Search for high mass scalar resonances in diboson decay modes at 13 TeV by the ATLAS collaboration

Ben Pearson on behalf of the ATLAS collaboration

2016 Phenomenology Symposium
Introduction

• Searches for an extension to the Higgs sector via an additional heavy, CP-even scalar singlet

• Using complete 2015 Dataset!
 – 3.2 fb^{-1} @ 13 TeV

• Many joint efforts between Higgs and Exotics groups yielding a variety of signal interpretations:
 – Scalar/Heavy-Higgs – spin 0
 • Widths from 4 MeV to 15% of m_x
 • Masses from 200 GeV to 3 TeV
 – Heavy Vector Triplet (HVT) – spin 1
 – Graviton – spin 2

*Covered in this talk
*See talk by Samuel Meehan
Outline

• This talk will highlight the most recent results:

<table>
<thead>
<tr>
<th>Process</th>
<th>Final State</th>
<th>Documentation</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X \rightarrow WW$</td>
<td>$lvqq + lvlv$ Combination</td>
<td>ATLAS-CONF-2016-021</td>
<td>April 2016</td>
</tr>
<tr>
<td>$X \rightarrow ZZ$</td>
<td>$llvv$</td>
<td>ATLAS-CONF-2016-012</td>
<td>March 2016</td>
</tr>
<tr>
<td></td>
<td>$llqq$</td>
<td>ATLAS-CONF-2016-016</td>
<td>March 2016</td>
</tr>
<tr>
<td></td>
<td>$vvqq$</td>
<td>ATLAS-CONF-2015-068</td>
<td>December 2015</td>
</tr>
<tr>
<td>$X \rightarrow VV$</td>
<td>$qqqq$</td>
<td>ATLAS-CONF-2015-073</td>
<td>December 2015</td>
</tr>
<tr>
<td></td>
<td>Hadronic Combination</td>
<td>...</td>
<td>...coming soon</td>
</tr>
<tr>
<td>$X \rightarrow Z\gamma$</td>
<td>$ee\gamma + \mu\mu\gamma + qq\gamma$</td>
<td>ATLAS-CONF-2016-010</td>
<td>March 2016</td>
</tr>
<tr>
<td>$X \rightarrow \gamma\gamma$</td>
<td>-</td>
<td>ATLAS-CONF-2016-018</td>
<td>March 2016</td>
</tr>
</tbody>
</table>
Some Tools and Methods

• Searches look for peaks in mass distributions
 – Smooth falling SM backgrounds
 – Searches with >1 neutrino use the transverse mass (m_T)

• High mass resonances result in highly boosted decay products
 – Collimated leptons and jets
 – Dedicated vector boson jet (V_{jet}) tagging
 • Both quarks are reconstructed in a single large-R jet
 • Tagger uses jet mass (m_j) and a substructure variable D_2: compatibility with a two-prong structure
 • m_j requirement to be within 15 GeV of m_W/m_Z
 • p_T dependent requirements on D_2 configured to give 50% signal identification efficiency
Search for high-mass scalar resonances in diboson decay modes

- Signals 500 GeV – 3000 GeV
 - Narrow, 5, 10, and 15% widths
- Dominant backgrounds
 - Top (t\bar{t}) and W+jets
 - Normalized using CRs in simultaneous fit
- Fit discriminant $m_{l\nu J}$
 - Using: $m(l\nu) = m(W)$
Search for high-mass scalar resonances in diboson decay modes

- **Similar approach to semi-leptonic channel**
 - Dominant bkgs.: top-quark and WW productions \rightarrow use control regions
 - Fit discriminant transverse mass: $m_T = \sqrt{\left(\sqrt{p_T^H}^2 + m_T^2 + E_T^{\text{miss}}\right)^2 - |p_T^H + E_T^{\text{miss}}|^2}$

- **SR split by N_{jet} (0, 1, ≥2) advantage of different bkg. comp.**
 - Limits also set on VBF production $\sigma \times \text{BR}$
 - For NWA
 - Expect. limit $\sigma_{\text{ggF}} = 0$
 - Obs. limit σ_{ggF} is nuisance parameter
X → WW Combined

- ggF combination ($lνlν N_{jet}$ =0,1)
- Maximum-likelihood fit (SR and CRs)
- No excess $→$ set limits $σ \times BR$
- $lνqq$ dominates in entire mass range
- Significantly expanded the mass range from Run 1 (8 TeV data)
 - JHEP01(2016)032

Search for high-mass scalar resonances in diboson decay modes

- Ben Pearson
- Run 1
 - ggF combination ($lνlν N_{jet}$ =0,1)
 - Maximum-likelihood fit (SR and CRs)
 - No excess $→$ set limits $σ \times BR$
 - $lνqq$ dominates in entire mass range
 - Significantly expanded the mass range from Run 1 (8 TeV data)
 - JHEP01(2016)032
Important backgrounds
- ZZ, WZ, Z+jets, and less so WW, tt, Wt, and Z→ττ
- 3-lepton CR for WZ normalization
- eμ CR for inclusive estimate of WW, tt, Wt, and Z→ττ processes

