{array} \right\} = \frac{1}{4} \left\{ \begin{array}{ccc} a & b & e \\ c & d & f \\ g & h & \kappa \end{array} \right\} = x \left(a \quad b \quad c \quad d ; \quad e \quad f ; \quad g \quad h ; \quad \kappa \right)\]

\[(4.7.6)\quad (-1)^{j_1 + j_4 - j_{12} - j_{24}} \left\{ \begin{array}{ccc} j_1 & j_2 & j_{12} \\ j_3 & j_4 & j_{24} \\ j_{12} & j_{24} & j \end{array} \right\} = 8(j_1 j_2 j_3 j_4 ; j_{12} j_{24} j ; j) \quad (\text{Schwinger 1952})\]

\[(4.7.7)\quad \left\{ \begin{array}{ccc} j_1 & j_2 & j \\ j_3 & j_4 & j' \end{array} \right\} = \chi \left(j_1 j_2 j ; j_3 j_4 j' ; \kappa \quad \kappa' \quad J \right) \quad (\text{Fano 1952})\]

A number of relations involving the 6-j and 9-j symbols may be obtained by considering the various coupling schemes of four angular momenta. We may obtain in this way:

* I am grateful to Dr. J.P. Elliott for showing me these results.
4.7

\[(4.7.8) \sum_{\lambda} (-1)^{\lambda} (2\lambda+1) \begin{pmatrix} b & c & \lambda \\ J_2 a & J_1 & \lambda \\ \kappa_2 d & J & \kappa_1 \end{pmatrix} = \]

\[= (-1)^{\kappa_1} \sum_{\lambda} (-1)\lambda^2 (2\lambda+1) \begin{pmatrix} b & d & \lambda \\ a & J & \kappa_2 \\ J_1, J_2 & c & \kappa_2 b & \lambda \end{pmatrix} \]

\[(4.7.9) \]

\[(-1)^{2\kappa_2} \begin{pmatrix} J_1 d & \kappa_2 \\ J & c & J_2 \end{pmatrix} \begin{pmatrix} a & d & \kappa_1 \\ \kappa_2 & b & J_1 \end{pmatrix} = \sum_{\lambda} (2\lambda+1) \begin{pmatrix} \lambda & c & \kappa_1 \\ b & J_1, a & \kappa_2 b & J \end{pmatrix} \]

\[(4.7.10) \]

\[\sum_{\lambda \mu} (-1)^{\lambda(2\lambda+1)(2\mu+1)} \begin{pmatrix} J_1 b & a \\ e & \lambda & \mu \end{pmatrix} \begin{pmatrix} \kappa_1 d & a \\ e & \lambda & \mu \end{pmatrix} = (-1)^{J_2 + \kappa_2 + 2J} \begin{pmatrix} a & d & \kappa_1 \\ b & J & \kappa_2 \\ J_1, J_2 & c \end{pmatrix} \]

When we go to coupling schemes of 5 angular momenta we encounter more complex invariants; a 12-\(j \) symbol has been defined by Jahn and Hope (1954) and by Ord-Smith (1954). It has been shown however by J.P. Elliott and by the present author that two distinct 12-\(j \) symbols exist; they correspond to diagrams

[Diagrams are shown here]
Numerical values of the 9-j symbol are usually obtained most easily by use of (4.7.2) and evaluation of the 6-j symbols by the methods discussed in 4.6. However, formulae have been given for some assignments of numerical values to the arguments by Rose and Osborn (1954).

5.1 Tensor operators.

Quantum mechanical operators are frequently functions of the angular coordinates of the system in which they work. Let us consider such an operator 0, and the effect on it of a rotation \(\omega \) (see §1.2) of the frame of coordinates. We have formally, where we consider the transformation \(D(\omega) \) as operators on the state vectors,

\[
(5.1.1) \quad 0 \rightarrow D(\omega) \quad 0 \quad D^{-1}(\omega)
\]

An irreducible tensor operator of rank \(\kappa (\kappa = 0, 1, 1, \ldots) \) is a set of \(2 \kappa + 1 \) operators \(T(\kappa q) \) which are transformed under a rotation \(\omega \) in the following way:

\[
(5.1.2) \quad D(\omega) \quad T(\kappa q) \quad D^{-1}(\omega) = \sum_{q'=-\kappa}^{\kappa} T(\kappa q') \quad D^{(\kappa)}_{q'q}(\omega)
\]

where \(D^{(\kappa)}_{q'q}(\omega) \) is a matrix element of the \(2\kappa+1 \)-dimensional irreducible representation \(D^{(\kappa)} \) of the rotation group*; i.e. \(T(\kappa q) \) transform like the angular momentum eigenvectors \(\psi(\kappa q) \).

* cf. §3.1
Thus, a vector operator (see TAS ch. III) is a tensor operator of rank 1 for example, a magnetic moment. A quadrupole–moment, on the other hand, is a tensor operator of rank 2.

The concept of tensor operator may be defined in terms of commutation relations with respect to the angular momentum operators (see Racah 1942); the two definitions are equivalent.†

5.2. Factorisation of the matrix elements of tensor operators (Wigner–Eckart theorem)

Consider a tensor operator acting on an eigenvector \(\psi(jm) \) of some angular momentum operators \(J^2, J_z \); under a rotation \(\omega \) we have

\[
D(\omega)[T(\kappa q)\psi(jm)] = [D(\omega)T(\kappa q)D^{-1}(\omega)] D(\omega)\psi(jm)
\]

(5.2.1)

From the definition (4.1.2) we see that this is equal to

\[
\sum_{q'q'} T(\kappa q')\psi(jm') D(q'q(\omega)) D(j)(\omega)_{m'm'}
\]

(5.2.2)

Thus the vector \(T(\kappa q)\psi(jm) \) is transformed by the product representation \(D(\kappa) \otimes D(j) \) of the rotation group, and hence (cf. (3.5.2))

\[
T(\kappa q)\psi(jm) = \sum_{j'm'} (\kappa q jm|\kappa jj'm') \xi(j'm')
\]

(5.2.3)

† however see A. Simon and T.A. Welton (1953)
where the \(\psi(j'm') \) are eigenvectors of the angular momentum operators \(J_x, J_z \).

