ATLAS Transition Radiation Tracker (TRT): Straw Tubes for Tracking and Particle Identification at the Large Hadron Collider

Bartosz Mindur* on behalf of the ATLAS Collaboration

AGH University of Science and Technology
Faculty of Physics and Applied Computer Science

Abstract

The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three inner detector tracking subsystems and consists of ~300000 thin-walled drift tubes ("straw tubes") that are 4 mm in diameter. The TRT system provides ~30 space points with ~130 micron resolution for charged tracks with |η| < 2 and p_T > 0.5 GeV/c. The TRT also provides electron identification capability by detecting transition radiation (TR) X-ray photons in Xe-based working gas mixture. Compared to Run 1, the LHC beams now provide a higher centre of mass energy (13 TeV), more bunches with a reduced spacing (25 ns), and more particles in each bunch leading to very challenging, higher occupancies in the TRT. We will present the TRT modifications made for Run 2: to improve response to the expected much higher rate of hits and to mitigate leaks of the Xe-based active gas mixture. The higher rates required changes to the data acquisition system and introduction of validity gate to reject out-of-time hits. Radiation-induced gain changes in the front-end electronics were studied. Many gas leaks were repaired and the gas system was modified to use a cheaper Ar-based gas mixture (or even a Kr-based mixture which is under study) in some channels. A likelihood method was introduced to optimize the TRT electron identification.

LHC after 2013-15 upgrade

The LHC parameters for Run 2

<table>
<thead>
<tr>
<th>Machine parameter</th>
<th>Run 1</th>
<th>Run 2</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM energy (GeV)</td>
<td>7</td>
<td>13</td>
<td>TeV</td>
</tr>
<tr>
<td>Peak luminosity</td>
<td>7 × 10^{34}</td>
<td>2 × 10^{35}</td>
<td>cm^{-2} s^{-1}</td>
</tr>
<tr>
<td>Average bunches</td>
<td>~21</td>
<td>~28</td>
<td></td>
</tr>
<tr>
<td>TT input rate</td>
<td>20</td>
<td>40</td>
<td>MHz</td>
</tr>
</tbody>
</table>

All detectors and the LHC underwent significant upgrades during the Long Shutdown 1 (LS1) period. Beam energy almost doubled bringing the possibility to explore the Standard Model in an energy range never achieved previously. Almost doubling the beam luminosity allows to precisely study the Standard Model and especially the Higgs boson. Doubling the number of LHC bunches and much higher pileup results in new challenges in the detector data acquisition system and for trigger performance.

Performance at High Pileup and High Occupancy

Fig. 3. The digitization of the TRT LT and HT signals from a single straw. Signal digitization. A low threshold (LT) is readout in 24 time bins (3.125 ns each) to record tracking information. Ternary readout electronics provide high threshold (HT) hits (~6 KeV) in 3 time bins (25 ns each) to identify electrons.

Fig. 4. TRT straw occupancy as a function of |η| for muons p_T > 30 GeV. Zero suppression both online and offline uses tunable validity gates with tunable width. Using online zero suppression, the TRT track extension fraction is reduced from 0.2 to 0.05.

Fig. 5. Track position measurement accuracy in the straw as a function of |η| for muons p_T > 30 GeV. Data acquisition and tracking conditions become very challenging when the detector runs at high occupancy levels (due to the luminosity increase and the reduction in bunch spacing) The TRT tracking is performing very well under the extreme conditions providing high-precision spatial measurements.

Active Gas Mixture Leaks

Due to the leaks, parts of the TRT gas system have been filled with Ar-based gas mixture. It has been decided to use Ar-based gas mixture in places where the Xe losses are unaffordable (significant reduction of costs ~ Xe leaks at ~15 CHF/l). The affected parts of the TRT detector are: the innermost barrel layer – M0 (1/3 of the barrel), end-cap A wheel and end-cap C wheel A4 (2 out of 28 end-cap wheels). However, this configuration may change during the Run 2 if new leaks develop.

In the meantime, tests have been ongoing to investigate the possibility of using a Kr-based gas mixture, which has better (than Ar) X-ray absorption coefficient with more reasonable price (than Xe).

Particle Identification

Fig. 9. Pion misidentification probability as a function of HT fraction criteria that gives 90% electron efficiency in bins of |η|.

The HT probability varies significantly across the TRT detector due to the use of different radiators, detector geometry and two gas mixtures. The higher luminosity in Run 2 greatly increases occupancy leading to increased HT probability. PID based on a likelihood method which accounts for these various effects has been proposed in the following form:

$$L = \frac{1}{p_{HT}} \sum_{i} \frac{1}{p_{i}}$$

if HT hit

$$\bar{p} = \frac{1}{1 - \frac{L}{p_{HT}}}$$

if not HT hit

$$\bar{p} = \frac{1}{1 - \frac{L}{p_{HT}}}$$

Probability to produce a HT hit, p_{HT} – electron probability.

Summary

The TRT detector performs very well despite high pileup, extreme occupancy, problems with gas leaks (mixed Ar/Xe gas operation mode) and significantly contributes to tracking and electron identification.

References

[3] https://twiki.cern.ch/twiki/bin/view/AtlasPublic/OnlinePublicResults
email: mindur@agh.edu.pl