TOP MASS PREDICTION FROM
SUPERSYMMETRIC GUTS

B. Ananthanarayan¹
G. Lazarides²
Q. Shafi¹, ³

Abstract

We consider a supersymmetric GUT framework motivated by $SO(10)$ or E_6 unification in which the parameter $\tan \beta (\equiv v_2 / v_1)$ of the minimal supersymmetric standard model is constrained by the condition that the Yukawa couplings h_u, h_d and h_{τ} are all equal at the GUT scale. With $\alpha_S(M_Z) = 0.106 \pm 0.006$, the estimate for the b quark mass, which depends on $\tan \beta$, lies in the 'observed' range $m_b(m_b) = 4.25 \pm 0.10 \text{ GeV}$, provided that the top quark mass is $142^{+28}_{-48} \text{ GeV}$.

¹Bartol Research Institute, Newark, DE 19716, USA
²Theory Group, CERN, CH-1211, Genève, Switzerland
³Supported in part by Department of Energy Contract No. DE-AC02-78ER05007
The minimal supersymmetric extension of the standard model (MSSM) introduces an important new parameter \(\tan \beta \equiv \frac{v_1}{v_2} \), the ratio of the vacuum expectation values that provide masses for u type and d type quarks (plus the charged leptons)[1]. Phenomenological considerations require that \(1 < \tan \beta < \frac{m_t}{m_b} \)[2]. Embedding the MSSM in SUSY \(SU(5) \)[3,4,5] leaves \(\tan \beta \) undetermined, which means that the \(SU(5) \) prediction for \(m_b \) depends on an additional free parameter[6].

In this note we consider a supersymmetric grand unified framework, based on groups such as \(SO(10) \) and \(E_6 \), in which \(\tan \beta \) is constrained by the condition that the Yukawa couplings \(h_t \), \(h_b \) and \(h_\tau \) are all equal at the GUT breaking scale \(M_X \). For \(\mu < M_X \), \(\tan \beta \) differs from \(\frac{m_t}{m_b} \) by a (small) calculable amount. With \(\alpha_S(M_Z) = 0.106 \pm 0.006 \), the estimated b quark mass lies within the 'measured' range \((m_b(m_b) = 4.25 \pm 0.10 \text{ GeV})[7] \) provided that the top quark mass is \(142^{+38}_{-28} \text{ GeV} \).

Our starting point is the assumption that the third generation fermions acquire mass from the coupling \(16.16.10 \), where the 10-plet contains the two higgs doublets that develop vevs \(v_1 \) and \(v_2 \) in an \(SO(10) \) theory, or from the coupling \(27^3 \) in an \(E_6 \) theory. This implies that the Yukawa couplings \(h_t \), \(h_b \) and \(h_\tau \) are all equal at \(M_X \) (See Table 1 for an estimate of \(M_X \) to one loop). For \(M_S < \mu < M_X (M_S = 1 \text{ TeV} \) denotes the SUSY breaking scale and \(t = \frac{\ln \mu}{16 \pi^2} \) the evolution equations for the gauge and Yukawa couplings to one loop are[6,8]:

\[
\begin{align*}
\frac{d g_1}{dt} &= (2 n_\psi + \frac{3}{6}) g_1^3 \\
\frac{d g_2}{dt} &= (-6 + 2 n_\psi + 1) g_2^3 \\
\frac{d g_3}{dt} &= (-9 + 2 n_\psi) g_3^3 \\
\frac{d h_t}{dt} &= h_t (6 h_t^2 + h_b^2 - \frac{16}{3} g_3^2 - 3 g_2^2 - \frac{13}{15} g_1^2) \\
\frac{d h_b}{dt} &= h_b (h_t^2 + 6 h_b^2 - \frac{16}{3} g_3^2 - 3 g_2^2 - \frac{7}{15} g_1^2) \\
\frac{d h_\tau}{dt} &= h_\tau (3 h_t^2 - 3 g_2^2 - \frac{9}{6} g_1^2)
\end{align*}
\]

(1)

For \(M_Z < \mu < M_S \), the equations are
\[\frac{dg_1}{dt} = \left(\frac{3}{4} n_\tau + \frac{3}{16} \right) g_1^3 \]
\[\frac{dg_2}{dt} = \left(-\frac{22}{3} + \frac{4}{3} n_\tau + \frac{1}{3} \right) g_2^3 \]
\[\frac{dg_3}{dt} \simeq \left(-11 + \frac{4}{3} n_\tau \right) g_3^3 \]
\[\frac{dh_1}{dt} = h_t(9h_t^2 + h_b^2 - 8g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{20}g_1^2) \]
\[\frac{dh_2}{dt} = h_b(h_t^2 + 9h_t^2 - 8g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{20}g_1^2) \]
\[\frac{dh_r}{dt} = h_r(6h_t^2 - \frac{9}{4}g_2^2 - \frac{9}{4}g_1^2) \]

At tree level the Yukawa couplings are given by

\[h_t = \frac{m_t\sqrt{1 + \tan^2 \beta}}{174 \tan \beta} \]
\[h_b = \frac{m_b\sqrt{1 + \tan^2 \beta}}{174} \]
\[h_r = \frac{m_r\sqrt{1 + \tan^2 \beta}}{174} \]

where \(\sqrt{v_1^2 + v_2^2} = 174 \text{ GeV} \).