The matrix element (where \(\gamma, \gamma' \) denote all other quantum numbers)

\[
(y' j'm' | T(\kappa q) | yj m) = (\psi(j'm'), T(\kappa q) \psi(jm))
\]

is, by orthogonality, equal to

\[
(5.2.4) \quad (\psi(j'm'), \tilde{\psi}(j'm')) (kq jm | kj j'm')
\]

and thus we have factorised the matrix element into a part independent of rotations and a Clebsch-Gordan coefficient.

It is convenient to define the reduced matrix elements, or double-bar matrix elements, by

\[
(5.2.5) \quad (y' j'm' | T(\kappa q) | yj m) = (-1)^{j'-m'} \begin{pmatrix} j' & \kappa & j \end{pmatrix} \left(\begin{array}{c} m' \\ -m' \end{array} \right) (y' j' | T(\kappa) | yj) \frac{(j' m q j' m')!}{(2j'+1)!}
\]

This definition is the same as that given by Racah (1942) and Wigner (1951). Other workers, for example Landau and Lifschitz (1948), Schwinger (1952), Alder (1952) and Biedenharn and Rose (1953) have defined reduced matrix elements with different conventions, and care should be taken because of this (see Table III), p. 66.

The double-bar matrix elements are computed in practice in the obvious way; we choose the easiest to compute of the components \((y' j'm' | T(\kappa q) | yj m) \) and divide it by the appropriate quantity. Is is usually best to take \(m' = m = q = 0 \) or \(m' = m = j = \frac{1}{2}, q = 0 \), so that the simpler formulae of table II may be employed.
The integrals evaluated in § 3.5 may also be relevant to the computation — namely in the case of matrix elements of solid or spherical harmonics. (Cf. remarks on matrix elements of two-body interaction in § 5.5.)

A simple example of a tensor operator of rank 1 is the radius vector \vec{r}; this has the components (cf Table VI p. 69).

\[(5.2.6) \quad r_o = z \quad ; \quad r_\pm = \frac{\mp 1}{\sqrt{2}} (x \pm iy)\]

Similarly in the spherical scheme the angular momentum $\vec{\epsilon}$ has components

\[(5.2.7) \quad \epsilon_o = \epsilon_z \quad \epsilon_\pm = \frac{1}{\sqrt{2}} (\epsilon_x \pm i\epsilon_y) ;\]

we have corresponding expressions for the components of \vec{s}.

Reference to (5.2.5) and table II shows that

\[(5.2.8) \quad (\epsilon | | \vec{\epsilon} | | \epsilon') = h^2 \delta_{\epsilon \epsilon'} \left[(2\epsilon+1)(\epsilon'+1) \right]^1 \quad \text{and} \quad (\frac{1}{2} | | \vec{\epsilon} | | \frac{1}{2}) = \hbar \sqrt{\frac{3}{2}}\]

(we consider $(\epsilon_m | \epsilon_o | \epsilon'm') = \delta_{\epsilon \epsilon'} \delta_{mm'}$ and the corresponding 3-j symbol). We use (3.5.6) to obtain in the same way the double-bar matrix elements for the spherical harmonics.

$Y_{\kappa \mu}(\theta \phi)$, where r, θ, ϕ are the particle coordinates.

\[(5.2.9) \quad (\epsilon | | Y_{\kappa} | | \epsilon') = \left(\frac{-1}{2\pi} \right) \left[(2\epsilon+1)(2\epsilon'+1) \right]^1 \left(\begin{array}{ccc} \epsilon & \kappa & \epsilon' \\ 0 & 0 & 0 \end{array} \right)\]

(cf. Racah (1942))
5.3 Tensor product of tensor operators.

We define the tensor product of two tensor operators $T(\kappa_1 q_1)$ and $U(\kappa_2 q_2)$ by

\[(5.3.1) \quad X(\kappa q) = \sum_{q_1 q_2} T(\kappa_1 q_1) U(\kappa_2 q_2)(\kappa_1 q_1 \kappa_2 q_2 | \kappa_1 \kappa_2 \kappa q)\]

It is easy to show that this product is also a tensor operator, being transformed under rotations as a basis element of the representation $D^{(\kappa)}$. Use of the orthogonality of the C-G coefficients gives the decomposition of a simple product of two tensor operator components:

\[(5.3.2) \quad T(\kappa_1 q_1) U(\kappa_2 q_2) = \sum_{\kappa q} X(\kappa q)(\kappa_1 \kappa_2 \kappa q | \kappa_1 q_1 \kappa_2 q_2)\]

The scalar product of two tensor operators of the same rank is, however, defined not as $X(00)$ but as

\[(5.3.3) \quad (T(\kappa), U(\kappa)) = \sum_{\kappa q} (-1)^q T(\kappa q) U(\kappa - q)\]

5.4 Definition of Hermitian tensor operators.

We have to alter our conception of a Hermitian operator, since evidently the eigenvalues of the components $T(\kappa q)$ of a tensor operator will not all be real. We required in § 1.5 that the complex conjugate of the spherical harmonic Y_ℓ^m should be given by $Y_\ell^m = (-1)^m Y_\ell^{-m}$; however we remember from § 2.6 that this property is not preserved under vector-coupling. The alternative convention gives a spherical harmonic \hat{Y}_ℓ^m (1.5.7) in which the corresponding
property is preserved under vector-coupling:

\[(5.4.1) \quad \hat{\mathbf{y}}^*_{\mathbf{z}m}(\phi\phi) = (-1)^{\mathbf{z}+m} \hat{\mathbf{y}}_{\mathbf{z}-m}(\phi\phi) \]

Now in the ordinary quantum theory a Hermitian operator 0 (satisfying \(0^\dagger = 0 \)) has real eigenvalues (satisfying \(a^* = a \)). It is easy to see that we have a consistent system when we extend the concept of a Hermitian operator and require that a Hermitian tensor operator should satisfy

\[(5.4.2) \quad T^\dagger(\kappa q) = (-1)^{\kappa+q} T(\kappa-q) \]

It is clear from (5.1.2) that this property is preserved under rotations. Tensor operators of half odd integer rank cannot be Hermitian in this sense, and are therefore not of physical significance. This is discussed by Wigner (1951) p. 48 and Schwinger (1952) p. 57.

