SAHAL YACOOB
UNIVERSITY OF CAPE TOWN
ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS

SOFT QCD AT ATLAS AND CMS
In 15 Minutes...

- Inelastic cross section
 - ATLAS and CMS at 13 TeV
- Minimum bias
 - Charged Particle distributions at 13 TeV from CMS and ATLAS
 - Energy Flow at 13 TeV from CMS
- Underlying event
 - Event shapes at 7 TeV from ATLAS
Non–Perturbative – cannot be calculated

Important to constrain phenomenological models

used to estimate pile-up

ATLAS and CMS measure a fiducial cross sections first and then correct to the total.

The fiducial volume is defined by the total mass of particles measured on either side of the largest rapidity gap (M_X) and \sqrt{s}

$$\xi = \frac{M_X^2}{s}$$

Kinematically limited to $M_X > m_p$ ($\xi > 6 \times 10^{-9}$)

Fiducial limit is approximately $M_X > 13 m_p$ ($\xi > 10^{-6}$)
Event Selection election: 2 hits in Minimum Bias Trigger Scintillator (MBTS) counters

Corrections and systematics are evaluated using Pythia 8, EPOS LHC and QGSJET-II

- Allows for variations in the diffractive model
- Comparison between inclusive and single sided event selections are used to constrain the diffractive component
2 Fiducial regions

- Hadronic Forward Calorimeters (HF) Only
 - $3.0 < |\eta| < 5.2$
 - Can add asymmetric region $-6.6 < \eta < -5.2$
 - CASTOR ($B = 0 T$)
 - Extends fiducial region down to $M_x > 4.1 \ m_p (\xi > 10^{-6})$

- Pythia 6 and 8 used with a variety of models (and tunes)

- $E > 5 GeV$ in either of the HF, or Castor (if included)
ATLAS and CMS measurements show good agreement, phenomenological models over predict the value

CMS fiducial: $\sigma = 65.77 \pm 0.03$ (stat.) ± 0.76 (sys.) ± 1.78 (lum.) mb
CMS (with CASTOR) fiducial: $\sigma = 66.85 \pm 0.06$ (stat.) ± 0.44 (sys.) ± 1.96 (lum.) mb
CMS total: $\sigma = 71.26 \pm 0.06$ (stat.) ± 0.47 (sys.) ± 2.09 (lum.) ± 2.72 (extr.) mb
ATLAS fiducial: $\sigma = 65.2 \pm 0.8$ (exp.) ± 5.9 (lum.) mb
ATLAS total: $\sigma = 73.1 \pm 0.9$ (exp.) ± 6.6 (lum.) ± 3.8 (extr.) mb
probes the transition between perturbative and non-perturbative calculations

- non-perturbative at low p_T, perturbative and high p_T

Often used to tune free parameters in models.

- used to validate model of pile-up simulation
3.9 M zero-bias events, $\langle \mu \rangle = 1.3$

Selection criteria:
- one primary vertex, ($|z| < 15$ cm, 2 tracks, $d_0 < 0.2$ cm)
- Track selection: $p_T > 0.5$ GeV, $|\eta| < 2.4$

Correction from Detector Level to Stable Particle Level done in categories defined by energy (or lack thereof) in the HF
- SD, NSD, inelastic-enhanced
- inclusive region ignores input from HF

Analysis corrections based on PYTHIA8 CUETP8M1 and EPOS LHC
MINIMUM BIAS CHARGED PARTICLE DISTRIBUTIONS

COMPARISONS BY CLASSIFICATION

CMS-PAS-FSQ-15-008

- NSD Selection:
 - Good Description:
 - EPOS
 - Pythia8
 - CUETM1

- SD Selection best described by:
 - Pythia8 MBR 4C
 - Herwig does poorly
170 \mu b^{-1} with low beam currents, \langle \mu \rangle = 0.005

Selection Criteria:

- Track selection:
 - \(p_T > 0.5 \text{ GeV}, |\eta| < 2.5, 1 \text{ primary vertex [2 tracks} \ (p_T > 0.1 \text{ GeV})] \)

Bayesian unfolding to get the true \(p_T \) distribution

Bayesian unfolding from \(N_{\text{Track}} \) to \(N_{\text{particle}} \)

Dominant Uncertainty is from non-closure of unfolding
EPOS-LHC does consistently better,

QGSJET is the most systematically different
CMS and ATLAS distributions agree and are best reproduced by EPOS LHC.
HERWIG does a better job with the inclusive samples.
Pythia under predicts the distributions as the energy increases.

EPOS does a good job across the range of LHC energies.
PSEUDO RAPIDITY DEPENDANCE ON ENERGY FLOW

- 0.06 nb$^{-1}$, with 0.05 < $<\mu>$ <1.5
- Calorimeter based energy flow at 3.15 < $|\eta|$ < 6.6
- Study of beam fragmentation
 - important information about energy in the forward direction
 - reflected in MC $<\mu>$ reweighing
- Two Regions
 - Soft inclusive (activity on both sides E_{Tower} > 4 GeV) and
 - NSD enhanced (activity on only one side E_{Tower} > 5 GeV)
- Correction to particle level calculated as average of:
 - PYTHIA8 tune MONASH 2013,
 - PYTHIA8 tune 4C with MBR model,
 - EPOS-LHC and QGSJETII.4
In the pre-CASTOR bins the agreement degrades as $|\eta|$ increases.
Characterisation of the underlying event in Z Boson events as a function of the p_T of the Z Boson

- 1.1 fb^{-1} of low μ data
- complicated pile-up correction

Distributions are unfolded based on Bayesian unfolding to account for non-primary particle, detector efficiencies and resolution effect

Observables in two classes:

- Not-sensitive to the number of particles
 - Spherocity, Transverse Thrust
- Explicit dependance on the number of particle
 - n_{CH}
EVENT SHAPE OBSERVABLES

TRANSVERSE THRUST AND SPHEROCITY

\[0 \quad S \quad 1 \]

\[1 \quad T \quad 2/\pi \]
predictions get better with increasing pT

Herwig is consistently better
Electron and Muon channels are similar

Pythia is consistently better
WHAT HAVE WE LEARNED?

- ATLAS and CMS are taking slightly different, complementary approaches to the characterisation of the soft QCD regime
 - ATLAS and CMS measurements of these regions agree, and should help to constrain soft QCD models in order to allow for a better description of data at 13 TeV
- Things that work well at 13 TeV:
 - EPOS – LHC does a good job of the central inclusive region
- At 7 TeV
 - Pythia 8.212 – Topology based variables
 - Herwig 7.0 – multiplicity based variables
SOFT QCD RESULTS

ATLAS AND CMS CONTINUE TO MAKE GOOD PROGRESS TOWARDS A COMPLETE SET OF SOFT QCD MEASUREMENTS

- ATLAS Track-based Minimum Bias at 8 TeV arXiv:1603.02439
- ATLAS Hadronic Event shapes in Z events arXiv:1602.08980
- CMS Underlying event measurements with leading particles and jets in pp collisions at $\sqrt{s} = 13$ TeV CMS-PAS-FSQ-15-007
- CMS Dijet production with a large rapidity gap between the jets CMS-PAS-FSQ-12-001
- CMS Event generator tunes obtained from underlying event and multiparton scattering measurements EPJC 76 (2016) 155
- CMS Measurement of exclusive $\pi^+\pi^-\pi^+\pi^-$ production in proton-proton collisions at $\sqrt{s} = 7$ TeV CMS-PAS-FSQ-12-004

AND MANY MORE •••
Comparison between minimum bias, and Z boson dist.