In Fig. 1 we plot \(\tan \beta \) vs. \(m_t(m_t) \), where \(\tan \beta \) is determined by the requirement that for a given \(m_t(m_t) \), the three Yukawa couplings \(h_t, h_b \) and \(h_r \) meet at the GUT scale \(M_X \). In Fig. 2 an example of the evolution of the Yukawa couplings as functions of the momentum scale is shown. It may be noticed that \(\frac{h_t}{h_b} \) is of \(O(1) \) in the entire range and asymptotically reaches 1 from above. In Fig. 3 we plot \(m_t(\text{physical}) \approx m_t(m_t)(1 + \frac{\alpha_s(m_t)}{3\pi}) \) vs. \(m_b(m_b) \). Note that between \(M_Z \) and \(m_t \) the QCD corrections are included to two loops. For \(\alpha_s(M_Z) \), following the first paper in ref[9], we take the range \(0.106 \pm 0.006 \). Our conclusion from this is that the top quark mass is \(142^{+120}_{-40} \text{ GeV} \). A larger value for \(\alpha_s(M_Z) \), say 0.12, leads to a top quark mass in the range 171 \(- \) 182 GeV.

Independent of the constraint from \(m_t(m_t) \), one can approximately bound \(h_t \) by setting the right hand side of the evolution equation for its logarithm to zero. It turns out that for \(h_t \simeq 1.05 \), the system of equations lies in the perturbative domain[6,10]. In the first paper of ref[6], \(\tan \beta \) was set to unity which gives an approximate bound on the top quark mass of \((1.05)(\frac{1}{\sqrt{2}})(174 \text{ GeV}) \simeq 130 \text{ GeV} \). Our study involves large values of \(\tan \beta \) and as a consequence, we end up with an approximate upper bound on \(m_t \) of \((1.05)(174 \text{ GeV}) \simeq 183 \text{ GeV} \), which is similar to the second paper of ref[6].
In conclusion, some recent investigations[9] suggest that supersymmetric grand unified theories directly broken to the MSSM are in striking agreement with data. For instance, the predicted value for $\sin^2 \theta_W$ is in excellent agreement with recent results. Moreover, the observed gauge couplings when extrapolated to high energies appear to meet at a common scale close to 10^{16} GeV (with $M_5 \simeq 1$ TeV). Our results on the top mass takes us a step further in this direction. We have shown that certain supersymmetric GUTS also predict a heavy top quark.

Acknowledgements B. A. would like to thank S. Tilav for computational help and C. N. Leung for conversations. We also thank R. N. Mohapatra and C. Panagiotakopoulos for useful discussions.

REFERENCES

<table>
<thead>
<tr>
<th>$\alpha_s(M_Z)$</th>
<th>M_S (TeV)</th>
<th>M_X (GeV)</th>
<th>$\sin^2 \theta_W(M_Z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.100</td>
<td>1.0</td>
<td>0.42×10^{16}</td>
<td>0.235</td>
</tr>
<tr>
<td>0.106</td>
<td>1.0</td>
<td>0.71×10^{16}</td>
<td>0.233</td>
</tr>
<tr>
<td>0.112</td>
<td>1.0</td>
<td>1.02×10^{16}</td>
<td>0.231</td>
</tr>
</tbody>
</table>

Table 1.

One loop predictions for $\sin^2 \theta_W(M_Z)$ and M_X with SUSY $SO(10)$ or E_6 GUT broken directly to the minimal supersymmetric extension of the standard model.

FIGURE CAPTIONS

1. Plot of $\tan \beta$ vs. $m_t(m_t)$ with $\alpha_s = 0.106$ and $M_S = 1$ TeV.
2. Plot of Yukawa couplings vs. $\log_{10} \mu$ (GeV) for the case $\alpha_s = 0.106$, $M_S = 1$ TeV and $m_t(physical) = 142$ GeV.
3. Plots of $m_b(m_t)$ vs. $m_t(physical)$ for typical choices of parameters.
\(\alpha_s = 0.106, \ M_S = 1 \text{ TeV} \)

FIG. 1
$\alpha_s = 0.106$, $M_s = 1 \text{ TeV}$, $m_t(\text{physical}) = 142 \text{ GeV}$

![Graph showing Yukawa couplings vs. $\log_{10} \mu$ (GeV). The graph includes solid, dotted, and dashed lines.](FIG. 2)
$\alpha_s = 0.106$, $M_S = 1$ TeV

FIG. 3b
\[\alpha_s = 0.112, \ M_S = 1 \text{ TeV} \]

FIG. 3c