If \(T(\kappa q) \) is a Hermitian tensor operator, then the double-bar matrix elements must satisfy the condition

\[(5.4.3) \quad (j^*|T(\kappa)|j') = (-1)^{\kappa-j'}(j'|T(\kappa)|j) \]

It may be shown (cf. §2.6) that if two tensor operators \(T(\kappa_1 q_1) \) and \(T(\kappa_2 q_2) \) are Hermitian, then, provided they commute, their tensor product (5.3.1) is also Hermitian. Tensor products of certain tensor operators which do not commute have been discussed by Rose and Osborn (1954).

5.5 Matrix elements of products of tensor operators.

Suppose that two tensor operators \(T(\kappa_1 q_1) \) and \(U(\kappa_2 q_2) \) operate upon parts 1 and 2 respectively of a

* This definition differs from that of Racah (1942), who takes \((-1)^j\). With Racah's definition tensor products of Hermitian tensor operators are not Hermitian.
quantum mechanical system (i.e., they commute). The angular momentum quantum numbers of parts 1 and 2 and of the whole system are denoted by $j, m_1, j_2 m_2$ and $j m$ respectively.

Then by use of (2.4.1), (2.4.6), (4.7.1), (5.2.5) and (5.3.1) we may compute the double-bar matrix element of the tensor product $X(\kappa q)$, in the scheme $(y_1, j_2 j m)$.

We first express the matrix element

$$(y_1, j_2 j m | X(\kappa q) | y' j j j' j' m')$$

by a Clebsch-Gordan transformation in terms of matrix elements in the scheme $(y_1, j_2 m_1 m_2)$:

$$(5.5.1)$$

$$
(y_1, j_2 j m | X(\kappa q) | y' j j j' j' m') = \\
\sum_{m_1, m_2} (j_1, j_2 j m | j_1, j_2 m_1 m_2 | Y(q_1) | y' j_1 j_2 j' m_1 m_2)
$$

In the scheme $(y_1, j_2 m_1 m_2)$ the matrix element of $X(\kappa q)$ may be written in terms of products of the matrix elements of $T(\kappa_1 q_1)$ and $U(\kappa_2 q_2)$:

$$(5.5.2)$$

$$
(y_1, j_2 m_1 m_2 | X(\kappa q) | y' j j j' m') = \\
\sum_{q_1, q_2} (y_1, m_1 | T(\kappa_1 q_1) | y' j j m_1) (y_2 m_2 | U(\kappa_2 q_2) | y' j j m_2)
$$

Now we combine (5.5.1) and (5.5.2), substituting the double-bar matrix elements of $X(\kappa q)$, $T(\kappa_1 q_1)$ and
\[U(\kappa_2 q_2) \text{ by use of (5.2.5)}. \]

Reference to the orthogonal property of the 3- \(j \) symbols (2.4.5.) and the definition of the 9- \(j \) symbols (4.7.1) shows that the double-bar matrix element of \(X(\kappa q) \) in the scheme \((y_j, j_z, j_m)\) may be expressed in terms of the double-bar matrix elements of \(T(\kappa_1 q_1) \) and \(U(\kappa_2 q_2) \) and a 9- \(j \) symbol. Thus we have removed all quantities which depend on the particular coordinate system.

\[(5.5.3) \]
\[(y_j, j_z, j_m || X(\kappa) || y', j', j') = \]
\[= [(2j+1)(2j'+1)(2\kappa+1)]^{1/2} \sum_{y''} \left(y_j, j_z, j_m \right| T(\kappa_1) \left| y'', j' \right. \right) \]
\[\times (y'', j_z, j_m || U(\kappa_2) || y', j') \]

where \(y, y', y'' \) denote all quantum numbers not associated with angular momentum. This formula is applied, for example, to the computation of the matrix elements of tensor and spin-orbit forces in nuclei by Elliott (1953) and to \(\beta \)-decay problems by Rose and Osborn (1954).

The formula for the matrix element of the scalar product of two commuting tensor operators (5.3.3) in the scheme \((y_j, j_z, j_m)\) is obtained by setting \(\kappa = 0 \) and applying (4.7.3). We get

\[(5.5.4) \]
\[(y_j, j_z, j_m || (T(\kappa) \cdot U(\kappa)) || y', j', j', m') = \]
\[= (-1)^{j + j_z + j_1'} \sum_{y''} \left(y_j, j_z, j_m || T(\kappa) || y'', j' \right) \left(y'', j_z, j_m || U(\kappa) || y', j' \right) \delta_{j' j}, \delta_{m' m}, \]

If we have only an operator \(T(\kappa q) \) operating on part 1 and we want the matrix element in the scheme
\[(y_{j_1j_2jm}) \text{ we get it by putting } \kappa_2 = 0 \text{ in (5.5.3)(substituting } U(\kappa_2q_2) = 1) \text{ and applying (4.7.3). The result is}
\]
\[
(5.5.5) \\
(y_{j_1j_2j}||\mathbb{T}(\kappa)||y'_{j'j_2j'}) = \]
\[
= (-1)^{j_1 + j_2 + j' + \kappa} \left(\frac{(2j+1)(2j'+1)}{2} \left\{ \begin{array}{ccc} j_1 & j_2 \\ j' & j_2 \\ \kappa \end{array} \right\} \right) (y_{j_1j}||\mathbb{T}(\kappa)||y'_{j'})
\]

If \(\kappa = 1 \) (in (5.5.4) we have a familiar case - the computation of the matrix element of the scalar product of two vector quantities. An application of (5.5.5) is found in the use of the spherical harmonic addition theorem (3.5.8) in the calculation of the matrix elements of a two-body interaction (electrostatic interaction or Wigner force). Cf. Racah (1942). When \(j_1 = j_1', j_2 = j_2' \) the matrix elements may be obtained by the well-known method (see, for example, Kopfermann (1940)). A quantity enters into the calculation which in the limit of large \(j_1 \) and \(j_2 \) becomes the cosine of the angle \((j_1, j_2) \) between the two angular momentum vectors \(j_1, j_2 \). This quantity is
\[
(5.5.6) \quad \frac{j(j+1) - j_1(j_1+1) - j_2(j_2+1)}{2j_1j_2}
\]

