Biased HiPIMS technology for superconducting rf accelerating cavities coating

G. Rosaz, G. (CERN) et al

10 June 2015

The EuCARD-2 Enhanced European Coordination for Accelerator Research & Development project is co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement 312453.

This work is part of EuCARD-2 Work Package 12: Innovative Radio Frequency Technologies (RF).

The electronic version of this EuCARD-2 Publication is available via the EuCARD-2 web site <http://eucard2.web.cern.ch/> or on the CERN Document Server at the following URL: <http://cds.cern.ch/search?p=CERN-ACC-2016-0052>
Abstract

In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HiPIMS) coatings has steadily increased. HiPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HiPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

EXPERIMENTAL SETUP

Biased HiPIMS

The core setup remains the same. However because the cavity is now negatively biased one needs to get an anode within the coating setup. For that purpose two extra electrodes surround the extremities of the central cathode. These electrodes are used as anode (grounded) when coating the cell of the cavity and as cathode when coating the cut-off regions.

CONCLUSION AND PERSPECTIVES

HiPIMS technique is a promising approach in order to improve SRF cavities performances. Based on this observations a step forward has been done in order to control the cavity potential and thus to tune the energy of the impinging ions in order to get even better film characteristics. It as been shown that the film surface is clearly modified by applying a negative potential through the increase of the coating speed as well as the enhancement of the grains size. A first superconducting parameter, RRR, as been characterized and exhibited a step up compared to standard HiPIMS coatings.

Further studies will be carried out such as the evaluation of the effect of using either a balanced or unbalanced magnetron configuration in order to tune the ion production and flow toward the substrate. OES and MS measurements will also be attempted in cavity geometry in the same way as for standard HiPIMS configuration in order to evaluate the changes of the plasma behaviour. Finally SRF cavities will have to be coated so we can access the RF properties of such devices and get a link between the film structure and the accelerating structures performances.