Discriminant: $m_T^{ZZ} = \sqrt{\left(\sqrt{m_2^2 + |p_T^{ll}|^2} + \sqrt{m_2^2 + |E_T^{miss}|^2}\right)^2 - |p_T^{ll} + E_T^{miss}|^2}$

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cut Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton p_T (leading, subleading)</td>
<td>> (30 GeV, 20 GeV)</td>
</tr>
<tr>
<td>$m_{\ell\ell}$</td>
<td>> (30 GeV, 20 GeV)</td>
</tr>
<tr>
<td>E_T^{miss}</td>
<td>76–106 GeV</td>
</tr>
<tr>
<td>$\Delta R_{\ell\ell}$</td>
<td>> 120 GeV</td>
</tr>
<tr>
<td>$\Delta \phi(p_T^{ll}, E_T^{miss})$</td>
<td>< 1.8</td>
</tr>
<tr>
<td>Fractional p_T difference</td>
<td>> 2.7</td>
</tr>
<tr>
<td>Number of b-jets</td>
<td>< 0.2</td>
</tr>
<tr>
<td>$\Delta \phi(E_T^{miss}, \text{jets})$</td>
<td>0</td>
</tr>
<tr>
<td>p_T^{ll}/m_T^{ZZ}</td>
<td>> 0.4</td>
</tr>
<tr>
<td>p_T^{ll}/m_T^{ZZ}</td>
<td>< 0.7</td>
</tr>
</tbody>
</table>
• The number of data points and the m_T^{ZZ} distributions are consistent with the SM predictions

• Upper limits are set on the $\sigma \times BR$ for NWA
 • For each mass point (300-1000 GeV)
\(X \rightarrow ZZ \rightarrow llqq\)

- Merged and resolved reconstruction of the \(Z \rightarrow qq\) decay
 - Merged: one \(Z\)-tagged large-\(R\) jet (J) and resolved: a pair of small-\(R\) jets (jj)
- Events failing merged analysis selection are “recycled” to resolved
- Resolved analysis further categorization
 - \(b\)-tagged jets: exactly 2 (tagged) and < 2 (untagged)
- Dominant bkgs.: \(Z+\)jets, diboson, top
- Control regions: Top CR for resolved tagged region (diff. flavor \(l\) ’s & \(m_{bb} \approx m_{top}\))

 - \(Z+\)jets CR for each signal region (\(m_{J/jj}\) side-bands)

Event Recycling

- Merged
- Resolved Untagged
- Resolved Tagged

Ben Pearson

Search for high-mass scalar resonances in diboson decay modes
X→ZZ→llqq

- The three signal regions and four CRs are fit simultaneously
 - Constraining the normalization of the Z+jets and Top backgrounds
 - Discriminant is the full invariant mass m_{llJ} / m_{lljj}

- No significant excess is observed

- Upper limits are set on the $\sigma \times \text{BR}$ for NWA and LWA
 - For each mass point (300-1000 GeV) and width (NWA & 5,10,15%)
X→ZZ→vvqq

- Dominant bkgs: Z+jets, W+jets, and ttbar
 - Normalized using dedicated control regions in a combined fit
- Fit discriminant transverse mass: \[m_T = \sqrt{\left(\sqrt{m_j^2 + p_T^2} + E_T^{\text{miss}}\right)^2 - p_T^2 + E_T^{\text{miss}}^2} \]
- Signal region: lepton veto, MET>250 GeV, Z-tagged large-\(R\) jet, 0 b-jets
Search for high-mass scalar resonances in diboson decay modes

- Although G* signal is shown above, results below use scalar signal
- No significant excess observed, so combined limits set on $\sigma \times BR$
$X \rightarrow Z\gamma$, $Z \rightarrow ee, \mu\mu, qq$

- Search for localized excess in the invariant mass distribution
- Leptonic ($ll\gamma$) and hadronic ($J\gamma$) analyses
 - $l = e, \mu$ and $J = \text{large-}R\ \text{jet}$
- **Dominant Bkgs.**
 - Leptonic
 - $Z+\gamma$ continuum
 - Hadronic
 - $\gamma+\text{jet}$ non-resonant SM production
- **Discriminant**
 - Invariant mass $m_{ll\gamma}/m_{J\gamma}$
\[\mathbf{X \rightarrow Z \gamma} , \mathbf{Z \rightarrow ee, \mu \mu, qq} \]

- Signals $\Gamma_X = 4$ MeV ($m_X = 200$-3000 GeV)
 - **Leptonic Sel**: $p_T(\gamma) > 0.3 m_{ll \gamma}$, and $m_{ll} = m_Z \pm 15$ GeV
 - **Hadronic Sel**: $p_T(\gamma) > 250$ GeV, Z-tagged $p_T(J) > 200$ GeV

- Total background exhibits smoothly falling mass spectrum
 - Parameterized by smooth function with data-adjusted parameters