The corresponding 6-j symbol has the value
\[
(5.5.7) \\
\left\{ \begin{array}{ccc} j & j_2 & j_1 \\ 1 & j_1 & j_2 \end{array} \right\} = (-1)^{j_1 + j_2 + j} \left\{ \begin{array}{ccc} j & j_2 & j_1 \\ 1 & j_1 & j_2 \end{array} \right\} = \frac{1}{2} \frac{j(j+1) - j_1(j_1+1) - j_2(j_2+1)}{(j_1(j_1+1)(2j_1+1)(2j_1+1)j_2(j_2+1)(2j_2+1))^{1/2}}
\]

Hence in the limit of large \(j_1 \) and \(j_2 \), \(\left\{ \begin{array}{ccc} j & j_2 & j_1 \\ 1 & j_1 & j_2 \end{array} \right\} \) approaches the value \((-1)^{j_1 + j_2 + j} [(2j_1+1)(2j_2+1)]^{-1/2} \cos(j_1, j_2)\)
For \(\kappa_1 = 2 \) the Legendre function
\[
P_2(\cos(\hat{j}_1, \hat{j}_2)) = \frac{1}{4} \left(\frac{3}{2} \cos^2(\hat{j}_1, \hat{j}_2) - \frac{1}{2} \right)
\]
takes the place of \(\cos(\hat{j}_1, \hat{j}_2) \) (see again Kopfermann loc. cit.) and we may write a similar asymptotic value for \(\begin{bmatrix} j & j_2 & j_1 \\ 2 & j_1 & j_2 \end{bmatrix} \).

In general, for \(\kappa_1 = \kappa \) we have, as has been remarked by Racah (1951),

\[
\begin{pmatrix} j & j_2 & j_1 \\ \kappa & j_1 & j_2 \end{pmatrix} \rightarrow (-1)^{j_1+j_2+j_1}(2j_1+1)(2j_2+1)]^{-\frac{1}{2}} P_{\kappa}(\cos(\hat{j}_1, \hat{j}_2))
\]

for large \(j_1 \) and \(j_2 \), and small \(\kappa \).

(see §4,6 for recursion relation for this type of 6–j symbol).
Table 1

(i) **Unsymmetrised C-G coefficients.**

These are all numerically equal (insofar as the authors have stated their assumptions about phases) to the C-G coefficient defined by Condon and Shortley. The symbols used for the angular momentum quantum numbers are the same throughout for ease of comparison, and in some places are different from those used by the authors mentioned.

<table>
<thead>
<tr>
<th>Author/Year</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Biedenharn (1952)</td>
<td>$\text{C}_{j_1,j_2}^{m_1,m_2}$</td>
</tr>
<tr>
<td>b) Blatt and Weisskopf (1952)</td>
<td>$\text{C}_{j_1,j_2}^{m_1,m_2}$</td>
</tr>
<tr>
<td>c) Condon and Shortley (1935)</td>
<td>$\left{ \begin{array}{ccc} (j_1,j_2,j_3,m_1,m_2) \ (j_1,j_2,j_3,m; m_1,m_2) \ (j,m_1,m_2) \end{array} \right}$</td>
</tr>
<tr>
<td>d) Eckart (1930)</td>
<td>$A_{j_1,j_2}^{m_1,m_2}$</td>
</tr>
<tr>
<td>e) Fano (1952)</td>
<td>$\langle j_1,m_1,j_2,m_2 \mid (j_1,j_2) j m \rangle$</td>
</tr>
<tr>
<td>f) Jahn (1951), Alder (1952)</td>
<td>$C_{j_1,m_1,j_2,m_2}^{j_3}$</td>
</tr>
<tr>
<td>g) Rose (1953)</td>
<td>$\text{C}(j_1,j_2,j_3; m_1,m_2)$</td>
</tr>
<tr>
<td>h) v.d. Waerden (1931)</td>
<td>Landau and Lifschitz (1948) C_{m_1,m_2}^j</td>
</tr>
<tr>
<td>i) Wigner (1931)</td>
<td>$S_{j_1,j_2}^{j_3,m_1,m_2}$</td>
</tr>
<tr>
<td>j) Boys (1951)</td>
<td>$X(j,m_1,j_1,j_2,m_2)$</td>
</tr>
</tbody>
</table>
(ii) **Symmetrised C-G coefficients.**

These are given relative to Wigner's j-j symbol, which is given in terms of the C-G coefficient by (2.4.1).

a) Fano (1952) : $<j_{1}m_{1},j_{2}m_{2},j_{3}m_{3}|0> \ (-1)^{j_{1}-j_{2}+j_{3}} = \binom{j_{1}j_{2}j_{3}}{m_{1}m_{2}m_{3}}$.

b) Landau and Lifschitz (1948) :

$$S_{j_{1}m_{1};j_{2}m_{2};j_{3}m_{3}}(-1)^{j_{1}-j_{2}+j_{3}} = \ldots$$

c) Racah (1942)

$$V(j_{1}j_{2}j_{3}; m_{1}m_{2}m_{3})(-1)^{j_{3}+j_{2}-j_{1}} = \ldots$$

d) Schwinger (1952)

$$X(j_{1}j_{2}j_{3}; m_{2}m_{2}m_{3}) = \ldots$$
Table II

\[
\begin{pmatrix}
 j_1 & j_2 & j_3 \\
 0 & 0 & 0
\end{pmatrix}
= (-1)^{\frac{3}{2}j} \left[\frac{(j_1+j_2-j_3)! (j_1+j_3-j_2)! (j_2+j_3-j_1)!}{(j_1+j_2+j_3)!} \right]^{\frac{1}{2}} \times \\
\times \left[\frac{(j_1)!}{(j_1-j_1)! (j_1-j_2)! (j_1-j_3)!} \right]^\frac{1}{2}
\]

if \(J \) is even

\[
\begin{pmatrix}
 j_1 & j_2 & j_3 \\
 0 & 0 & 0
\end{pmatrix} = 0 \text{ if } J \text{ is odd} \quad \text{where } J = j_1+j_2+j_3
\]

\[
\begin{pmatrix}
 j_1 + \frac{1}{2} & j \frac{1}{2} \\
 M & M - \frac{1}{2}
\end{pmatrix}
= (-1)^{J-M-\frac{1}{2}} \left[\frac{J-M+1}{(2J+2)(2J+1)} \right]^{\frac{1}{2}}
\]

\[
\begin{pmatrix}
 j_1 + 1 & j \frac{1}{2} \\
 M & M - 1
\end{pmatrix}
= (-1)^{J-M-1} \left[\frac{(J-M)(J-M+1)}{(2J+3)(2J+2)(2J+1)} \right]^{\frac{1}{2}}
\]

\[
\begin{pmatrix}
 j_1 + 1 & j \frac{1}{2} \\
 M & M - 0
\end{pmatrix}
= (-1)^{J-M-1} \left[\frac{(J+M+1)(J-M+1)+2}{(2J+3)(2J+2)(2J+1)} \right]^{\frac{1}{2}}
\]

\[
\begin{pmatrix}
 J & j \frac{1}{2} \\
 M & M - 1
\end{pmatrix}
= (-1)^{J-M} \left[\frac{(J-M)(J+M+1)+2}{(2J+2)(2J+1)(2J)} \right]^{\frac{1}{2}}
\]

\[
\begin{pmatrix}
 J & j \frac{1}{2} \\
 M & M - 0
\end{pmatrix}
= (-1)^{J} \left[\frac{M}{(2J+1)(J+1)J} \right]^{\frac{1}{2}}
\]
\[
\begin{align*}
(J & \quad J \quad 2) \quad (M & \quad -M-2 \quad 2) \quad (-1)^{J-M} \left[\frac{6(J-M-1)(J-M)(J+M+1)(J+M+2)}{(2J+3)(2J+2)(2J+1)(2J)(2J-1)} \right]^{\frac{1}{2}} \\
(J & \quad J \quad 2) \quad (M & \quad -M-1 \quad 1) \quad (-1)^{J-M} (1 + 2M) \left[\frac{6(J+M+1)(J-M)}{(2J+3)(2J+2)(2J+1)(2J)(2J-1)} \right]^{\frac{1}{2}} \quad J, J, 2 \\
(J & \quad J \quad 2) \quad (M & \quad -M \quad 0) \quad (-1)^{J-M} \frac{2[M^2 - J(J+1)]}{[(2J+3)(2J+2)(2J+1)(2J)(2J-1)]^{\frac{1}{2}}}
\end{align*}
\]
Table III

Notations relating to tensor operators and reduced matrix elements.

N.B. We assume throughout the usual convention, that

\[(a|0|b) = \int \psi^*_a \psi_b \, \text{d}r\]

The q component of a tensor operator of rank \(\kappa\) is written in these notes as \(T(\kappa q)\), and the matrix elements between the states \(a \, j \, m\) and \(a' \, j' \, m'\) as \((a \, j \, m | T(\kappa) | a' \, j' \, m')\). This is identical with the notation of Schwinger (1952). Other notations, which are equivalent to those already mentioned, are given below.

Racah (1942) : q component of tensor operator of rank \(\kappa\) : \(- T_q^k\). Matrix element of this operator : \(-(a j m | T_q^k | a' j' m')\)

Wigner (1951) : \(\tau\) component of tensor operator of rank \(\tau\) : \(- t^\tau\). Matrix element of this operator between states with angular momenta \(\epsilon \, \kappa, \epsilon' \lambda : -(\psi^\epsilon_\kappa \, t^\tau \, \psi^{\epsilon'}_{\lambda})\).

Landau and Lifschitz (1948): m component of tensor operator of rank \(j\) : \(- f^{jm}\). Matrix element of this operator between states with angular momenta \(j, m_1, j_2 m_2 : -(f^{jm})_{j_1 m_2}^{j_2 m_2}\)

Biedenharn and Rose (1953): \(\mu\) component of tensor operator of rank \(L\), with parity \(\pi(= \pm 1) : - T(L, \mu, \pi)\). Matrix element of this operator between states with angular momenta \(j, m_1, jm : -(j, m_1 | T(L, \mu, \pi) | jm)\).
Fano (1951): q component of tensor operator of rank $\kappa : = T_{\kappa q}$. Matrix element of this operator between states with angular momenta $j'm'$ and $jm : = \langle j'm'|T_{\kappa q}|jm \rangle$.

The double-bar matrix element, or reduced matrix element, is defined in these notes as follows:

$$(\alpha jm|T(\kappa q)|a'j'm') = (-1)^{j-m} (\alpha j||T(\kappa)||a'j') j^\kappa _m q m'$$

This is identical with the definition of Racah (1942); however in his notation the relation is:

Racah (1942)

$$(\alpha j m|T^{(\kappa q)}_q|a'j'm') = (-1)^{j+m}(a j||T^{(\kappa)}||a'j') \times V(j j'\kappa; -m m' q)$$

The definition of Wigner (1951) is also equivalent to ours:

$$(\psi^e_k, t_\tau \psi^e_\lambda) = (-1)^{\tau - \kappa} j^e _\kappa \tau \lambda t_{\tau \lambda}$$

Other notations, which are not equivalent to ours, are given below; reference should be made to Table I for the notations for Clebsch-Gordan coefficients.