- Maximum-likelihood fit to $m_{ll \gamma} / m_{J \gamma} \rightarrow$ limits on the σx BR

ll\gamma: 382 events

J\gamma: 534 events
• **Signals** $m_X = 200 - 2000$ GeV
 - Widths (Γ_X) up to $\Gamma_X/m_X = 10%$
 • Including a narrow width: 4 MeV
 • Large width generation for $m_X \pm 2\Gamma_X$
 - Reduce model effects from off-shell region
 - $m_{\gamma\gamma}$ experimental resolution modelled by a DSCB function

• **Selection:**
 - Diphoton trigger: $E_T > 35(25)$ GeV
 • leading (sub-leading) photon
 - 2 identified and isolated photons
 • With $E_T > 40(30)$ GeV
 - $E_T/m_{\gamma\gamma} > 0.4(0.3)$
• **Background estimation**

 - $\gamma\gamma$ QCD from MC
 - γ+jet and dijet from CRs
 - $m_{\gamma\gamma}$ distribution shape

 • Functional form:

 \[f = (1 - x^{1/3})^b x^a \]

 - b and a determined by data
 - $x = m_{\gamma\gamma}/\sqrt{s}$

 • **Maximum-likelihood fits**

 - Entire mass spectrum is used for each mass hypothesis
 - B-only to S+B likelihood ratios for local significances

 2878 events ($m_{\gamma\gamma} > 200$ GeV)

 ![Graph showing ATLAS Preliminary data with background-only fit](image)

 ATLAS Preliminary

 - Data
 - Background-only fit

 Spin-0 Selection

 $\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$
Search for high-mass scalar resonances in diboson decay modes

- Largest deviation observed around $m_X = 750$ GeV
 - 3.9σ (2\sigma global) with a $\Gamma = 45$ GeV (6\%) signal width
 - Global significance accounts for look-elsewhere-effect using pseudo-experiments

- Not enough for discovery, so limits on σ_{fid} evaluated
 - Fiducial cross-section to minimize model dependence

\[\frac{\Gamma}{m_X} [\%] \]

\[\sigma_{\text{fid}} \times \text{BR} [\text{fb}] \]

\[m_X [\text{GeV}] \]

\[\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1} \]

\[\Gamma_{\chi}/m_{\chi} = 6 \% \]

\[\text{Spin-0 Selection} \]

\[\text{Fiducial} \text{ cross-section to minimize model dependence} \]
Summary and Outlook

- Just the tip of the iceberg!?
- Eager for **more data!**
 - May have 6-8 fb\(^{-1}\) by ICHEP and >20 fb\(^{-1}\) by the end of the year
- Collaboration is working hard to output results as efficiently as possible
- Always room for improvement
 - Large-\(R\) jet systematics dominate most hadronic channels
 - Improvements to large-\(R\) jet mass resolution in progress
- The future is bright! Bring on the lumi!
Backup Material
• Comparison with 8 TeV data

• 20 fb\(^{-1}\) reanalyzed data
 – Newest 8 TeV photon energy calibration
 – Same ID and isolation
 – Extended mass range

• 750 GeV and 6% = \(\Gamma/m_X\)

 signal hypothesis

 – Excess of 1.9\(\sigma\) @ 750 GeV
 – Difference between 8 and 13 TeV results corresponds to a statistical significance of 1.2\(\sigma\) (2.1\(\sigma\)) for gg(qq) production
• Limits for other widths:

- Observed CL_s limit
- Expected CL_s limit
- Expected $\pm 1\sigma$
- Expected $\pm 2\sigma$

ATLAS Preliminary
$\sqrt{s} = 13$ TeV, 3.2 fb$^{-1}$
Γ_X/m_X = 1 %
Spin-0 Selection

95% CL Upper Limit on $\sigma_{id} \times$ BR [fb]

- ATLAS Preliminary
- Observed CL_s limit
- Expected CL_s limit
- Expected $\pm 1\sigma$
- Expected $\pm 2\sigma$

95% CL Upper Limit on $\sigma_{id} \times$ BR [fb]

- ATLAS Preliminary
- Observed CL_s limit
- Expected CL_s limit
- Expected $\pm 1\sigma$
- Expected $\pm 2\sigma$

95% CL Upper Limit on $\sigma_{id} \times$ BR [fb]

- ATLAS Preliminary
- Observed CL_s limit
- Expected CL_s limit
- Expected $\pm 1\sigma$
- Expected $\pm 2\sigma$

95% CL Upper Limit on $\sigma_{id} \times$ BR [fb]
• Limit for a narrow width 4 MeV signal (previous CONF note)
• Kinematic distribution sanity checks:
• Double-sided Crystal Ball function:

\[X \rightarrow \gamma \gamma \]

![Graph showing ATLAS search for high-mass scalar resonances in diboson decay modes]

- Gaussian Distribution
- Power Law: \[\sim (-m_{\gamma \gamma})^{-\eta_{\text{Low}}} \]
- Power Law: \[\sim (m_{\gamma \gamma})^{-\eta_{\text{High}}} \]
- \(\Delta m_X \)
• **Control regions:**

 – Top CR for resolved tagged region (diff. flavor l’s & $m_{bb} \approx m_{top}$)

 – Z+jets CR for each signal region (m_{jj} side-bands)

Search for high-mass scalar resonances in diboson decay modes

Ben Pearson