Schwinger (1952):

$$(y jm|T(\kappa q)|y'j'm') = (-1)^{\kappa - j' + m} [y j||T^{(\kappa)}||y'j'] X(j \kappa j'; -m q m')$$

Biedenharn and Rose (1953):

$$<j_1m_1|T(L \mu, \pi)|jm> = c(j_1L; j_1, m_1, m_1; j_1||T(L\pi)||j) \delta(\pi, \mu \sigma \nu)$$

Landau and Lifschitz (1948):

$$f(j m) _{j_2m_2} = f(j) _{j_2} (-1)^{m_2} \sqrt{2J_2 + 1} S_{j_1 m_1; j m; j_2}$$
Fano (1951):

\[
\sum_{m'm} < (j'j) \bar{kq} \mid j'm', \ j-m > (-1)^{\bar{j}-m} < j'm' \mid T_{\kappa q} \mid j \ m > = < j'j \mid T_{\kappa} > \times \\
\times \delta_{\kappa \kappa} \delta_{\bar{k}q}
\]

Condon and Shortley (1935): We relate the analogous notation of TAS for vector operators to our own by quoting equations (30) of Racah (1942):

\[
(\alpha \ j \mid T^{(1)} \mid \alpha' j') = \left[j(j+1)(2j+1) \right]^{\frac{1}{2}} (\alpha \ j \ ; \ T \ ; \ \alpha' j) \\
(\alpha \ j \mid T^{(1)} \mid \alpha' j-1) = \left[j(2j-1)(2j+1) \right]^{\frac{1}{2}} (\alpha \ j \ ; \ T \ ; \ \alpha' j-1) \\
(\alpha \ j \mid T^{(1)} \mid \alpha' j+1) = - \left[(j+1)(2j+1)(2j+3) \right]^{\frac{1}{2}} (\alpha \ j \ ; \ T \ ; \ \alpha' j+1)
\]
Table IV

\[\Delta^{(j)}_{\text{num,}} (0, \frac{\pi}{2}, 0) = \Delta^{(j)}_{\text{num,}} \] (cf. § 3.7)

\[
\begin{array}{c|cc}
 j = \frac{1}{2} & m' & m \\
 \hline
 - \frac{1}{2} & \frac{1}{\sqrt{2}} & - \frac{1}{\sqrt{2}} \\
 + \frac{1}{2} & - \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\end{array}
\]

\[
\begin{array}{c|cccc}
 j = 1 & m' & m \\
 \hline
 - 1 & \frac{1}{2} & 0 & 1 \\
 0 & - \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
 + 1 & \frac{1}{2} & - \frac{1}{\sqrt{2}} & \frac{1}{2} \\
\end{array}
\]

\[
\begin{array}{c|cccc}
 j = \frac{3}{2} & m' & m \\
 \hline
 - \frac{3}{2} & \frac{1}{2\sqrt{2}} & \frac{\sqrt{3}}{2\sqrt{2}} & \frac{\sqrt{3}}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\
 - \frac{1}{2} & - \frac{\sqrt{3}}{2\sqrt{2}} & - \frac{1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} & \frac{\sqrt{3}}{2\sqrt{2}} \\
 + \frac{1}{2} & \frac{\sqrt{3}}{2\sqrt{2}} & - \frac{1}{2\sqrt{2}} & - \frac{1}{2\sqrt{2}} & \frac{\sqrt{3}}{2\sqrt{2}} \\
 + \frac{3}{2} & - \frac{1}{2\sqrt{2}} & \frac{\sqrt{3}}{2\sqrt{2}} & - \frac{\sqrt{3}}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\
\end{array}
\]
\[j = 2 \quad m' \]

<table>
<thead>
<tr>
<th></th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>+1</th>
<th>+2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>\frac{1}{4}</td>
<td>\frac{1}{2}</td>
<td>\frac{\sqrt{3}}{2\sqrt{2}}</td>
<td>\frac{1}{2}</td>
<td>\frac{1}{4}</td>
</tr>
<tr>
<td>-1</td>
<td>\frac{1}{2}</td>
<td>\frac{1}{2}</td>
<td>0</td>
<td>\frac{1}{2}</td>
<td>\frac{1}{2}</td>
</tr>
<tr>
<td>0</td>
<td>\frac{\sqrt{3}}{2\sqrt{2}}</td>
<td>0</td>
<td>-\frac{1}{2}</td>
<td>0</td>
<td>\frac{\sqrt{3}}{2\sqrt{2}}</td>
</tr>
<tr>
<td>+1</td>
<td>-\frac{1}{2}</td>
<td>\frac{1}{2}</td>
<td>0</td>
<td>-\frac{1}{2}</td>
<td>\frac{1}{2}</td>
</tr>
<tr>
<td>+2</td>
<td>\frac{1}{4}</td>
<td>-\frac{1}{2}</td>
<td>\frac{\sqrt{3}}{2\sqrt{2}}</td>
<td>-\frac{1}{2}</td>
<td>\frac{1}{4}</td>
</tr>
</tbody>
</table>
Table V

Formulae for the 6–j symbol

\[
\begin{align*}
\{a & b & c \cr l & c-1 & b-1 \} = (-1)^s \left[\frac{s(s+1)(s-2a-1)(s-2a)}{(2b-1)2b(2b+1)(2c-1)2c(2c+1)} \right]^{\frac{1}{2}} \\
- \quad \{a & b & c \cr l & c-1 & b \} = (-1)^s \left[\frac{2(s+1)(s-2a)(s-2b)(s-2c+1)}{2b(2b+1)(2b+2)(2c-1)2c(2c+1)} \right]^{\frac{1}{2}} \\
\{a & b & c \cr l & c-1 & b+1 \} = (-1)^s \left[\frac{(s-2b-1)(s-2b)(s-2c+1)(s-2c+2)}{(2b+1)(2b+2)(2b+3)(2c-1)2c(2c+1)} \right]^{\frac{1}{2}} \\
\{a & b & c \cr l & e & b \} = (-1)^{s+1} \frac{2[b(b+1) + c(e+1) - a(a+1)]}{[2b(2b+1)(2b+2)2e(2e+1)(2e+2)]^{\frac{1}{2}}} \\
s = a + b + c
\end{align*}
\]
\[
\begin{align*}
\begin{bmatrix}
\frac{a}{2} & \frac{b}{2} & \frac{c}{2} \\
\frac{3}{2} & e^{-\frac{3}{2}} & b^{-\frac{3}{2}}
\end{bmatrix} &= (-1)^s \frac{\sqrt{\frac{(s-1)s(s+1)(s-2a-2)(s-2a-1)(s-2a)}{(2b-2)(2b-1)2b(2b+1),(2c-2)(2c-1)2c(2c+1)}}}{\frac{3(s+1)(s-2a-1)(s-2b)(s-2b+1)}{(2b-1)2b(2b+1)(2b+2)(2c-2)(2c-1)2c(2c+1)}}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
\frac{a}{2} & \frac{b}{2} & \frac{c}{2} \\
\frac{3}{2} & e^{-\frac{3}{2}} & b^{-\frac{3}{2}}
\end{bmatrix} &= (-1)^s \frac{\sqrt{\frac{3(s+1)(s-2a-1)(s-2b)(s-2b+1)}{2b(2b+1)(2b+2)(2b+3)(2c-2)(2c-1)2c(2c+1)}}}{\frac{3(s+1)(s-2a-1)(s-2b)(s-2b+1)}{2b(2b+1)(2b+2)(2b+3)(2c-2)(2c-1)2c(2c+1)}}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
\frac{a}{2} & \frac{b}{2} & \frac{c}{2} \\
\frac{3}{2} & e^{-\frac{3}{2}} & b^{-\frac{3}{2}}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
\frac{a}{2} & \frac{b}{2} & \frac{c}{2} \\
\frac{3}{2} & e^{-\frac{3}{2}} & b^{-\frac{3}{2}}
\end{bmatrix} &= (-1)^s \frac{\sqrt{2(s-2b)(s-2c)-(s+2)(s-2a-1)[(s+1)(s-2a)]}}{\frac{2(s-2b)(s-2c)-(s+2)(s-2a-1)[(s+1)(s-2a)]}{(2b-1)(2b+1)(2b+2)(2c-1)2c(2c+1)(2c+2)}}
\end{align*}
\]

\[
\begin{align*}
\begin{bmatrix}
\frac{a}{2} & \frac{b}{2} & \frac{c}{2} \\
\frac{3}{2} & e^{-\frac{3}{2}} & b^{-\frac{3}{2}}
\end{bmatrix} &= (-1)^s \frac{\sqrt{[(s-2b-1)(s-2b) - 2(s+2)(s-2a)][(s-2b)(s-2b+1)]}}{\frac{[(s-2b-1)(s-2b) - 2(s+2)(s-2a)][(s-2b)(s-2b+1)]}{2b(2b+1)(2b+2)(2b+3)(2c-1)2c(2c+1)(2c+2)}}
\end{align*}
\]

\[
s = a + b + c
\]
\[
\begin{align*}
\binom{a \ b \ c}{2 \ e-2 \ b-2} &= (-1)^8 \left[\frac{(s-2)(s-1)s(s+1) \cdot (s-2a-3)(s-2a-2)(s-2a-1)(s-2a)}{(2b-3)(2b-2)(2b-1)2b(2b+1) \cdot (2e-3)(2e-2)(2e-1)2e(2e+1)} \right]^{1/2} \\
\binom{a \ b \ c}{2 \ c-2 \ b-1} &= (-1)^2 \left[\frac{(s-1)s(s+1) \cdot (s-2a-2)(s-2a-1)(s-2a)(s-2b)(s-2a+1)}{(2b-2)(2b-1)2b(2b+1)(2b+2) \cdot (2e-3)(2e-2)(2e-1)2e(2e+1)} \right]^{1/2} \\
\binom{a \ b \ c}{2 \ c-2 \ b} &= (-1)^8 \left[\frac{6s(s+1) \cdot (s-2a-1)(s-2a)(s-2b)(s-2a+1)(s-2a+2)}{(2b-1)2b(2b+1)(2b+2)(2b+3) \cdot (2e-3)(2e-2)(2e-1)2e(2e+1)} \right]^{1/2} \\
\binom{a \ b \ c}{2 \ c-2 \ b+1} &= (-1)^2 \left[\frac{(s-1)(s-2a)(s-2b-2)(s-2b-1)(s-2b)(s-2a+1)(s-2a+2)(s-2a+3)}{2b(2b+1)(2b+2)(2b+3)(2b+4) \cdot (2e-3)(2e-2)(2e-1)2e(2e+1)} \right]^{1/2} \\
\binom{a \ b \ c}{2 \ c-2 \ b+2} &= (-1)^8 \left[\frac{(s-2b-1)(s-2b-2)(s-2b-1)(s-2b)(s-2a+1)(s-2a+2)(s-2a+3)(s-2a+4)}{(2b+1)(2b+2)(2b+3)(2b+4)(2b+5) \cdot (2e-3)(2e-2)(2e-1)2e(2e+1)} \right]^{1/2} \\
\binom{a \ b \ e}{2 \ c-1 \ b-1} &= (-1)^8 \cdot 4 \left[\frac{(a+b)(a-b+1)-(e-1)(e-b+1)}{[s(s+1)(s-2a-1)(s-2a)]^{1/2}} \right] \left[\frac{(s+1)(s-2a)(s-2b)(s-2a+1)(s-2a+2)(s-2a+3)(s-2a+4)}{(2b-2)(2b-1)2b(2b+1)(2b+2) \cdot (2e-2)(2e-1)2e(2e+1)(2e+2)} \right]^{1/2} \\
\binom{a \ b \ e}{2 \ c-1 \ b} &= (-1)^2 \left[\frac{(a+b+1)(a-b-e^2+1)\sqrt{6(s+1)(s-2a)(s-2b)(s-2a+1)}}{(2b-1)2b(2b+1)(2b+2)(2b+3) \cdot (2e-2)(2e-1)2e(2e+1)(2e+2)} \right]^{1/2} \\
\binom{a \ b \ e}{2 \ c-1 \ b+1} &= (-1)^8 \cdot 4 \left[\frac{(a+b+2)(a-b-1)-(e-1)(b-e+2)}{[2b(2b+1)(2b+2)(2b+3)(2b+4) \cdot (2e-2)(2e-1)2e(2e+1)(2e+2)]^{1/2}} \right]^{1/2} \\
\binom{a \ b \ c}{2 \ e \ b} &= (-1)^S \frac{23(X-1)-4b(b+1)e(e+1)}{[(2b+1)2b(2b+1)(2b+2)(2b+3) \cdot (2e-1)2e(2e+1)(2e+2)(2e+3)]^{1/2}}
\end{align*}
\]

where \(s = a+b+c \), \(X = b(b+1) + e(e+1) - a(a+1) \)
Table VI

Spherical and solid harmonics

\[Y_{\ell m}(r) = r^{\ell} Y_{\ell m}(\theta, \phi) \]

<table>
<thead>
<tr>
<th>(\ell, m)</th>
<th>(Y_{\ell m}(r))</th>
<th>(Y_{\ell m}(\theta, \phi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>(\frac{1}{2\sqrt{\pi}})</td>
<td>(\frac{1}{2\sqrt{\pi}})</td>
</tr>
<tr>
<td>1 0</td>
<td>(\frac{1}{2\sqrt{\pi}}) 2π (z)</td>
<td>(\frac{1}{2} \sqrt{\frac{3}{2\pi}}) (\cos \theta)</td>
</tr>
<tr>
<td>1±1</td>
<td>(\frac{1}{2} \sqrt{\frac{3}{2\pi}}) ((x+iy))</td>
<td>(\frac{1}{2} \sqrt{\frac{3}{2\pi}}) (\sin \theta) (e^{i\phi})</td>
</tr>
<tr>
<td>2 0</td>
<td>(\frac{1}{4} \sqrt{\frac{5}{\pi}}) ((2z^2-x^2-y^2))</td>
<td>(\frac{1}{4} \sqrt{\frac{5}{\pi}}) ((2\cos^2 \theta - \sin^2 \theta))</td>
</tr>
<tr>
<td>2±1</td>
<td>(\frac{1}{4} \sqrt{\frac{15}{2\pi}}) (z) ((x+iy))</td>
<td>(\frac{1}{4} \sqrt{\frac{15}{2\pi}}) (\cos \theta \sin \theta) (e^{i\phi})</td>
</tr>
<tr>
<td>2±2</td>
<td>(\frac{1}{4} \sqrt{\frac{15}{2\pi}}) ((x+iy)^2)</td>
<td>(\frac{1}{4} \sqrt{\frac{15}{2\pi}}) (\sin^2 \theta) (e^{2i\phi})</td>
</tr>
<tr>
<td>3 0</td>
<td>(\frac{1}{4} \sqrt{\frac{7}{\pi}}) ((2z^2-3x^2-3y^2)z)</td>
<td>(\frac{1}{4} \sqrt{\frac{7}{\pi}}) ((2\cos^3 \theta - 3\cos \theta \sin^2 \theta))</td>
</tr>
<tr>
<td>3±1</td>
<td>(\frac{1}{8} \sqrt{\frac{21}{\pi}}) ((4z^2-x^2-y^2)(x+iy))</td>
<td>(\frac{1}{8} \sqrt{\frac{21}{\pi}}) ((4\cos^2 \theta \sin \theta - \sin^3 \theta)) (e^{i\phi})</td>
</tr>
<tr>
<td>3±2</td>
<td>(\frac{1}{4} \sqrt{\frac{105}{2\pi}}) (z) ((x+iy)^2)</td>
<td>(\frac{1}{4} \sqrt{\frac{105}{2\pi}}) (\cos \theta \sin^2 \theta) (e^{2i\phi})</td>
</tr>
<tr>
<td>3±3</td>
<td>(\frac{1}{8} \sqrt{\frac{35}{\pi}}) ((x+iy)^3)</td>
<td>(\frac{1}{8} \sqrt{\frac{35}{\pi}}) (\sin^3 \theta) (e^{3i\phi})</td>
</tr>
</tbody>
</table>

Irreducible tensors containing in addition the components of some other vector \(\hat{r} \) may be constructed by polarization of the solid harmonics with the operator \(\hat{r} \cdot \nabla = x' \frac{\partial}{\partial x} + y' \frac{\partial}{\partial y} + z' \frac{\partial}{\partial z} \). Cf. Rose (1954)
References

Kopfermann, H. Kernmomente. Berlin, 1940.

de Shalit, A. The energy levels of odd-odd nuclei. Physical Review, 91 (6), p. 1479 - 1486, 1953.

van der Waerden, B.L. Die Gruppentheoretische Methoden in der Quantenmechanik. Berlin, 1931.

Wigner, E.P. On matrices which reduce Kronecker products of representations of S.R. groups. 1951. (unpublished)
Applications of the methods discussed in these notes may be found in the following papers. The bibliography is not claimed to be exhaustive; however the starred papers contain extensive collections of references in the respective fields.

(i) Atomic spectra (see also (vi))

(ii) β-Decay.

(iii) γ-Emission.

(iv) Directional correlation of nuclear radiations.

(v) Collective model of the nucleus.

(vi) Fractional parentage coefficient methods.

† The papers marked with a dagger (†) deal mainly with the theory of fractional parentage coefficients of their calculation.

† The papers marked with a dagger (†) deal mainly with the theory of fractional parentage coefficients of their calculation.

(vii) **Nuclear spectra** (see also (vi)).

de-Shalit, A. The energy levels of odd-odd nuclei. Physical Review, 91 (6), p. 1479-1486, 1953.

(viii) **Nuclear reactions**.

CERN 35 - 20
Vie: A, G. A portée de deux fonctions a caractère

CERN 35 - 21
dEspagnat, B. and Pretti, F. Possible mathematical formulation of the Gell-Mann model for new particles

CERN 35 - 22
Adams, J. B. The alternating gradient proton-synchrotron

CERN 35 - 23
Citron, W. and Hine, M. G. N. Experimental facilities of the CERN proton-synchrotron

CERN 35 - 24
Lüders, G. Theory of particle orbits in the alternating gradient synchrotron

CERN 35 - 1/4, 11, 14, 15/17
pued être obtenus auprès de
CERN Service d'Information
Case Postale 23,
Genève 11, aéroport,
Suisse

CERN 35 - 6/10, 12, 13, 15/17
pued être obtenus auprès de
CERN Theoretical Study Division
Blegdamvej 17,
Copenhaguen,
Denmark